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A spatial data interpolation algorithm is a method to transform scattered and sparse measurement data into regular and
continuous applicable data. �is algorithm can make the display results smooth and continuous without changing the data
characteristics, which is closer to the real acquisition object. In response to the low interpolation accuracy of the inverse distance
weighting (IDW) algorithm and the poor interpolation e�ciency of the ordinary kriging (OK) algorithm, this study proposes a
variational-weighted (VW) interpolation algorithm based on data �xed-frame sampling. By introducing the variational function
of OK into IDW and taking di�erent weight coe�cients from OK, a new computational model is constructed to improve the
interpolation accuracy and adapt to di�erent types of data characteristics. In the whole interpolation process, the data are sampled
in a �xed frame and a new sampling point search method is proposed to improve the computational e�ciency.�e study not only
compares the accuracy and e�ciency of the algorithm using two types of data but also tests the stability of the new algorithm for
di�erent data volumes. It is shown that VW based on a �xed-grid sampling of the data is more accurate than the inverse distance
interpolation algorithm for both data types. �e VW interpolation algorithm based on data lattice sampling improves the
computational e�ciency for featureless data and exhibits better performance in terms of accuracy and computational e�ciency
for data with features, compared to the common kriging interpolation algorithm. In addition, the VW interpolation algorithm
based on a �xed-grid sampling of data has a more stable performance for di�erent amounts of data.

1. Introduction

Visualization technology is a technique for transforming
collected data into images and graphics that are intuitively
visible to humans, through which one can better analyze,
monitor, and understand the properties and characteristics
of the visible object [1]. As an important branch of visu-
alization technology, data visualization is a technology that
uses computer graphics, computer vision, image processing
techniques, and user interfaces to transform data into dis-
playable graphics or images with interactive, multidimen-
sional, and visual characteristics [2]. However, discrete,
sparse data sets are common due to the di�culty of the
acquisition process and the sheer volume of data collected.
To achieve a realistic and complete visualization of such data,

it is necessary to supplement the missing data with inter-
polation algorithms and to adjust the data transition for the
visualization part, so that the displayed picture is more in
line with the real situation while meeting people’s re-
quirements for a clear and concise visualization [3]. Inter-
polation algorithms are therefore commonly used in the
�elds of meteorological visualization, terrain visualization,
the spatial distribution of soil properties, and image pro-
cessing [4–8]. In recent years, many researchers have con-
ducted extensive research on interpolation algorithms, and
[9] proposed an adaptive inverse distance weighting
(AIDW) method, which uses the distribution density of
sampling points to adjust the distance decay parameters,
thus giving the interpolation method better ¡exibility to
adapt to heterogeneous distance decay parameters in space.
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[10] proposed an improved kriging method based on a
message passing interface model to improve the computa-
tional e�ciency of the spatial interpolation process. [11]
proposed a common kriging interpolation algorithm (wind-
OK) combining the in¡uence of wind direction on spatial
and temporal distribution of ground PM concentration in a
given area and proved through experiments that the per-
formance of the new algorithm was improved compared
with the common kriging algorithm.

Spatial data interpolation algorithms can convert sparse,
irregular, and scattered data into continuous, regular, and
rich data sets by interpolation methods from discrete data
and sparse data [12]. In this article, based on IDW and OK, a
variational-weighted interpolation algorithm based on data
�xation sampling is proposed, which combines the re-
spective advantages of IDW and OK, so that the interpo-
lation results of the original data have a high interpolation
e�ciency while ensuring a certain interpolation accuracy.

2. Research on Sampling Point Search Method
and Interpolation Algorithm

Sampling point search is a method of determining the
known data points to be involved in the interpolation of the
points to be interpolated through a certain search method.
Since it is very computationally intensive and ine�cient to
use all known data points directly for interpolation, sam-
pling point search is an important step before the inter-
polation operation, and the goodness of the sampling point
search method also a�ects the overall interpolation results to
a certain extent. �e traditional sampling point search
methods are distance search and direction search, both of
which determine the sampling points to be involved in the
interpolation operation by measuring the distance between
the known data points and the points to be interpolated
before the interpolation operation is performed [13, 14].

�e essence of the distance search method is to select the
N nearest known data points to the point to be interpolated as
the sampling points. When the known original data point is
closer to the point to be interpolated, the greater the in¡uence
on the interpolation result, and vice versa, the smaller the
in¡uence on the interpolation result [15]. As shown in Fig-
ure 1, for the pointQ to be interpolated, the search radius R is
�rst determined and the known data points within the search
radius are identi�ed. Next, the distance between each data
point and the point to be interpolated is calculated, and the
four closest points are determined. As shown in Figure 1, Q1,
Q2, Q3, and Q4, these four points are used as the sampling
points involved in the interpolation operation.

�e disadvantage of this method is that it is based purely
on distance and does not place restrictions on the location of
the sampling points. When the distribution of known data
points is extremely irregular, all the sampling points may
come from the same direction. As can be seen from Figure 1,
Q1, Q2, Q3, and Q4 are all on the lower side of point Q. �is
results in no data points on the upper side being involved in
the interpolation operation. Although the distance between
the upper side data points and point Q is not as close as the
lower side data points, they have a certain in¡uence on the

interpolation results, and not using them at all will result in a
large error between the interpolation results and the actual
situation.

�e directional search method is a method of improving
interpolation accuracy by using sampling points in di�erent
directions on the basis of distance search, which makes up
for the possible disadvantages of the distance search method
of taking points in one direction. �e essence of the di-
rectional search method is to select the nearest known data
points in di�erent directions to be interpolated as sampling
points for interpolation. Directional search methods mainly
include the four-way search method, the six-way search
method, and the eight-way search method [16]. �e eight-
way search method is used as an example to brie¡y describe
the search process. As shown in Figure 2, the entire original
data are �rst searched to determine the known data points in
eight directions within the interpolation radius R. Next the
distance between each data point and point Q within each
direction is calculated separately. Finally, the closest point
within each direction is determined as the sampling point to
be involved in the interpolation operation. �e seven points
Q1, Q2, Q3, Q4, Q5, Q7, and Q8 in the �gure are used as the
sampling points for the interpolation operation of point Q.

Although this method compensates for the potential
disadvantages of distance search, for each point to be in-
terpolated, the entire original data have to be searched to
determine the data points within the search radius R, and the
nearest point to the point to be interpolated in each direction
has to be determined, which is a large search e�ort and also
reduces the e�ciency of the entire interpolation process to a
certain extent. �e maximum number of eight points to be
interpolated also limits the interpolation accuracy to a
certain extent. �e �xed nature of the search radius makes it
impossible to adapt to the characteristics of di�erent parts of
the data, and the search radius may be too large or too small
in some parts.
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Figure 1: Schematic diagram of the distance search method.
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Spatial interpolation algorithms based on the basic as-
sumption of the “First Law of Geography” mainly rely on the
collected data to perform interpolation calculation to �ll in the
unknown data in the original data. �e closer the data points
are to each other, the greater the relative in¡uence, and con-
versely, the further the distance, the smaller the relative in-
¡uence [17]. �is study focuses on the inverse distance
weightingmethod, the spline functionmethod (SF), the kriging
interpolation method, and the trend surface method (TS).

�e inverse distance weighting method is an interpolation
method based on the principle of similarity. Its essence is to �t
a smooth mathematical plane equation with the known point
data and then calculate the data values of the unknown points
according to the equation, that is, to perform multiple re-
gression analysis to obtain the smooth mathematical plane
equation based on the relationship between the attribute data
and the geographical coordinates of the sampled points. If the
coordinates of two points Pi and Pj in space are (xi, yi) and
(xj, yj), then the value of the distance dij between the two
points PiPj is as follows [18]:

dij �
������������������
xj − xi( )

2 + yj − yi( )
2

√
. (1)

Let Pj be the interpolation point, Pi be the sample point, n
is the number of known sample points around Pj, and the
attribute value of Pi be Zi, the attribute value Zj of the in-
terpolation pointPj is found.�e valueZj calculated using the
inverse distance-weighted interpolation method is as follows:

Zj �∑
N

i�1
wijZi( ), (2)

where wij represents the weight, which is inversely pro-
portional to the distance dij from a known point in the
vicinity of Pj. To normalize the weights wij:

wij �
1/dkij( )

∑Ni�1 1/dkij( )
, (3)

where k represents the value of the distance attenuation
parameter.When the value of k is large, the closer the sample
point to be interpolated, the greater the in¡uence of the
sample point. When the value of k is small, the more distant
the sampling point is from the point to be interpolated, the
greater the in¡uence on it. Substituting into equation (2)
gives the attribute value Zj for point Pj as

Zj �
∑Ni�1 Zi/d

k
ij( )

∑Ni�1 1/dkij( )
. (4)

�e spline function method is a method that uses
functions for interpolation calculations, often using seg-
mented polynomials with both �rst-order and second-order
derivatives that are continuous to approximate known data
points, thus generating smooth interpolation curves. �is
method is simple to operate, not too computationally in-
tensive, fast, suitable for interpolating contours based on
dense points, and suitable for surfaces with progressive
changes. However, this method is more di�cult to estimate
the interpolation error and has poor interpolation results
when the points are not dense [19].

�e kriging interpolation method is an interpolation
method based on the theory of variational functions for
the unbiased optimal estimation of regionalized variables
in a �nite region [20]. �is algorithm pays more attention
to the relative position relationship between each sam-
pling point while considering the relative position rela-
tionship between the sampling points and the
interpolation points. �e estimates of kriging interpola-
tion are obtained by weighting a linear combination of
existing data points, which means that kriging interpo-
lation is linear. Kriging interpolation brings the mean
residual or error close to zero, meaning that kriging in-
terpolation is unbiased. Kriging interpolation, therefore,
gives results that are closer to the actual situation.
However, this algorithm is computationally ine�cient
and consumes computer resources. �e calculation is also
more complicated with large amounts of data.

�e kriging method of interpolation assumes that the
region under study is D, point xi ∈ D(i � 1, . . . , N). Let the
regionalized variable understudy on the region be Z(x) and
the attribute value at point xi be Z(xi). Based on the kriging
method of interpolation, the attribute valuation Z∗(x0) at
interpolation point x0(x0 ∈ D) is the weighted sum of the
attribute values Z(xi)(i � 1, . . . , n) of the n known points
involved in interpolation around the interpolation point x0,
as shown in

Z∗ x0( ) �∑
n

i�1
λiZ xi( ), (5)

where λi(i � 1, . . . , n) is the weighting factor to be deter-
mined. According to the unbiased condition of kriging
interpolation, λi(i � 1, . . . , n) must satisfy the relation:
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Figure 2: Schematic diagram of the eight-way search method.
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􏽘

n

i�1
λi � 1. (6)

(en the system of equations for solving the kriging
method for the coefficient λi to be determined is obtained as

􏽘

n

i�1
λi � 1􏽘

n

i�1
λi � 1,

􏽘

n

i�1
λiCov xi, xj􏼐 􏼑 + μ � Cov x0, xj􏼐 􏼑(j � 1, . . . , n),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where Cov(xi, xj) is the covariance function of Z(xi) and
Z(xj) and μ is the Lagrange multiplier. From the above
system of equations, λi is solved and substituted to obtain an
estimate Z(xi). (ere is a certain correlation between Z(xi),
which is related not only to the distance but also to its
relative direction.

(e trend surface method is similar to the inverse
distance weighting method in that it also uses known data
points to fit a smoothed mathematical plane equation and
then calculates the attribute values of the unknown points
from the equation [21]. It uses the relationship between
data attributes and geographic coordinates of the original
data to perform a multiple regression analysis to obtain a
smoothed trend surface function. (e trend surface
method is an approximate interpolation method because,
in practice, it is generally difficult for the trend surface to
pass exactly through the original data points, except in
special cases such as when there are few data points and
they happen to be passed by a surface. (e trend surface
method is a statistical method of interpolation that pre-
supposes a series of interrelated spatial data where the
trend and period of the interpolated point is a function of
the other variables associated with it. It is also one of the
more commonly used overall interpolation methods,
allowing a smooth mathematical plane to be used to
describe some geographic property that varies continu-
ously in space.

Traditional spatial interpolation methods are widely
used in the corresponding fields with their respective
characteristics, so it is necessary to choose a reasonable
and applicable interpolation algorithm according to the
characteristics of the data spatial distribution [22, 23].
(rough the analysis of the purpose, accuracy, and op-
eration speed of interpolation, the above interpolation
aspects are compared from the perspectives of interpo-
lation accuracy, operation efficiency, extrapolation ca-
pability, and data distribution requirements, as shown in
Table 1:

As can be seen from Table 1, the inverse distance
weighting method has high operational efficiency, but the
interpolation accuracy is lower compared to the kriging
interpolation algorithm, while the kriging interpolation
method has high operational accuracy and a wide range of
applications, but low efficiency. Compared with the spline
function method and the trend surface method kriging, the
advantages of these two interpolation algorithms are more
obvious.

3. The Principle of Data Fixed-Frame Sampling
and Variability-Weighted Interpolation

3.1. Data Framing Sampling. As the original data have
sparse and irregular characteristics, the sampling point
search and interpolation methods are very important as-
pects for the accuracy of the interpolated data and the
subsequent application effect of the data. Among the tra-
ditional sampling point search methods, the distance
search method has no restriction on the orientation of the
sampling points, which reduces the interpolation accuracy;
the direction search method has lower search efficiency.
Among the traditional interpolation algorithms, the krig-
ing method has high interpolation accuracy and good ef-
fect, but the algorithm is complex and time-consuming to
compute; the inverse distance interpolation algorithm has
high computational efficiency, but poor computational
accuracy [24]. Combining the characteristics of the original
data and the respective advantages and disadvantages of the
traditional sampling point search method and the tradi-
tional interpolation algorithm, this study proposes a var-
iability-weighted interpolation algorithm based on the
fixed-grid sampling of the data, which is divided into two
parts: a fixed-grid sampling of the original data and var-
iability-weighted interpolation of the points to be
interpolated.

Compared with the distance search method, the direc-
tional search method adds a limitation on the sampling
orientation of the sampling points, which improves the
interpolation accuracy to a certain extent and presents a
better interpolation effect. However, for the directional
search method, a circle is drawn with the search radius to
search for sampling points, which limits the search range to a
certain extent and may result in a certain degree of missing
sampling points. When the data sparsity is relatively high,
the octagonal search method can only determine a relatively
small number of sampling points, and if the search range is
expanded at this time, a new data point search is required,
which is a more complex and tedious process. In this study,
we propose data grid sampling to ensure that a certain
number of sampling points are involved in the interpolation
operation by searching the data on the grid around the
interpolation point and simplifying the search process by
searching the grid data in a single pass.

In all traditional methods of searching for sampling
points, there is a problem of inefficient searching. (e main
reason: when each point to be interpolated for interpolation

Table 1: Comparison between several commonly used interpo-
lation methods.

IDW SF OK TS
Interpolation
accuracy Higher Low High Low

Operational
efficiency High High Low Higher

Extrapolating ability Poor Strong Stronger Strong

Data requirements Uniformity Dense All
available Limited
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calculation, the entire original data have to be searched and
then the sampling points involved in the operation are
determined. �is process is undoubtedly more tedious, so
this study adopts a single search of the �xed-grid data, where
the original data are �rst gridded, and then a single full
search of the original data is used to determine the location
of the grid where the data are located. �is allows the data
points within the grid to be extracted directly when applying
the data gridding sampling method to search for sampling
points, improving the e�ciency of the search.

Assume that the original data study area D, which will
�rst be gridded, is processed to satisfy the following process:
each grid after division is a square with h as the side length,
and attention should be paid to the division process to
ensure that the data points are evenly distributed within the
grid as far as possible; the grid coordinates after division are
the grid coordinates for interpolation, and all grid points
should have feature values present after interpolation is
completed. Suppose any point Q is located on grid coor-
dinate (X, Y). In order to facilitate the positioning and
extraction of the original data points, each grid will be
represented by its lower left coordinate, then the grids
around the point Q(X,Y) are (X, Y), (X − 1, Y),
(X − 1, Y − 1), and (X, Y − 1), as shown in Figure 3.

Assume that there are N original data points
(xi, yi, zi), (i � 1, 2, . . . , N) within the study area D, and
record all data points within grid (X, Y) using VX,Y and
VX,Y,j. Prior to a single search of the �xed-grid data, it is
necessary to:

(1) Set initial values for VX,Y and VX,Y,j:

VX,Y � 0, X � 1, 2, . . . , LX;Y � 1, 2, . . . , LY( ),
VX,Y,j � 0, (j � 1, 2, . . . , N),




(8)

where LX represents the maximum value of the
grid’s horizontal coordinates and LY represents the
maximum value of the grid’s vertical coordinates.

(2) For any data point (xi, yi, zi), (i � 1, 2, . . . , N),
locate the coordinates of the grid in which it is lo-
cated as

X � floor
xi − x1( )
h

[ ] + 1,

Y � floor
yi − y1( )
h

[ ] + 1,




(9)

where (x1, y1) are the coordinates of the leftmost
lower grid point in the study area D, h is the side
length of the small square grid, andfloor denotes the
leftward rounding function.

�e steps for a single search of the �xed-grid data are
shown in Figure 4.

When data points within any grid need to be extracted
during the interpolation process, proceed as follows:

(1) Determine if VX,Y is zero, when VX,Y � 0, there is no
known data point in grid (X, Y) and no subsequent
steps are necessary; when VX,Y � a(≠ 0), data point
(xa, ya, za) is the �rst known data point in grid
(X, Y), continue with step (2).

Y+1

(X-1,Y)

(X-1,Y-1) (X,Y-1)

(X,Y)

Y

Y-1

Y-2
X-2 X-1 X+1X

Q

Figure 3: Gridding of raw data and representation of grid
coordinates.
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...

Whether VX,Y,1 is Zero?
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X=floor[(xi-x1)/h]+1, Y=floor[(yi-y1)/h]+1

Data point i (xi,yi,zi)

NOEnd
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Are all data points fixed?

From data 1 to data N

Figure 4: Single search for �xed-grid data.
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(2) When VX,Y,1 � b(≠ 0), data point (xb, yb, zb) is the
second known data point within grid (X, Y).

(3) When VX,Y,2 � c(≠ 0), data point (xc, yc, zc) is the
third known data point within grid (X,Y).
· · ·

(4) Until VX,Y,j � 0(j � 1, 2, . . . , N), then the above
data points are all known data points located within
grid (X,Y).

After all the original data have been located by
searching and stored, the interpolation of the missing
points can be performed. Before the points to be inter-
polated can be subjected to the interpolation operation,
the sampling points to be involved in the interpolation
operation need to be determined. Data framing sampling
ensures the e�ectiveness of the sampling point search
method by looking at the amount of data to be sampled,
the interpolation e�ciency, and the sampling direction of
the sampled points.

When searching for sampling points, the search �rst
covers the �rst layer of the grid around the point to be
interpolated. If there are less than 8 data points in the �rst
layer of the grid, the second layer of the grid is added and so
on. �is way of searching ensures that the number of
participating interpolation points is not less than 8, without
wasting other data points within the grid, and improves the
interpolation accuracy. In terms of e�ciency, it is not
necessary to take only 8 data points in this section to cut
down on time as the search is already signi�cantly more
e�cient by searching for location storage data. �e data
�xing sampling method also focuses on the sampling di-
rection of the sampling points while ensuring the amount
of data to be sampled and the e�ciency of the interpolation.
As the grid is divided with appropriate edge lengths so that
the original data are distributed as evenly as possible across
the grid, and no data points are deleted from the grid
during the interpolation process, this ensures to a certain
extent that the sampling direction of the sampling points
involved in the interpolation is guaranteed. In addition,
when the data points in the �rst search grid are less than 8,
the second layer is allowed to participate in the interpo-
lation operation, which also solves the problem of missing
data in some directions in the �rst layer. At the edges of the
grid, the same rules are applied until the number of
sampling points exceeds 8. �e search method is shown in
Figure 5.

Point Q(X,Y) to be interpolated follows the
following steps when conducting a search for sampling
point data:

(1) Firstly, the data points in grids 1, 2, 3, and 4 are
extracted from the graph and the number of data
points is judged, if the amount of data is less than 8,
then step (2) is performed. If the amount of data is
greater than or equal to 8, all the data in grids 1, 2, 3,
and 4 are used as interpolation operations, and the
attribute value of the point Q(X, Y) to be interpo-
lated is calculated.

(2) �e data points in grids 5, 6, . . ., 15, 16 are extracted
and the total number of data points extracted is
calculated to be less than 8. If the amount of data is
less than 8, the data points in the third level of the
grid are extracted, and so on. If the amount of data is
greater than or equal to 8, all the data in grids 1, 2, 3,
. . ., 15, 16 are used for interpolation, and the at-
tribute value of the point Q(X,Y) to be interpolated
is calculated.

�e ¡ow chart for data framing sampling is shown in
Figure 6.

Y+2
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X-2 X-1 X+2X+1X

Q
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Figure 5: Data grid sampling search method.
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Figure 6: Flow chart of data framing sampling.
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3.2. Variability-Weighted Interpolation Algorithm. (e
variability-weighted interpolation algorithm combines the
high efficiency of the inverse distance weighting algorithm
with the high accuracy of the ordinary kriging interpolation
algorithm. (e inverse distance weighting formula and the
variability weighting formula are then weighted separately to
determine the interpolation interval for the high accuracy
interpolation results by comparing the interpolation results
for different weights.

If the original data study area D, the N original data
points xi(xi ∈ D, i � 1, 2, . . . , N) corresponding to the at-
tribute value Z(xi) and the point to be interpolated is
x0(x0 ∈ D). (e weighting factor of the inverse distance
weighting algorithm can be expressed as follows:

wi �
1/dk

i0􏼐 􏼑

􏽐
N
i�1 1/dk

i0􏼐 􏼑
, (10)

where wi denotes the weight coefficient, 􏽐
N
i�1 wi � 1, di0

indicates the distance between the point to be interpolated
and the original data point number i, and k denotes the
distance decay parameter value.

(e above formula shows that the weight coefficient is
only related to the distance di0 between the two points, and
the variation function in ordinary kriging is also a quantity
related only to the distance between the two points, so the
distance di0 in formula (11) can be replaced by the various
function of ordinary kriging, and the n data points involved
in interpolation are selected in the experimental process
using data fixation sampling, and the weight coefficient
obtained can be expressed as follows:

λi �
1/c xi, x0( 􏼁

k
􏼐 􏼑

􏽐
n
i�1 1/c xi, x0( 􏼁

k
􏼐 􏼑

, (11)

where the variance function c(xi, x0) � c(xi − x0) �

0.5E[Z(xi) − Z(x0)]
2.

Z x0( 􏼁 � a 􏽘 N
i�1wiZ xi( 􏼁 + b 􏽘

n

i�1λiZ xi( 􏼁, (12)

where a and b are weighting factors and a + b � 1, 0<
a< 1, 0< b< 1.

4. Experimental Process

(rough the analysis of the data fixation sampling method
and the variability-weighted interpolation algorithm, the
general steps of the experiment were obtained as follows:

(1) Experimental data information is obtained.
(2) For interpolation gridding, the original data are located

and stored by a single search of the fixed-grid data.
(3) (e variability function is calculated based on the

original data.
(e raw data are mostly obtained by means of ac-
quisition and measurement and is therefore discrete
data. Discrete data are divided into data with a
scattered distribution of coordinates and data with a

regular distribution of coordinates. For data with a
discrete coordinate distribution, the variation
function can be calculated by relaxing the distance
and angle tolerances, so that data with a small degree
of distance and angle deviation can be grouped into
data with the same direction and step length for
calculation. As the data used in this study are data
with regular coordinate distribution and the coor-
dinates are arranged at intervals of 1 along the x and
y axes, the basic step length is directly set to 1 when
calculating the variation function.
(e specific steps for calculating the experimental
variance function are as follows:

(1) Initialize the data variables.
Define the variables: L is the basic step, which is
taken to be 1 due to the nature of the experi-
mental data. a is the number of directions of the
variation function.
Define the array: RawData is used to store the
original data. D[a] (an integer array) holds the
direction of each various function. DataX(a)[N]

and DataY(a)[N] hold the data information for
two points in each direction of variation.
V(a)[N] holds the value of the various function
in each direction at the position of step
mL(0<m≤N). PN(a)[N] holds the number of
pairs of points corresponding to each direction.

(2) Read N raw data and store it in array RawData.
Determine the number of directions of the
variational function a.

(3) Select a pair of raw data in RawData and calculate
the distance between the two points and the
angle between them and the x axis. Use this to
determine the direction of variation as
i(1≤ i≤N) and deposit it in the corresponding
DataX(i)[N] and DataY(i)[N].

(4) Repeat step (3) until all the data in the array
RawData have been traversed.

(5) Select two data points in each direction corre-
sponding to arrays DataX(a)[N] and
DataX(a)[N], and calculate the distance d be-
tween the two points. Since the basic step of the
experiment L is 1, dk � d/L. (e values of the
attributes of the two points are subtracted and
then squared, and then accumulated and counted
in V(i)[dk]. PN(i)[dk] + 1.

(6) Repeat step (5) until the arrays DataX(a)[N]

and DataX(a)[N] are traversed.
(7) Iterate through arrays V(a)[N] and PN(a)[N],

dividing each element of array V(a)[N] by two
times the value of the corresponding element in
array PN(a)[N]. (e resulting result is returned
to be assigned to V(a)[N].

(e value of the variance function of the experiment
is stored in the array V(a)[N]. (e flow chart for
calculating the values of the experimental variation
functions is shown in Figure 7.
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Experimental variation function values were ob-
tained separately for smooth data without features
and abrupt data with features by experimental cal-
culations (Figures 8 and 9).

(4) Select a suitable theoretical model of the various
function according to the value of the various
function for parameter �tting and determine the
variation function formula.
�e variation function is determined from the
experimentally obtained values of the various
function and �tted to the corresponding theo-
retical variation function model. �e theoretical
model of the various function is divided into
two main types: models with abutment values
and models without abutment values. Models
with abutments include spherical models, expo-
nential models, and Gaussian models. �e models
without abutments mainly include the power
function model and the logarithmic function
model. In practice, for most regionalized vari-
ables, models with abutments are chosen. Based
on the values and distribution of the experimental
variation functions obtained, the most suitable
theoretical variation function model can be

determined as a Gaussian model. �e theoretical
formulation of the Gaussian model can be
expressed as follows:

Calculate the value of the variance function for each experiment

YES

Data point pairs
Whether to traverse all?

V(i)[dk]=V(i)[dk]+result, PN(i)[dk]+1

Select the corresponding two data points from DataX(a)[N] and DataY(a)[N]

YES

No

No

No

YES

Data points in RawData[]
Whether to traverse all?

Save the two points in DataX(i)[N] and DataY(i)[N] respectively

Judging by distance and angle
whether the direction D[i] is met?

Select a direction D[i]

Select a pair of data points from RawData[]
Calculate the distance between the two points and the angle to the x-axis

Retrieve N data, stored in RawData[]

Calculate the distance d between the two points, dk = d/L
Subtract and square the attribute values of the two points and assign the result to result

Figure 7: Flow chart for calculating experimental variogram values.
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Figure 8: Variation function values for uncharacteristic smooth
data.
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c(L) �
0, L � 0,

C 1 − e− L2/a2( )( ), L> 0,


 (13)

where c(L) denotes the variation function.C denotes
the arch height, representing the part of the pa-
rameter that varies structurally. L denotes the basic
step. a denotes the variation range, representing the
process by which the distance varies with respect to
the spatially relevant di�erences. �e parameters of
the Gaussian model of the variance function for
smooth data without features can be obtained by
combining the values of the distribution of the
variance function obtained: the value of C is 0.0372
and the value of a is 20.8604. �en, the expression of
the variance function c(L) for smooth data without
features is

c(L) �
0, L � 0,

0.0372 1 − e− L2/20.86042( )( ), L> 0.


 (14)

�e �tted Gaussian model variance functions are
shown in Figures 10 and 11.

(5) Select point x0(x0 ∈ D) to be interpolated, and select
the sampling point xi(xi ∈ D) to be involved in the
interpolation operation by using the data �xation
sampling method.

(6) Calculate the distance di0 between the points to be
interpolated and the sampling points.

(7) Calculate the weight coe�cient wi based on the
distance di0, and the weight coe�cient λi based on
the variation function formula.

(8) Calculate the attribute value Z(x0) of the point x0 to
be interpolated.

(9) Complete the calculation of all the points to be in-
terpolated by cycling through steps 6 to 9.

5. Comparison of Experimental
Result Validation

In this article, two types of data are used, each of which is
validated against the inverse distance-weighted interpolation
algorithm, the ordinary kriging interpolation algorithm, and
the variability-weighted interpolation algorithm based on a
�xed-grid sampling of the data. �ree tests, mean square
error s, mean absolute deviation t, and standard deviation σ,
were used to test the interpolation results.

(1) Featureless smooth data
For the featureless smooth data, the inverse dis-
tance-weighted interpolation algorithm, the or-
dinary kriging interpolation algorithm, and the
variability-weighted interpolation algorithm based
on data �xation sampling were used for interpo-
lation calculation. A comparison of the interpo-
lation results is shown in Table 2, and three-
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Figure 10: Fitted Gaussian model variance function for unchar-
acteristic smooth data.
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Figure 11: Fitted Gaussian model variance function for charac-
teristic mutation data.
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Figure 9: Variation function values for characteristic mutation
data.
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dimensional stereograms of the interpolation re-
sults are shown in Figures 12–14.

(2) Characteristic mutation data
For the characteristic mutation data, the inverse
distance-weighted interpolation algorithm, the or-
dinary kriging interpolation algorithm, and the
variability-weighted interpolation algorithm based
on data �xation sampling were used for the inter-
polation calculation. A comparison of the interpo-
lation results is shown in Table 3 and three-
dimensional stereograms of the interpolation results
are shown in Figures 15–17.

From the above interpolation results, it can be seen that
in the experiments on smooth data without features, VW
based on data �xation sampling improved the mean square
error, mean deviation, and standard deviation by 63.29%,
71.83%, and 47.1%, respectively, compared to VW and
improved the e�ciency by 56.17% compared to OK. In the
experiments on the characterized mutant data, VW based on
data �xation sampling improved by 18.78%, 59.32%, and
36.19% relative to IDW in terms of mean square error, mean
deviation, and standard deviation, respectively, and relative
to OK in terms of mean square error, mean deviation,
standard deviation, and e�ciency by 69.25%, 82.63%, 58.3%,

Table 2: Comparison of interpolation results for smooth data
without features.

Accuracy errors IDW OK VW
Mean square error 0.0079 0.0026 0.0029
Mean deviation 0.0001910 0.0000015 0.0000538
Standard deviation 0.0138 0.0012 0.0073
Time (s) 11.0815 31.6114 13.8555
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Figure 12: IDW interpolation algorithm applied to featureless
data.
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Figure 13: OK interpolation applied to featureless data.

0.5

0

-0.5
100

50

0
20

40
60

100
80

0

Figure 14: VW interpolation algorithm applied to featureless data.

Table 3: Comparison of interpolation results for mutation data
with features.

Accuracy errors IDW OK VW
Mean square error 3.8650 10.2072 3.1391
Mean deviation 0.0794 0.1860 0.0323
Standard deviation 0.2821 0.4317 0.1800
Time (s) 43.3303 326.7071 49.7731
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Figure 15: IDW interpolation algorithm applied to data with
features.
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and 84.77%, respectively. �us, VW based on a �xed-grid
sampling of the data can produce high interpolation ac-
curacy and fast interpolation, and it is more suitable for both
smooth data without features and mutation data with fea-
tures. It is worth noting that, for data with features, OK can
produce large data ¡uctuations, resulting in reduced in-
terpolation accuracy. However, VW based on a �xed-grid
sampling of the data solves this problem well and provides a
signi�cant improvement in e�ciency.

In addition to comparing the interpolation results of
the three interpolation methods to verify the interpolation
accuracy and interpolation e�ciency of the variability-
weighted interpolation algorithm based on a �xed-grid
sampling of the data, the variability-weighted interpola-
tion algorithm was also applied to data with di�erent
degrees of sparsity to verify the stability of the interpo-
lation results .

(1) Featureless smooth data
�e interpolation results of the variability-weighted
interpolation algorithm for featureless data with
di�erent sparsity levels are shown in Figure 18.

(2) Characteristic mutated data
�e interpolation results of the variability-weighted
interpolation algorithm for characteristic data with
di�erent sparsity levels are shown in Figure 19.

As can be seen from the stability comparison results, the
interpolation accuracy results are relatively stable overall
between 5% and 25% sparsity, although individual errors
may ¡uctuate slightly when sparsity varies for both fea-
tureless smooth data and feature mutant data. �us, the
interpolation accuracy of the variability-weighted interpo-
lation algorithm is relatively stable for data with varying
degrees of sparsity.
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Figure 17: VW interpolation algorithm applied to data with
features.
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Figure 18: Comparison of stability of interpolation results for
featureless data.
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Figure 19: Comparison of stability of interpolation results for data
with features.

900

850

800

750

700

650

600
150

100

50
0 0

20
40

60
80

100

Figure 16: OK interpolation applied to data with features.
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6. Conclusions

(is article proposes a variability-weighted interpolation
algorithm based on data fixation sampling by combining
the inverse distance-weighted interpolation algorithm and
the ordinary kriging interpolation algorithm. (e good
performance and stability of the new method provide a
good reference for the application of data interpolation in
related fields and applications of different original data
types. (e interpolation efficiency is improved by data
lattice sampling, and the interpolation accuracy is im-
proved by variability-weighted interpolation. (is article
details the sampling search principle, the sampling search
process, the interpolation algorithm principle and the
interpolation algorithm process, and experimental verifi-
cation of the proposed interpolation algorithm in terms of
interpolation accuracy, efficiency, and interpolation sta-
bility using two different types of data. (e experimental
results show that the variational-weighted interpolation
algorithm based on data fixation sampling has high in-
terpolation accuracy and fast interpolation speed for both
smooth data without obvious features and mutated data
with obvious features. Regardless of the type of data, the
variability-weighted interpolation algorithm is substan-
tially faster than the ordinary kriging algorithm in terms of
interpolation speed. (e interpolation accuracy results are
stable and scientifically valid when the sparsity of the
original data varies.

(e weighting coefficients a, b of the variational-
weighted interpolation algorithm based on a fixed-grid
sampling of the data used in this experiment have been
continuously adjusted through experimentation so that
subsequent research can be carried out in the area of
weighting coefficient optimization. (e adaptive optimiza-
tion of the weighting coefficients for different types of data
allows for the minimization of accuracy errors for all types of
input data.
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