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Understanding fine-grained urban function for different regions is essential for both city managers and residents in terms of
strategy design, tourism recommendation, business site selection, etc. A huge amount of data from the mobile network in the past
several years provides the possibility for fine-grained urban function identification since it provides the opportunity to extract
useful information about urban functions. However, challenges remain: (i) there is no prior knowledge about the existence of App
usage patterns relating to urban functional regions; (ii) collected data are very noisy and data from different cellular towers have
different noise levels.)erefore, it is difficult to extract unique patterns to identify urban functional regions.)is article proposes a
fine-grained urban functional region identification system, which utilizes mobile App usage data from cellular towers. To address
challenge (i), we first extract three key variables for each cellular tower, App number, user number, and traffic. )en, we design a
Davies–Bouldin index (DBI)-based filtering method to automatically select the most distinguishable features for multi-
classification. To address challenge (ii), we first reduce cellular tower level noise by designing a clustering-based method to select
the most representative cellular tower data. )e data from these cellular towers share similar patterns for the same urban
functional region and different patterns between different urban functional regions. )en, we reduce feature level noise by
designing a Fourier transform-based method to reconstruct the features with several key frequency components, which preserves
the most important information and removes the unnecessary noise. We evaluate our system and selected features with three
representative supervised learning models, all of which achieve more than 95% classification accuracy.

1. Introduction

)e last decades have witnessed the fast development of
modern cities composed of different functional regions.
)ese functional regions provide citizens with various urban
functions for socioeconomic activities, such as living,
working, and shopping [1]. Some functional regions are
designed by urban planners, whereas others are naturally
formulated due to citizens’ actual lifestyle [1]. According to
[2], both territories and functional regions can be reformed
during the evolution of a city, especially in developing
countries whose cities evolve fast. For example, the old wharf
region in Shanghai used to be a shipping area. Due to the
nice view and location, it has become a tourist area, which
consists of restaurants, museums, and shopping malls [3].
)erefore, understanding fine-grained urban function

regions is essential for both city managers and residents. In
addition, many valuable applications can be realized, such as
calibration for urban planning, business site selection, and
tourism recommendations.

A huge amount of data from the cellular network in the
past several years provides the possibility for fine-grained
urban function detection. According to Cisco white paper,
monthly global mobile data traffic increased from 7.2 exa-
bytes (1018) at the end of 2016 to 11 exabytes at the end of
2017 [4]. Mobile App usage data, which describes which
Apps are used by how many users within the given time,
provides a good opportunity for different kinds of human
and city investigations. )is is because the type of region
affects users’ Apps usage patterns. For example, people in the
residential areas tend to use Apps more frequently during
the night, whereas people in the office areas tend to use Apps
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more frequently during the daytime of workdays.)is might
not be absolutely correct for an individual user, whereas the
type of urban functional regions does affect the Apps usage
pattern of overall users in the area. A common method is to
collect data from mobile devices for investigating human
activities [5], application usage [6], and human communi-
cation activities [7]. However, the limited number of sam-
pled users is not able to represent the global characteristics of
the whole area. Some research studies focus on investigating
land usage with Call Description Records (CDRs), such as
data of phone call [8] and text message [9]. Since people tend
to use the application more often than phone calls, these
datasets may have some bias or missing information. In
addition, more and more users prefer applications such as
WhatsApp, WeChat, and Line to send text messages.
)erefore, these CDR data lose a lot of key information for
the investigation.

)e mobile APP usage data provide more information to
extract unique patterns for urban functional region iden-
tification. However, it is still difficult to identify unique
patterns for different urban functions due to the following
three challenges: (i) )ere is no prior knowledge about the
existence of App usage patterns relating to urban function
regions. We do not know how different urban functional
regions affect the overall mobile App usage within the
cellular tower range. As a result, it is difficult to extract
features based on experience [10]. (ii) )e collected data are
usually very noisy, and data from different cellular towers
have different noise levels [11]. As a result, the extracted
features within the same urban functional regions have high
standard deviations, which leads to low classification ac-
curacy [12].

)is article proposes a fine-grained urban functional
region identification system, which utilizes mobile App
usage data from cellular towers. To address challenge (i), we
first extract three key variables for each cellular tower, App
number, user number, and traffic. )en, we design a
Davies–Bouldin index (DBI)-based filtering method to au-
tomatically select the most distinguishable features for
multiclassification. To address challenge (ii), we first reduce
cellular tower level noise by designing a clustering-based
method to select the most representative cellular tower data.
)e data from these cellular towers share similar patterns for
the same urban functional region and different patterns
between different urban functional regions. )en, we reduce
feature level noise by designing a Fourier transform-based
method to reconstruct the features with several key fre-
quency components, which preserves the most important
information and removes the unnecessary noise. We eval-
uate our system and selected features with three represen-
tative supervised learning models, all of which achieve more
than 95% classification accuracy. Our core contributions are
listed as follows:

(i) We design a hierarchical clustering-based method
and a Fourier transform-based method to reduce
cellular tower level noise and feature level noise,
respectively, which improves the classification ac-
curacy of urban functional regions.

(ii) We design a DBI-based method to automatically
figure out the most distinguishable features based
on mobile App fingerprint (App number, user
number, and traffic) and correlate them to different
urban functional regions.

(iii) We evaluate our system based on App usage dataset
from real cellular networks in Shanghai. )ree
learning models supervised learning models are
tested in terms of classification accuracy, type I and
type II error. We also investigate the classification
accuracy of different feature combinations. In ad-
dition, the computational complexity of key parts in
our system is also discussed.

We structure this article as follows. In Section 2, we
introduce the importance of urban functional regions
analysis and the possibility to adopt mobile App accessing
data to analyze urban functional regions. After the problem
statement, in Section 3, we check raw mobile App usage data
and design the system. In Section 4, we describe the feature
extraction and analysis, which is the key part of our system.
In Section 5, we evaluate our system and validate the system
design and extracted features. Finally, we discuss the related
work in Section 6 and conclude this work with a summary of
our main findings in Section 7.

2. Dataset and Visualization

)is section first introduces the details of how we collect the
data of mobile App usage, based on which we extract valid
information for urban functional region identification.
)en, for better understanding, we visualize raw data in daily
and weekly patterns. Finally, we define the region and urban
functional region.

2.1. Dataset Description. )is article utilizes mobile App
usage information to identify urban function regions, which
is collected by a major cellular network operator China
Telecom with Deep Packet Inspection (DPI) appliances
[13, 14]. DPI records mobile subscribers’ temporal and
spatial information when they connect to the cellular
network.

We extract the information of mobile App usage with a
systematic framework SAMPLES, which classifies network
traffic generated bymobile Apps [15]. It utilizes constructs of
conjunctive rules against the App identifier, which is dis-
covered in a snippet of the HTTP header. )is framework
operates automatically with a supervised methodology and
has been proved to identify over 90% of these Apps with 99%
accuracy on average [15]. In addition, we crawl 2000 most
popular mobile Apps on Apple App Store (iOS Apps) and
Google Play (Android Apps) and apply SAMPLES to gen-
erate conjunctive rules to match each App’s network traffic.
As a result, SAMPLES achieves about 97% accuracy on
matching these Apps [16].

Each extracted mobile App usage log contains a starting
time (ts) and an ending time (te) of App data accessing, an
anonymized user ID (u), an App ID (a) used during the
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start-end time, the amount of traffic flow (f) consumed by a

during the connection time (ts–te), and the connected
cellular tower ID (c). Each cellular tower ID is associated
with a location expressed by latitude and longitude (xc, yc).

)e dataset includes 2084 cellular towers, 2000 com-
monly used Apps in China, and more than 2.1 million App
usage logs. )e data were collected from April 20, 2016 to
April 26, 2016 in Shanghai, one of the largest cities in China.
Each cellular tower contains more than 1000 logs on average.
)e spatial resolution of the dataset is decided by the cellular
tower granularity, and the temporal resolution of the dataset
is decided by the sampling rate, which is 60 seconds. Small
cells lead to the higher spatial resolution of urban functional
region identification, but at the cost of larger number of cells,
the large scale and high resolution of the dataset provide a
vast amount of information for urban functional region
identification.

2.2. Data Preprocess and Visualization. In order to obtain
regional useful information for urban function identifica-
tion, we first discretize the logs into small time chunks: 1, 2,
. . ., N, where N is the number of time chunks. )en, within
each chunk i, we aggregate three variables of mobile usage
logs from the same cellular tower c and derive total number
of unique Apps used (ac[i]), total number of unique con-
nected users (uc[i]), and total amount of traffic flow con-
sumed (fc[i]), based on which we extract features for urban
function identification. For simplicity, we utilize App
number, user number, and traffic, respectively, to represent
these three variables in the following contents of the article.

After the preprocess, we derive mobile App fingerprint
logs, each of which contains a cellular tower ID (c), a time
chunk index (i), a total number of unique Apps used (ac[i]),
a total number of unique connected users (uc[i]), and the
total amount of traffic flow consumed (fc[i]). For simplicity,
we utilize App number, user number, and traffic to represent
ac[i], uc[i], and fc[i], respectively.

To provide an intuitive understanding for feature ex-
traction at a macro level, we first aggregate and visualize
mobile App fingerprint from all 2084 cellular towers at each
time chunk.

Figure 1 shows the temporal distribution of mobile App
fingerprint in the entire week. Similar traffic flow patterns are
observed on different days of the week. A similar phe-
nomenon is also observed in the App number pattern and
user number pattern. )is indicates that information on
different days in a week may be similar.

To check the details of daily mobile App fingerprint in a
day, we plot the temporal aggregated mobile App fingerprint
on a typical day (Monday, April 25, 2016) in Figure 2. )e
trends of the three variables in the figure are highly similar,
which are tightly coupled with human activity patterns. High
peaks and low valleys are observed during the day and night,
respectively. Two peaks at 12:00 PM and 6:00 PM corre-
spond to lunch and dinner time when people use mobile
apps more often. )is illustrates the possibility to extract
features according to different human activity patterns at
different urban functional regions.

To further analyze the similarity between different days
in a week, we calculate the correlation coefficients between
different days. First, at each time chunk i, we aggregate
traffic, App number, and user number from all cellular
towers, respectively. )en, we separate them into 7 seg-
ments, which derives A1, . . ., A7 for App number, U1, . . ., U7
for user number, and F1, . . ., F7 for traffic. We utilize
subscript 1 to 7 to represent Monday to Sunday, respectively,
seven days a week. Finally, we calculate the correlation
coefficients between different days:
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(1)

where corrAij, corrUij, and corrFij denote the correlation
coefficients of App number, user number, and traffic be-
tween two different days, respectively.

We calculate the correlations for all days versus the other
days, which show similar patterns as those in Monday versus
the others. )erefore, for simplicity but without loss of
generality, we only show the correlation coefficients between
Monday and other days in the way in Table 1. )e mobile
App fingerprint on Monday has high correlations with those
on other days for all three variables (App number, user
number, traffic).

It is noticed that the correlation of traffic between
Monday andWednesday is 0.58, which is the only one lower
than 0.9. )is is because Wednesday (April 20, 2016) is the
first day of our data collection, which leads to missing data
on App usage due to technical issues. As a result, a lot of
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Figure 1: )e temporal distribution of mobile App fingerprints
(traffic, App number, and user number) in a week. Similar patterns
of mobile App fingerprint are observed on everyday of the week.
)is indicates that information of different days in a week may be
similar.
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traffic flow consumed is not counted. However, that does not
affect the user number and App number too much since a
subscriber use multiple Apps and an App is used by multiple
subscribers. )e similarity between different days shows that
the information of the entire week has high redundancy and
we can use data on Monday to represent the information of
the entire week. )is helps to reduce data dimension to one-
seventh of original data.

2.3. Definition of Region and Functional Region. In this ar-
ticle, a region is defined as a closed area, which is formed by
level 3 roads of China, where no other level 3 road exists in
the area. )is definition is similar to the related work, which
utilizes roads to segment the city map into small regions [1].
To derive final regions, morphological operators are re-
quired, which contains dilation, thinning, and aggregating.
More details can be found in [1].

A functional region is a region that provides residents
with various urban functions to meet their different needs
of socioeconomic activities [1]. )e socioeconomic ac-
tivities include catering, shopping, going to school, and
living. For example, the Songjiang University Town in
Shanghai is a region consisting of many universities for
college education [17]. )e Gubei in Shanghai is a region
consisting of many residential communities, where people
from Japan, South Korea, Hong Kong, Macau, and Taiwan
live [18].

3. System Design

)is section first introduces how we design the system to
address challenges mentioned in Section 1.)en, we provide
details of the first module pattern identification.

3.1. System Architecture. Figure 3 shows our system archi-
tecture, which consists of 4 modules: initial cleaning (in
green), pattern identification (in red), offline training (in
blue), and online classification (in grey). Our system first
cleans the noise from raw App usage logs in the initial
cleaning module. )en, it reduces cellular tower level noise
and feature level noise to derive effective features in the
pattern identification module. Finally, the extracted features
are used to do offline training and online classification.

Initial Cleaning. )e raw dataset of mobile App usage logs
cannot be directly utilized to extract effective patterns for
urban functional region identification due to three reasons.
First, the raw dataset includes redundant and conflicting logs
due to collection technical issues. Second, the collected data
are based on individual subscribers, while the urban func-
tional region identification requires regional information.
)ird, as shown in Section 2, the dataset contains redundant
information, which increases the complexity of the problem.
)erefore, the initial cleaningmodule first cleans raw mobile
App usage logs to remove redundant and conflicting logs
and then prepares vectorized regional data according to
cellular towers for pattern identification. )e details will be
discussed in Section 3.2.

Pattern Identification. It is difficult to identify unique pat-
terns directly from vectorized regional data after initial
cleaning for different urban functional regions. First, the
regional data at different cellular towers have different noise
levels. Second, the extracted features are noisy. Finally, there
is no prior knowledge about the existence of mobile App
usage patterns relating to urban functional regions. We do
not know whether cellular towers of the same urban
functional regions share the same patterns and how these
patterns look like. All these factors make it challenging to
identify the hidden pattern for urban functional region
identification. To address these issues, the representative
filtering first selects the most representative cellular tower
data at different urban functional regions for raw feature
extraction. )en, we extract the major frequency compo-
nents to reconstruct the feature in frequency component
extraction, which reduces the noise while keeping the useful
information of features. Finally, feature filtering automati-
cally selects the most distinguishable features for offline
supervised model learning and online classification. )e
details will be discussed in Section 4.

Offline Training and Online Classification. )e selected
and filtered features from the pattern identification module
are used for offline supervised model training and online
classification. )ree representative supervised machine
learning models are adopted to check the validation of these
features. POIs in the corresponding regions are utilized as

Table 1: Correlation coefficients between Monday and other days
in the week.

Traffic App Number User Number
Tuesday 0.97 0.99 0.98
Wednesday 0.58 0.91 0.90
)ursday 0.98 0.99 0.99
Friday 0.97 0.99 0.99
Saturday 0.97 0.98 0.97
Sunday 0.96 0.96 0.95
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Figure 2: )e temporal distribution of mobile App fingerprints
(traffic, App number, and user number) in a typical day. )e daily
patterns of mobile App fingerprints are highly similar and tightly
coupled with human activity patterns.
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labels and ground truth. A POI is a specific point location
that may be useful or interesting to people. It is a term most
often used on a map or guidebook that reflects the function
of a region. Our system can identify five urban functional
regions: catering, shopping, school, office, and residential
area, which cover most human activity areas. )e details will
be discussed in Section 5.

3.2. Initial Cleaning. )e initial cleaning module is com-
posed of 4 parts: valid logs selection to remove redundant and
conflicting logs, data aggregation and vectorization to get
regional information and structure the regional information,
and dimensional reduction to reduce data redundancy.

Valid Logs Selection. As mentioned in Section 2, we extract
mobile App usage logs with SAMPLES, where each log
contains a starting time (ts) and an ending time (te) of App
data accessing, an anonymized user ID (u), an App ID (a)

used during the start-end time, the amount of traffic flow
(f) consumed by a during the connection time (ts–te), and
the connected cellular tower ID (c). However, there exists
redundant and conflicting logs, which will probably lead to
the potential error in the pattern identification.)erefore, we
first remove redundant logs with same ts or te to present
repetitive calculation in the data aggregation part. )en, we
remove the logs that switch between multiple cellular towers
in a very short time, that is, close ts and te but different c.)is
is because the subscribers stay at the overlap areas of
multiple cellular towers and their mobile phones frequently
switch between these cellular towers. As a result, this part

selects valid logs to ensure that at each time period (ts–te),
one subscriber only connects to one or no cellular tower.

Data Aggregation. Since urban function identification re-
quires regional information, we first discretize the mobile
App usage logs into small time chunks (10minutes). )en,
within each chunk, we aggregate three variables of mobile
usage logs from the same cellular tower c and derive App
number (ac[i]), user number (uc[i]), and traffic (fc[i]),
which compose the mobile App fingerprint, as described in
Section 2.

Data Vectorization. In order to get structured data for
pattern identification, we vectorize the three aggregated
variables of mobile App fingerprint. For the cellular tower c,
we derive Xc � (ac[1], . . . , ac[N])T,
Yc � (uc[1], . . . , uc[N])T, and Zc � (fc[1], . . . , fc[N])T,
where Xc, Yc, and Zc represent vectors of App number, user
number, and traffic, respectively. In addition, to eliminate the
differences caused by amplitude, we normalize each vector
with daily maximum values.

Dimensional Reduction. Based on the visualization and
analysis from Section 2, we know that the information of
the entire week has high redundancy. )erefore, we first
calculate the correlation coefficients of App number, user
number, and traffic between different days according to
(1), respectively. )en, a threshold (0.7) is set to decide
whether the data include similar information for di-
mensional reduction. In the case of our dataset, we only
keep the data on Monday due to its high correlation with
other days.

Initial Cleaning Pattern Identification Offline Training

Valid Logs
Selection

Representative Filtering Labeling (POI)

Model Training

Data Aggregation

Data
Vectorization

Dimensional
Reduction

Offline
Online

Sec 3.2 Sec 5.2

(Sec 4.1)

Raw Feature Extraction
(Sec 4.2)

Feature Reconstruction
(Sec 4.3)

Online
Classification

(Sec 5.3)Feature Filtering

DBI Calculation

Feature Selection

(Sec 4.4)

Figure 3: )e architecture of our system for identifying urban functional regions with mobile App usage data, which consists of 4 modules:
initial cleaning (in green), pattern identification (in red), offline training (in blue), and online classification (in grey).
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4. Pattern Identification

In order to figure out unique patterns at different urban
functional regions, we first visualize the raw mobile App
fingerprint in Figure 4.We randomly select 60 cellular towers
from two different urban functional regions, office, and
residential areas and plot them on top and bottom rows.
First, for cellular towers located at office or residential areas,
the peak App traffic values vary significantly (from 7:00 AM
to 1:00 AM). Although the peak values for App number and
user number mostly appear from 9:00 AM to 10:00 PM, it is
still difficult to identify unique patterns with peak values. In
addition, the daily patterns at the same urban functional
regions also vary significantly. Second, we do not observe the
obvious difference between cellular towers in office and
residential areas. )is shows that simply cleaning mobile
APP usage logs with the initial cleaningmodule cannot help
identify unique patterns for feature extraction, which echoes
the analysis in Section 3. We will introduce how we design 4
parts of the pattern identification module, representative
filtering, raw feature extraction, frequency component ex-
traction, and feature filtering to address these issues in the
following 4 subsections, respectively.

4.1. Representative Filtering. Figure 4 illustrates that not all
the cellular towers for the same urban functional regions
share similar patterns. )erefore, we design the represen-
tative filtering to remove the data from outlier cellular towers
and keep the most representative cellular towers for urban
functional regions. )e outlier cellular towers are those who
do not share similar mobile App fingerprint patterns with
most cellular towers for the same urban functional regions.
Unlike normal cellular towers, the total number of unique
Apps used, total amount of traffic flow consumed, and total
number of unique connected users in these outlier cellular
towers show different patterns, which does not correspond
to regular human activities.

To pick up representative cellular towers, which shares
the similar pattern for the same urban functional regions, the
hierarchical clustering method is adopted [19] to cellular
towers, which belongs to the same type of urban functional
regions. As shown in Algorithm 1, we first select App fin-
gerprint data of cellular towers with the same labels (POIs).
)en, treating each input (cellular tower) as a cluster, the
hierarchical clustering iteratively merges the nearest two
clusters. In the clustering, we take correlation (computed as
shown in (1)) as the distance metric, since we care about the
trend and pattern of the data. )is process will stop until the
distance between any two clusters is larger than a predefined
threshold value dth. )e threshold value is decided based on
our observation of the raw dataset, which makes sure that
any two clusters are distinguishable. Finally, we select the
clusters with more than M cellular towers. )is is because
clusters of a small number are not representative. In this
article, based on our observation of the raw data, we M as
100, which not only prevents too many noisy and outlier
data being selected but also keeps data of most representative
cellular towers who share similar patterns. It is noticed the

representative filtering is only used for offline model
learning, which contains POI labeling information. For the
online classification, this step will be skipped.

Figure 5 shows the selected cellular tower data after
representative filtering. We plotmobile App fingerprint at two
kinds of urban functional regions (office areas and resi-
dential areas) at the top and bottom row, respectively. It is
noticed that mobile App fingerprint are all normalized by
their daily maximum values and we show 60 randomly
selected cellular tower data for better comparison. Figure 5
shows the consistent pattern on three variables of mobile
App fingerprint for the same urban functional regions. In
addition, mobile App fingerprint shows different patterns
between different urban functional regions. For example, for
user number, the residential area shows two high peaks at 8:
00 AM and 7:00 PM, whereas office area shows high values
between these two time. )is corresponds to human daily
activity pattern that people go to office from home around 8:
00 AM and leave office for home around 7:00 PM.

4.2. Raw Feature Extraction. In order to show detailed
pattern differences between five urban functional regions, we
show traffic, user number, and App number in Figure 6. Each
column represents one urban functional region. Values in
each subfigure are obtained by averaging data from filtered
cellular towers. For better comparison, we normalize the
values of each subfigure by their maximum values, respec-
tively, whose values are shown in Table 2. Different patterns
are observed at different urban functional regions, based on
which features can be extracted. Figure 6 gives us reference on
how to select features for urban functional region identifi-
cation, and we discuss the details of raw feature selection in
this subsection. In addition, we provide insight into these
features for different urban functional regions. Due to the
page limitation and avoiding redundant description of fea-
tures, we just discuss three representative features from App
number in detail. Peak position and negative slope contain
information of important value position and data changing
rate, respectively, whereas weekday-weekend ratio represents
the difference between weekday and weekend. In addition, to
illustrate their differences between five urban functional re-
gions, we plot the average values and standard deviation
values of the same three features in Figure 7.

Peak Position: In Figure 6, daily peaks of App numbers
appear at different times for different urban functional re-
gions. We plot the average and standard deviation of daily
App number peak positions in the left of Figure 7.)e school
area shows the earliest average peak time (just after 12:00
PM), whereas the shopping area shows the latest average
peak time (around 4:00 PM). )is is because Chinese stu-
dents tend to use larger number mobile Apps, such as
gaming and social Apps, during the lunch, while people tend
to go shopping during afternoon when they use most Apps,
such as map, recommendation, and social Apps.

Negative Slope: In Figure 6, both increasing and de-
creasing rates differ among urban functional regions. )is is
also observed in the middle of Figure 7. Negative slopes in
school areas decrease fastest, which indicates that students
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switch between different Apps more often. In contrast,
negative slopes in shopping areas decrease the slowest. )is
is because the Apps used when people go shopping is usually
more stable.

Weekday-Weekend Ratio: Although the information on
Monday has a high correlation with the other days, the
absolute value of different days still varies, especially

between weekdays and weekends. We plot the used App
number on the weekday over that on the weekend in the
right of Figure 7. )e results show that schools have the
highest ratio (> rbin1) since students leave school during
weekends and fewer Apps are used. On the contrary, the
shopping area has the lowest ratio (< 1) since citizens go
shopping more during weekends and more Apps are used.
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Figure 4: )e heatmap of normalizedmobile App fingerprint from the initial cleaningmodule. )e 60 cellular towers are randomly selected
at two urban functional regions (office and residential areas), respectively. It is difficult to identify unique patterns for different urban
functional regions.

Input: App fingerprint data belongs to the same type urban functional regions D � x1, x2, . . . , xm ;
cluster distance function d;
distance threshold value dth
Output: Clusters C � C1, C2, . . . , Ck 

for j � 1, 2, . . . , m do
Cj � xj 

end
for i � 1, 2, . . . , m do
for j � 1, 2, . . . , m do

M(i, j) � d(Ci, Cj);
M(j, i) � M(i, j)

end
end
Set current number of clusters: q � m

while the distance of any two clusters <dth do
Find the nearest two clusters Ci∗ and Cj∗

Union Ci∗ and Cj∗ : Ci∗ � Ci∗ ∪Cj∗

for j � j∗ + 1, j∗ + 2, . . . , q do
Renumber clusters set Cj to Cj−1

end
Delete the j∗th row and the j∗th column of the distance matrix M;
for j � 1, 2, . . . , q − 1 do

M(i∗, j) � d(Ci∗ , Cj);
M(j, i∗) � M(i∗, j)

end
q � q − 1

end

ALGORITHM 1: Hierarchical clustering: AGNES (AGglomerative NESting).
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In total, we first consider 15 raw features for each
variable of mobile App fingerprint, which include
weekday peak value, weekend peak value, weekday peak
position, weekend peak position, weekday valley value,
weekend valley value, weekday valley position, weekend
valley position, weekday valley-peak ratio, weekend val-
ley-peak ratio, weekday positive slope, weekend positive

slope, weekday negative slope, weekend negative slope,
and weekday-weekend ratio. It is noticed that not all these
features can be used for classification since some of them
have large noise and some of them contain redundant
information. )e details of feature noise reduction and
filtering will be addressed in the following two
subsections.

4.3. Frequency Component Extraction. )is subsection ad-
dresses the problems of feature noise reduction. We first
show that the directly extracted feature cannot be used for
classification due to the high noise level. )en, we reduce the
feature noise by extracting the key frequency component of
these features, based on which these features are
reconstructed.
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Figure 5: )is figure shows the heatmap of normalized mobile App fingerprint after representative filtering. )e 60 cellular towers are
randomly selected at two urban functional regions (office and residential areas). Clear unique patterns for different urban functional regions
are observed after representative filtering.
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Figure 6: )e normalized daily patterns of user number, App number, and traffic after representative filtering.

Table 2: Maximum values of mobile App fingerprint for five urban
functional regions.

Traffic (Byte) App number User number
Catering 7.7∗ 106 524 372
Shopping 5.7∗ 106 286 1057
School 5.8∗ 106 456 281
Office 1.4∗ 107 238 7534
Residential 7.5∗ 106 348 3440
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For all the three features shown in Figure 7, the standard
deviation is also large despite different average values among
different urban functional regions. )e large standard de-
viations mean that within each urban functional region,
features from different cellular towers vary significantly,
which causes classification errors with these features.
)erefore, we need further reduce the feature noise to
improve the distinguishability of these features.

In order to lower the variation of features within the
same urban functional region, we analyze the frequency
pattern of the daily fingerprint. )e discrete Fourier
transform (DFT) [20] is applied on the original data after
representative filtering, which is calculated as

D[k] � 
N

n�1
d[n]e

− 2πikn/N
, (2)

where N is the number of samples. D[k] is the frequency
spectrum of time-domain data d. Based on the analysis on
the spectrum after DFT, we find that most energy is gathered
at 4 frequency components, which represent 24-, 12-, 8-, and
6-hour periods, which correspond well to the human life
patterns. )erefore, we utilize these four frequency com-
ponents to reconstruct the data as

D
r
[k] �

D[k], if k is the selected frequency,

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩

d
r
[n] �

1
N



N

k�1

D
r
[k]e

− 2πikn/N
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where dr[n] is the reconstructed time-domain data. Figure 8
shows the original data (d[n]) after representative filtering
and the reconstructed data (dr[n]) with 4 key frequency
components of one randomly selected cellular tower in blue
and red line. One typical cellular tower is randomly selected
for each urban functional region. It is observed that the red

lines show the same trends with the blue lines, while the high
oscillations in the blue lines do not exist in the red lines. )is
proves that the selected 4 key frequency components rep-
resent the most important information of the data as well as
remove the unnecessary noise.

Figure 9 shows the average and standard deviation of 3
features extracted from the reconstructed data. )ese 3
features are the same as those in Figure 7.

)e average values of peak position of 5 urban functional
regions in Figure 9 (left) do not change too much from
original features showing in Figure 7. )is is because the
reconstruction does not change the signal trend a lot, thus
keeping the daily peak position at the similar place. To be
noticed, the standard deviations are much smaller than the
original features; that is, the standard deviation of school
area decreases from 38.3 to 13.4, which helps reduce the
classification errors.

Different from average values of the peak position, the
average negative slope of 5 urban functional regions in
Figure 9 (middle) varies significantly. )is is because that
high-frequency oscillation of the original signal leads to a
high decreasing rate, which does not represent the really
stable decreasing rate. In addition, the standard deviations
are also reduced a lot. For example, the standard deviation of
the school area decreases from 4.0 to 0.6. Since both standard
deviations and average values are reduced on a similar scale,
the differentiation between different urban functional re-
gions does not improve a lot.

)e average values of weekday-weekend ratios of 5 urban
functional regions in Figure 9 (right) do not change a lot
from Figure 7. )is is because the reconstruction does not
change the signal trend a lot, thus keeping the weekday-
weekend ratio at similar levels. However, the standard de-
viations are much smaller than raw features in Figure 7. For
example, the standard deviation of the school area decreases
from 0.74 to 0.14. )e reduction in the standard deviations
reduces the distance within the same urban functional re-
gions, which reduces the classification errors.
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To conclude, adopting 4 frequency components to re-
construct the original data keeps the most important in-
formation for feature extraction while reducing the feature
noise, which helps improve the distinguishability of these
features.

4.4. Feature Filtering. )e next question lies on how to select
distinguishable features from all 45 feature candidates for
accurate classification. In our system, we adopt the
Davies–Bouldin index (DBI) as a selection metric [21],
which is defined as
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reconstructed data. First, the reconstructed data reduce the oscillation from the original data while keeping themajor trends.)ismeans that
the reconstructed data reduce the noise and keep the useful information. Second, the features extracted from reconstructed data have lower
standard deviations while keeping the trends of average values. )is means the features extracted from reconstructed data increase the
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1
N



N

i�1
maxN

j�1,j≠i
Si + Sj

Ei,j

, (4)

where N is the number of classes and Ei,j is derived by

Ei,j � Ai − Aj

�����

�����2
, (5)

and Si is calculated as

Si �
1

Ni



Ni

k�1
Xk − Ai

����
����2, (6)

where Ai denotes the centroid of each class and Ni is the
number of ith class. )e DBI not only measures the sepa-
ration between classes but also considers the cohesion within
each class. Based on the calculated DBI values in the offline
training period, we select 10 features (most DBIs are between
3 and 19) from 45 features for urban functional region
classification: 1 weekday App traffic valley position, 2
weekend App traffic negative slope, 3 weekday App number
valley-peak ratio, 4 weekend App number valley-peak ratio,
5 weekday App number peak position, 6 weekend App
number valley position, 7 weekday App user number valley-
peak ratio, 8 weekend App user number peak position, 9
weekday App user number valley position, and 10 weekend
App user number valley position.

5. Evaluation

)is section evaluates our system design and feature ex-
traction. We first introduce the evaluation setup in Section
5.1. )en, we describe details of 3 machine learning methods
in Section 5.2. Finally, we evaluate the performance of online
classification in Section 5.3. Our evaluations focus on (1)
evaluating the overall performance of our system design and
feature extraction in Section 5.3.1; (2) evaluating the effect of
the key parts of the system, that is, representative filtering,
feature reconstruction, and raw feature extraction in Section
5.3.2; (3) validating the features selected by the DBI-based
method of feature filtering in Section 5.3.3; and (4) evalu-
ating computational complexity of pattern identification
module and three machine learning methods in Section
5.3.4.

5.1. Experiment Setup. We introduce the experimental
configuration, including testing set, ground truth, machine
learning methods, and comparing sets, respectively.

Tenfold cross-validation is adopted. We first randomly
divide the dataset, as described in Section 2.1, into ten groups
with equal sample numbers. Each time, nine groups are used
to train the machine learning model, whereas the remaining
one group is used to test the accuracy.

Ground Truth: We separate the city of Shanghai into
small regions and correlate them to point of interest (POI)
provided by BaiduMap API [22]. We adopt POIs of the
regions as the ground truth of urban functional regions. It is
noticed that there usually exist multiple numbers and type
POIs within the same region due to its multiple functions.
Since we focus on identifying the regions with the single

function, we select the regions with one dominant POI
(> rbin80%), which represents the function of that region.
Only the cellular towers located in these regions will be used
for evaluation. We focus on 5 types of urban functional
regions: catering, shopping, school, office, and residential.

Dataset and Testing Method: Since our dataset has the
problem of imbalanced data, that is, data points of classes are
not approximately equally, we first adopt oversampling
method [23] to avoid misclassification. )en, we adopt
tenfold cross-validation to evaluate the classification per-
formance. Specifically, we randomly divide the dataset de-
scribed in Section 2 into ten groups with equal sample
numbers. Each time, nine groups are used to train the
machine learning models, whereas the remaining one group
is used to test the accuracy.

Performance Metric: )e major metric we consider is
Accuracy, which is calculated as

Accuracy � 
n

i�1

Mii

NT

∗ 100%, NT � 
n

i�1


n

j�1
Mij,

⎧⎪⎨

⎪⎩
(7)

where Mij is the number of the real urban function region i

classified as urban function region j. As mentioned before,
we have 5 classes in our evaluation, that is, n � 5. We tune
the parameters of machine learning models to optimize
classification accuracy. In addition, we also consider type I
error and type II error with confusion matrix [24], as well as
running time. To be noticed, in our multiclassification
problem, since there exist the similar number of samples for
each class in the testing sets, high Accuracy.

Machine Learning Methods: To investigate how our
system works with different machine learning methods, we
adopt three commonly used methods to compare the per-
formance difference. We first select support vector machine
(SVM) [25], a low complexity classier, which is based on
statistical learning theory. )en, we select decision tree (DT)
[26], a low complexity classier, which is based on the
multistage or hierarchical decision. )e SVM and the DT
represent parametric and nonparametric supervised learn-
ing, respectively. Finally, we adopt random forest [27], a
more complicated classier and ensembled classifier, which
combines more than one same or different basic classifiers,
such as SVM and DT.

Baseline: We compare our method with a most recent
related work [28], which adopt mobile traffic data to classify
urban functional regions. To be simple, we utilize MTC to
represent this baseline in the following part of the article.

5.2. Offline Training ofMachine LearningMethods. SVM is a
discriminative classifier, which is formally defined by a
separating hyperplane [25]. )e algorithm outputs an op-
timal hyperplane based on the calculation on labeled
training data. )e hyperplane is used to classify new ex-
amples. In order to derive hyperplanes with more compli-
cated forms, kernel functions are used [29]. SVM can be used
to deal with multiclassification problem by combining
multiple SVMs [30]. In our offline trainingmodule, we adopt
one-versus-one method to construct a multiclass SVM
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classifier. A polynomial kernel function with order 3 is
utilized. )e regularization parameter C is set to 1.

Decision tree is a nonparametric effective machine
learning modeling, which utilizes a tree-like model of de-
cisions and their possible consequences [26]. )e decision
tree classifier repetitively divides the working area into
subparts according to the information gain [31]. In addition,
the pruning technique can be used to reduce the complexity
of the final classifier and prevent overfitting [32]. In our
offline trainingmodule, in order to reduce the computational
complexity, we adopt Gini impurity to calculate information
gain and trained classifier is not pruned [33].

Random forest is an ensemble algorithm that combines
more than one algorithm of the same or different kinds for
classification [27]. A random forest classifier creates a set of
decision trees and aggregates the votes from different de-
cision trees to make the final classification decision. In our
offline training module, the random forest consists of 3
decision trees, each of which adopts Gini impurity to cal-
culate information gain.

5.3. Performance Analysis of Online Classification

5.3.1. System Performance. Figure 10 shows the classifica-
tion accuracy of our system and the baseline using three
different machine learning models. For all three methods,
our method achieves 47%, 20%, and 10% improvements over
baseline. In addition, with three different methods, our
method achieves similar accuracy (97.3%, 95.14% 97.37%),
whereas the baseline achieves various accuracy (50.27%,
76.76%, 88.42%). )is shows that our method on feature
cleaning and extraction brings performance improvement
and robustness with different machine learning methods.
)e improvements and robustness come from (1) adopting
extra information of App number and user number and (2)
our feature cleaning technique in the pattern identification
module.

Figure 11 shows the confusion matrix of our system with
three machine learning models. )ere is no misclassification
on catering, shopping, and school due to different patterns of
Traffic, user number, and App number in these three kinds
of urban functional regions. All three methods have errors
on classifying office since the feature patterns have the largest
overlaps with other classes based on the DBI calculation. In
addition, there exist 3 misclassifications in residential with
decision tree methods, while that does not happen with
random forest. )is is because random forest utilizes 3
decision trees and aggregate the votes from these trees,
which prevent the misclassification.

5.3.2. Influence of Pattern Identification. In order to check
the effect of key parts, we evaluate the accuracy of 4 com-
paring sets:

(i) Initial Cleaning: In this testing configuration, we
adopt the raw data from all the cellular towers after
the initial cleaning module as the feature for
classification.

(ii) Representative Filtering: In this testing configura-
tion, we adopt the raw data from selected cellular
towers after representative filtering. Outlier cellular
tower data are removed from the previous com-
paring set. By comparing Representative Filtering
with Initial Cleaning, we check the performance
improvement from representative filtering.

(iii) Raw Feature Extraction: In this testing configura-
tion, we adopt the features extracted from Repre-
sentative Filtering. As shown in Figures 7 and 9, the
extracted features include significant noise. By
comparing raw feature extraction with Represen-
tative Filtering, we can the effect of feature ex-
traction plus noise.

(iv) Feature Reconstruction. In this testing configura-
tion, we adopt the features extracted from recon-
structed data with 4 major frequency components,
which also represent our system performance. Since
the reconstructed data keep the most useful infor-
mation as well as remove the noise, the Features
Reconstruction is supposed to be better than raw
feature extraction. By comparing feature recon-
struction with raw feature extraction, we can check
the effect of frequency component extraction. It is
noticed that for both raw feature extraction and
feature reconstruction sets, we use the selected 10
features selected based on DBI calculation.

We plot the classification accuracy of 4 comparing sets
with three methods in Figure 12. For all methods, the initial
cleaning set shows the lowest accuracy, whereas the feature
reconstruction set shows the highest accuracy. )is shows
that directly applying raw data for urban functional region
classification does not achieve satisfying accuracy. In con-
trast, through representative filtering, raw feature extraction,
and feature extraction, our system improves the classifica-
tion accuracy from ∼50% to ∼95%.

In addition, for the raw feature extraction set, three
methods achieve 86%, 90%, and 92% accuracy, respectively.
Performance from all methods is close and acceptable. )is
validates our selected features, which preserve the most
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Figure 10: )is figure shows the classification accuracy of our
method and the baseline with three different machine learning
models.
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important information to classify different urban functional
regions. However, directly extracted features still contain
high-level noise that does not bring very high accuracy.

)e feature reconstruction brings further accuracy im-
provements on three methods (11% for SVM, 5% for de-
cision tree, and 6% for random forest). )is also illustrates
that feature reconstruction helps reduce the feature noise
while preserving the key information for classification.

)erefore, three key parts of our system (representative
filtering, raw feature extraction, and feature reconstruct)
work cooperatively to ensure both high classification ac-
curacy (up to 98%) and high robustness (97%, 95%, and
98%) in different machine learning methods.

5.3.3. Influence of Feature Selection. In order to check how
different features affect our system performance, we show
the classification accuracy with different feature combina-
tions in Figure 13. We first separate the features into three
groups: 2 App traffic features (No. 1 and No. 2), 3 used App
number features (No. 3–No. 6), and 2 App user number
features (No. 7–No. 10). )en, we increase the feature
number for classification from 1 to 10 to check the classi-
fication accuracy with three machine learning methods.

From the results, we can observe that three methods have
a large accuracy gap with only 2 App traffic features. SVM
achieves only 50% accuracy, but decision tree and random
forest achieve 76% and 88% accuracy, respectively. )is
illustrates that only adopting App traffic features does not
offer enough information for accurate classification. In
addition, it is also sensitive to machine learning methods.

When 4 App number features are added, SVM has
around 40% accuracy improvement. )is illustrates App
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Figure 11: Classification confusion matrix with three different machine learning models.
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number features contain new valid information for classi-
fication. Decision tree and random forest show around 22%
and 10% accuracy improvement, respectively.)is illustrates
that App traffic and App number feature combinations are
less sensitive to machine learning methods compared to only
App traffic features.

When the remaining 4 user number features are added,
accuracy with SVM and decision tree is improved by 5% and
2%, respectively. However, accuracy with random forests
does not improve. )is shows that user number brings
limited new information for classification.

In order to check the effectiveness of features in detail,
we show the classification accuracy of 7 different combi-
nations with three machine learning methods in Table 3.
With only one feature set, the user number brings the
highest accuracy for all three methods. )is is because the
user number is the most direct factor that reflects human
activity, which is highly related to urban functional region
type. When adding another feature set, we see accuracy
improvements vary from ∼10% to ∼40% with different
feature combinations and different machine learning
models. With all three feature sets, all the machine learning
models achieve the highest classification accuracy. However,
the improvement is limited. )is is because these three sets
of features have information overlap. )is shows the pos-
sibility of using any combination of two feature sets for
urban functional region classification.

5.3.4. Computational Complexity Analysis. In order to check
the computational complexity of key parts in our system, we
run the system 20 times and record the running time to
calculate the average running time. Table 4 shows the av-
erage running time of 5 key parts in our system. We run the
system on a 64 bit windows server, whose CPU is Intel(R)
Xeon(R) CPU E5-2637 v4 @ 3.5GHz 3.5GHz (dual pro-
cessor) and memory is 128GB. Initial cleaning and repre-
sentative filtering rank in the top two on time consumption.
)e high computation of initial cleaning comes from ag-
gregating mobile usage logs from individual users to derive
user number, App number, and traffic of each cellular

towers, which requires calculation over all mobile usage logs.
)e high computation of representative filtering comes from
the expensive computation of hierarchical clustering in
Algorithm 1, time complexity of which is O(n3).

In order to check the computational complexity of
training different features, we plot the training time and
classification accuracy in Figure 14. For simplicity but
without loss of generality, we only show the training time
and classification accuracy of SVM. SVM achieves high
accuracy with 6 features, which corresponds to the analysis
above. )e accuracy does not change too much after 7
features. )e training time does not change too much with
less than 16 features, which is around 42 s. )e training time
increases dramatically after 17 features. )erefore, consid-
ering the trade-off between classification accuracy and
training time, adopting features from any two feature sets for
urban functional region classification can achieve high ac-
curacy with low training time.

In conclusion, with the help of 4 key parts of our system
and 10 extracted features within on App number, user
number, and traffic, our system achieves up to 98% classi-
fication accuracy on urban functional region identification.
In addition, the key parts and features are also robust to
different kinds of supervised learning methods. It is noticed
that adopting combinations of any two sets of features can
achieve high classification accuracy (95%).

6. Related Work

In this section, we discuss the existing research related to our
work, including urban function detection, and urban
analysis with data from the cellular network or mobile
devices.

Some studies have been carried out on urban function
detection. A common method is to collect data from mobile
devices for investigating human activities [5], application
usage [6], and human communication activities [7]. How-
ever, the limited number of sampled users is not able to
represent the global characteristics of the whole area. Some
research studies focus on investigating land usage with Call
Description Records (CDRs), such as data of phone call [8]
and text message [9]. Classical time series analysis methods
are used to infer land use. Reades et al. [34] adopt the
principal component analysis approach and Yuan et al. [35]
use the dynamic time warping approach. Soto et al. [36]
propose the fuzzy C-means approach to classify places based
on usage. Since people tend to use the applicationmore often
than phone calls, these datasets may have some bias or
missing information. In addition, more and more users
prefer applications such as WhatsApp, WeChat, and Line to
send text messages. )erefore, these CDR data may lose a lot
of key information for investigation.

People have adopted data from mobile devices and
cellular networks for different aspects of urban analysis. )e
first category is population distribution estimation. Ahas
et al. [37] and Becker et al. [38] design a new method to
detect human living and working locations. De Jonge et al.
[39], Ratti et al. [40]. and Sohn et al. [41] identify user
mobility on high-level properties with coarse-grained GSM
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Figure 13: )e classification accuracy under different feature
combinations.
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data. Krisp et al. [42] adopt mobile phone density calculation
and visualization to help fire and rescue services. Soto et al.
[43] identify the socioeconomic levels of a population with
the information extracted from the aggregated cell phone
usage record. )e second category lies in activity estimation.
Girardin et al. [44] track the evolution of attractiveness in
New York with the cell phone data and Flickr georeferenced
photos. Reades et al. [34] propose to monitor city dynamics
and derive clusters of geographical areas. Frias-Martines
et al. [36] propose a time series analysis method to auto-
matically identify land use. Moreover, different aspects of
mobility patterns are analyzed, such as human trajectories by
Song et al. [45], human migration by Simini et al. [46], and
road usage patterns byWang et al. [47]. Several works aim at
detecting human mobility patterns during special events like
earthquake [48, 49].

7. Conclusion

)is article proposed a fine-grained urban functional region
identification system, which utilized mobile App usage data
from cellular towers. We first design a hierarchical clus-
tering-based method and a Fourier transform-based method
to reduce cellular tower level noise and feature level noise,
respectively. )en, we designed a DBI-based method to

automatically figure out the most distinguishable features
based onmobile App fingerprint (App number, user number,
and traffic) and correlated them to different urban functional
regions. We evaluated our system and selected features with
three representative supervised learning models, all of which
achieved more than 95% classification accuracy.
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mobile phone activity,” in Proceedings of the ACM SIGKDD
International Workshop on Urban Computing, pp. 1–8, ACM,
New York, NY, USA, August, 2012.

[7] B. Cici, A. Markopoulou, E. Fŕıas-Mart́ınez, and N. Laoutaris,
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