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The existing English pronunciation error detection methods are more oriented to the detection of wrong pronunciation, and lack
of targeted improvement suggestions for pronunciation errors. With the aim of solving this problem, the paper proposes an
English pronunciation error detection system based on improved random forest. Firstly, a speech corpus is constructed along
with the evaluation of the acoustic features. Then an improved random forest detection algorithm is designed. The algorithm
inputs rare mispronunciation data into a GAN neural network to generate new class samples and improve the uneven
distribution of mispronunciation data in the sample set. The distribution rules of the pronunciation data are extracted layer by
layer by stacking deep SDAEs, and the coefficient penalties and reconstruction errors of each coding layer are combined to
identify the features associated with the wrong pronunciation in the high-dimensional data. Furthermore, a forest decision tree
is constructed using the reduced-dimensional feature-based data to improve the pronunciation detection accuracy. Finally, the
extracted 39 Mel Frequency Cepstral Coefficient (MFCC) acoustic features are used as the input of the improved random
forest classifier to construct a classification error detection model. The experimental results indicate that the designed system
achieves a high accuracy of English pronunciation detection.

1. Introduction

In the context of the comprehensive development of
economic globalization and the continuous promotion of
China’s opening-up process, communication between coun-
tries around the world is intensifying. More and more people
are eager to learn another language (Second Language, L2) in
addition to their native language [1, 2], which in turn gives
them an advantage in their study, life, and work. As it is well
known, the purpose of language is to communicate, while
mastering a language necessarily requires learning its spoken
pronunciation. Currently, L2 oral language teaching [3] is
teacher-centered and still uses the traditional one-to-many
teaching model like other subjects, ignoring the development
of students’ independent learning ability. In addition, this
face-to-face teaching mode is limited by many external objec-
tive conditions, such as time and place. More importantly, L2
teachers are scarce in China, especially in the central and
western regions where educational resources are insufficient.

Students and teachers do not have one-on-one opportunities,
so it is difficult to find out the problems in students’ pronun-
ciation. Students do not get any advice from their teachers to
correct their pronunciation, which in turn does not promote
the learning of L2 oral language [4].

In recent decades, the birth and development of
Computer Assisted Language Learnging (CALL) [5] has
been promoted along with the development of science and
technology. This digitally assisted teaching technology makes
language learning more convenient for learners, who can use
fragmented time and any location for language learning.
Some scholars have divided the development of CALL into
stages [6]. In the early stage, CALL systems could only pro-
vide some text learning of words and grammar. With the
development of Internet technology, the current stage of
CALL system can meet the interactive L2 learning scenarios
of users, for instance, remembering words by looking at
pictures and watching videos, and practicing pronunciation
by simulating dialogues in scenes. CALL systems that focus
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on L2 pronunciation learning are called Computer Assisted
Pronunciation Training (CAPT) [7, 8].

When people learn to pronounce L2, they are often
influenced by the pronunciation habits of their native
language, which in turn leads to mispronunciation. Learners
whose native language is Mandarin often pronounce the
English vowel/i:/with incorrect duration because of the influ-
ence of the rhyme phoneme/i/in Mandarin. Therefore, the
CAPT system, which aims to improve L2 learners’ pronun-
ciation, is designed with two types of basic modules, one of
which is the pronunciation assessment of L2 learners’ pro-
nunciation, i.e., the rating of L2 learners’ pronunciation
quality according to the system’s pre-agreed scoring rules.
The APED system has received increasing attention from
researchers in the field of phonetics [9]. The APED system
can detect the mispronunciation of L2 learners, i.e., Mispro-
nunciation Detetion (MD). Currently, researchers are work-
ing on further implementation of the APED system for
Mispronunciation Detetion and Diagnose (MD&D) [10],
which not only identifies mispronunciations, but also diag-
noses the causes of mispronunciations and provides feed-
back to L2 learners to promote their pronunciation.
Learners, in order to promote their speaking skills.

With the continuous improvement in the performance
of automatic speech recognition algorithms and the positive
achievements of related applications, new ideas for the
research of APED algorithms are put forward. The literature
[11] used Gaussian mixture model (GMM) and linear
discriminant analysis (LDA) for voice recognition. The liter-
ature [12] employed SVM with multilayer perceptron classi-
fier for phoneme classification of Bengali. Automatic speech
recognition (ASR) based pronunciation error detection and
ASR have similarity in the construction of acoustic models.
ASR techniques can be essentially divided into two catego-
ries [13], which are Hidden Markov Model (HMM) based
acoustic model for speech recognition and end-to-end
acoustic model-based language recognition, in view of the
achievements of deep neural networks on language recogni-
tion. The literature [14] proposed a cross-language HMM-
DNN speech recognition model to improve the automatic
language recognition performance. The literature [9]
proposed an end-to-end pronunciation error detection
algorithm based on connectionist temporal classification
(CTC) with attention blending. Due to the lack of a corpus
specifically annotated by linguists with L2 pronunciation
error information, the pronunciation error detection
algorithm in the paper achieves error detection for L2 pro-
nunciation but cannot provide diagnostic information.

The current problems faced by pronunciation error
detection are, firstly, the small coverage of pronunciation
error types and the great limitation of error detection types,
then, the importance of corrective feedback is ignored, and
most of the studies at this stage are only biased to how to
conduct pronunciation error detection, and the detected
errors can only indicate the problems of learners’ pronunci-
ation. The detected errors can only indicate the problems of
learners’ pronunciation, but cannot suggest the targeted
improvement of pronunciation errors. The effect on
learners’ improvement of pronunciation level is minimal.

In order to solve the above problems, this paper proposes
an improved random forest English pronunciation error
detection system. The system adopts the Mel Frequency
Cepstral Coefficient (MFCC) and the improved random for-
est (RF) algorithm in the English pronunciation detection
module to classify and detect pronunciation errors caused
by the nonstandard position of pronunciation-related
organs, movements, and duration of pronunciation, to clarify
the pronunciation problems of learners and make it possible
to provide feedback to correct different types of errors.

Section 2 of the paper is a theoretical study of the related
algorithms. Section 3 contains a concrete implementation of
an English pronunciation error detection system with
improved random forest. Section 4 contains the experimen-
tal part. Section 5 is the conclusion.

2. Related Theories

2.1. Generative Adversarial Networks. GAN is a novel gener-
ative model proposed by Goodfellow et al. in 2014 [15],
which belongs to one of the deep learning algorithms.
GAN is composed of a discriminative model D and a gener-
ative model A, which simulates the probability distribution
of some data in a specific way, so that it is the same as the
probability statistical distribution of some target data or as
similar as possible. At the beginning of the algorithm, some
data are generated based on the input of noise k to A. D
determines from the real data and the data generated by A
which are the fake data generated by A. The whole process
is based on the input of noise k to A. The whole process is
equivalent to a game between A and D. The purpose of A
is to make the data it generates not easily recognized by D,
and the purpose of D is to determine the source of the data
as accurately as possible, iterating and optimizing the pro-
cess to finally reach a steady state, when D can generate fake
data close to the real data distribution, not just a reproduc-
tion of the real data, and achieve the data expansion by the
fake data generated by A. The role of data expansion is
achieved by the falsified data generated by A. The core idea
can be expressed mathematically as follows.

min
A

max
D

Q D, Að Þ = Ei∼Uw
ln D ið Þð Þ½ � + Ek∼Uk

ln 1 −D A kð Þð Þð Þ½ �
ð1Þ

where QðD, AÞ is the loss function? Uw is the true data dis-
tribution. Uk is the generated data distribution. AðkÞ denotes
the falsified sample generated by A through the input noise k
. DðiÞ denotes the probability that D determines i to be the
true data. DðiÞ and AðkÞ alternately maximize and minimize
the loss function, and finally find the generative model with
the approximate optimal solution.

2.2. Stacked Denoising Autoencoders (SDAE). For the current
data with high dimensionality and complexity, this paper
uses self-encoding networks for feature extraction of data.
The learning goal of AE is to make the output data vector
i′ equal to the input data vector i with the maximum
similar reconstruction.
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The basic process of DAE is to add noise to the original
data i, convert i to i′ using the random mapping function,
and then use the encoding function f to obtain the encoded
features from i′ containing the noise data.

j = f Wi + uð Þ ð2Þ

Where W is the weight matrix. u is the deviation vector.
Then the decoded data is obtained by the decoding function a.

i
~
= a WT j + v

� � ð3Þ

Here f and a are the activation functions, which are set as
sigmoid functions. j represents the hidden layer vector. v rep-
resents the inverse of the deviation vector. The parameters of
the DAE are adjusted by optimizing the reconstruction error
J(i,i~), and the optimal parameters using the gradient descent
method are

θ, θ′ = arg min
θ,θ′

J i, aθ′ fθ ið Þð Þð Þ ð4Þ

The hidden layer parameter Wð1Þ is saved as the input to
the next layer of DAEs for layer-by-layer extraction of anom-
alous features. When multiple noise reduction self-encoders
are cascaded up and down to form a stack structure, the cod-
ing vectors of each DAE are then combined to form anN-layer
neural network. The DAE process is repeatedly iterated layer
by layer until the model reaches the final output layer, and
the deep structured stacked noise-reducing self-encoder SDAE
is obtained.

The training process of SDAE [16]: In the first stage, the
unsupervised layer-by-layer training parameters, each
implicit layer is the feature extracted layer by layer for each
DAE pre-training process. In the second stage, the parame-
ters of the whole stack structure are adjusted to obtain the
optimal solution of the model.

2.3. Random Forest. Random Forest, which can be thought
of as a collection of multiple decision trees, is an integrated
learning algorithm proposed by Breiman in 2001 [17]. The
random forest uses Bagging algorithm to randomly sample
the original data set and obtain each subset of data with
the same number but different from each other. First, N
decision trees correspond to N subsets of data, and the best
division among m attributes of M feature variables is
selected by the principle of exponential minimum. The
CART algorithm is used for attribute classification of nodes.
For the data set D, the smaller the Gini index GiniðDÞ = 1
−∑z

z=1ðjCz/DjÞ2 , the smaller the probability that the
selected samples in the data set are misclassified. The num-
ber of selected attributes is a random feature variable, and
many decision trees are trained sequentially, and then all
the decision trees are formed into a forest.

The classification result of random forest is generated
after considering all the decision tree results in a combined
vote, and the final classification of the sample is the category
with the highest ratio of votes to the total number of votes

received. When classifying data, the random forest algo-
rithm has good noise immunity, can handle missing values
and outliers, and has better robustness due to the introduc-
tion of partial randomness. However, the random forest
method alone cannot determine the minimum correlation
of data samples and the balanced distribution of a few classes
of data in the face of high and unbalanced data sets, resulting
in low classification accuracy. Therefore, the imbalance
expansion and feature dimensionality reduction are needed
before training the random forest classifier.

3. The Model in This Paper

3.1. General System Architecture. With the development of
the international environment, the number of learners of spo-
ken English in China has increased greatly, and it is crucial to
provide learners with a scientific and systematic way to cor-
rect errors in speech. In this paper, the construction of the
error detection model is pronounced in the following steps.

Step 1: Pre-processing. The preprocessing part includes
forced text-to-speech alignment and phoneme separation
of the speech data.

(1) The data obtained from the speech corpus are
whole-sentence audio data files. The audio files are
force-aligned to the reference text using Hidden
Markov Model Toolkit (HTK), which aligns speech
to sentence, word, and phoneme level

(2) Get the phoneme level alignment time information
by forcing alignment. Cut and separate the pho-
nemes according to their alignment time informa-
tion to obtain phoneme data

Step 2: Acoustic feature extraction. The phoneme data
obtained in the first step are extracted by MFCC acoustic
features. In this paper, a total of 13-dimensional MFCC plus
13-dimensional first-order differential and 13-dimensional
second-order differential coefficients are extracted to form
a total of 39-dimensional MFCC coefficients.

Step 3: Data set pre-processing. This part mainly
includes dividing the acquired feature data set into training
data set and test data set, and normalizing them, respec-
tively. The normalization operation has no effect on the
original distribution of the data. In this paper, a linear func-
tion transformation normalization method is chosen.

Step 4: The 39-dimensional MFCC feature vector of the
training dataset is used as input to train the improved ran-
dom forest model. The default initial model parameters,
generally the default parameters of random forest can get
good classification accuracy, but this paper still choose
cross-validation to tune the parameters.

Step 5: Test the pronunciation error detection classifica-
tion model built by the algorithm using the test set of pro-
nunciation error detection feature data. The accuracy of
pronunciation error classification detection is obtained.
The evaluation metrics are used to further determine the
optimal model. The evaluation metrics used are: accuracy,
recall rate and false alarm rate.
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3.2. Corpus Construction. The data for the corpus con-
structed in this paper was obtained from the website http://
accent.gmu.edu (hereafter collectively referred to as the
English accent website). The website mainly showcases the
English accent archives they have constructed. The English
accent website collects spoken English from speakers of var-
ious linguistic backgrounds. The phonetic data collection
and analysis was done by Steven H, a linguist, with the help
of many research institutions (George Mason University,
etc.) and linguistic researchers, who wanted the collection
to include as many native languages as possible from all
backgrounds of the world. The English accent website was
created to unify the large number of speech sounds from
various language backgrounds for use in language teaching
and English accent research. To date, the English accent
website has collected 2937 English accent audio data, which
were obtained by reading the same English passage to 2937
respondents from 386 countries and regions around the
world, such as Guangdong, China, Denmark, Bangladesh,
France, and others. The website also gives information about
each respondent’s age, gender, years of English learning, and
English learning style, combined with the English pronunci-
ation theory and the analysis of the information of L2 pro-
nunciation errors marked by many linguists in the English
accent website. In this paper, L2 English pronunciation
errors are counted.

Consonant pronunciation is more complex than vowel
pronunciation, and the three main factors that determine
the characteristics of consonant pronunciation are position,
manner and vocal fold vibration. According to the informa-
tion of the English accent website, the linguistic experts have
found that the errors of the consonants are: the clear conso-
nants have been cleared, appearing at the beginning of words
like “p”, “t”, “k”, etc., and the process of airflow explosion is
missing when pronouncing. Comprehensive pronunciation
theory and English accent website, consonant error types
are shown in Table 1.

English accent sites are well suited for training English
pronunciation error correction models. Since it is used for
training models, a very large number of data samples need
to be collected. If the audio is downloaded manually, the
workload and time cost are huge, and the downloaded audio
needs to have a matching tag file. It is impractical to create
tag files manually based on the annotation information given
on the web page, and the tag files are often faulty, which
affects the performance of the model. Therefore, in this
paper, crawler technology is employed to obtain audio and
web page information and organize tag files in batch. In
addition, website labeling error text labels are not easy to
obtain, and the linux virtual servers (LVS) technique in the
deep web crawler system is used to obtain the label text by
combining the domain knowledge of error pronunciation.
This method greatly improves the efficiency compared to
manual methods.

This article uses python to simulate a user clicking on a
web page and getting the data returned by the server. Using
the get method of Python’s requests library generates a
requests object and a response object, and the requests object
encapsulates the client-side data and sends it to the server.

Other parameters such as handle and cookie can use the
method’s defaults. Requests are the return value of the get
method, meaning that the request sent by the get method gets
a response from the server, and the server passes the returned
resources encapsulated in the response object to the get
method. The get method in Python’s requests library is the
core tool for this article to get the English accent website.

3.3. MFCC Acoustic Feature Extraction. The purpose of
acoustic feature extraction is to reduce the dimensionality
of the raw data and to obtain more characterizing features.
In the field of speech signals, acoustic feature extraction is
the basis of subsequent research and an important factor in
ensuring the accuracy of the results. MFCC was developed
based on the use of human auditory models. It is by taking
advantage of this feature that MFCC is more stable than
linear-based prediction of cepstral coefficients and maintains
a good performance even when the signal-to-noise ratio is
reduced. In this paper, the MFCC extraction process is stud-
ied as follows.

Step1: Pre-emphasis framing. First, a high-pass filter is
used to pre-emphasize the signal, considering that audio sig-
nals are quasi-smooth signals. That is, when N samples are
taken as observation units, they remain relatively smooth
and static for a given time of about 15-20ms, and the time
length information of such N samples is the framing of the
audio signal. However, the frame size should not be too
small or too large, otherwise the spectrum distributed over
different time windows on the time axis cannot be obtained.
In order to make a smooth transition between frames,
instead of a large variation, an overlapping period is allowed
to accompany the frames, which is generally taken as one
third of the frame length. In this paper, the sampling fre-
quency of the speech signal is 16khz and the frame size is
512 samples, which corresponds to a frame duration of
512/16000∗1000= 32ms. The duration of the overlapping
area is 11ms.

Step2: Add windows and multiply each frame with a
Hamming window. Adding windows helps to minimize the
discontinuity of the frame signal. Even though the signal is
smoother and more stable, using the Hamming window to
smooth the signal can attenuate the partials and reduce the
spectral leakage in the subsequent fast Fourier transform
step (FFT). The window function used in this paper is.

M t, gð Þ = 1 − gð Þ − g × cos 2πt
T − 1

� �
, 0 ≤ t ≤ T − 1 ð5Þ

T is the number of frames. Different coefficients g will
have different Hamming windows. In the text, g is taken
as 0.46.

Step3: Fast Fourier Transform. In the time domain, the
transform of an audio signal generally does not show the
characteristics carried by the signal. The opposite is true for
the energy spectrum in the frequency domain, which can be
used to show different audio characteristics by the level of
energy in the frequency domain. In addition to multiplying
each frame by a Hamming window, a Fast Fourier Transform
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is performed on each frame, aiming to convert the time
domain signal to the frequency domain signal.

Step4: Mel scale conversion. The power spectrum of each
frame is multiplied by the Mel filter bank, which has m delta
bandpass filters. In this paper, m is taken as 20. The first fil-
ter is narrower, and as the frequency increases, the filter size
becomes wider. The use of triangular bandpass filters not
only smoothes the spectrum by removing harmonics, but
also reduces the complexity of the operation. The conversion
of Mel scale frequency to normal frequency is shown in
formula (6).

Mel fð Þ = 2595 × lg 1 +
f

700

� �
ð6Þ

Step5: Calculate the log spectrum energy. The logarith-
mic energy of the Mel spectrum obtained by the Mel filter
set above is taken to get the logarithmic spectrum. The log
spectrum improves the noise immunity of the extracted
features and the stability of the spectrum error.

Step6: Discrete cosine transform (DCT). The discrete
cosine transform is applied to the above logarithmic spectral
energy to find the 13th order MFCC coefficient.

Step7: Find the dynamic differential parameters. Since
the speech signal is continuous in the time domain, the
MFCC is extracted from the frame to reflect the static feature
information contained in this frame. By differencing the 13-
dimensional static MFCC to increase the dimensionality of
the feature information in the front and back frames, the
dynamic and static features are combined to make the
features better reflect the speech continuity. In this paper,
the 13-dimensional first-order difference of the 13-
dimensional MFCC and the 13-dimensional second-order
difference of the 13-dimensional MFCC are used as the
input feature vectors of the model.

3.4. Data Pre-Processing. The collected speech data were
separated into phonemes, extracted acoustic features and
processed into a feature dataset, and then divided into 7
groups based on manual annotation by phonetic experts.

These represent seven types of pronunciation, namely
correct, raising, lowing, fronting, backing, lengthing and
shorting, the last six of which represent different types of
errors. During the study, it was found that most of the
learners’ pronunciation errors were concentrated in a few
common error types, and the sample size of the common
error types was large, while some error types were only
present in a small number of learners’ pronunciations. The
sample sizes of not all pronunciation error types remained
balanced, but were normally distributed.

Since the sample data of fronting, backing and lengthing
error types were small, three types of error types, namely,
raising, lowing, and shorting, were selected for the experi-
ment. Each type of error sample contains 32000 training
samples. In addition, 32000 samples with standard pronun-
ciation were selected, and all samples were divided into
training and test sets, with three-fourths of the training data
set consisting of 24000 samples per set and the remaining
one-fourth of the test set consisting of 8000 samples per
set. The model was regrouped in the cross-validation session
and repeated four times to cross-validate the model.

The data set is normalized separately using the linear
function conversion normalization method. The purpose of
normalization is to restrict the automatic pronunciation
error detection feature data to a certain range and to reduce
the variability of the data by reducing the dispersion of the
automatic pronunciation error detection feature data, so that
the fluctuation of the data is limited to a certain range. The
normalization operation has no effect on the original distri-
bution of the data. The linear function conversion normali-
zation is shown in Formula (7).

h = g − gmin
gmax − gmin

ð7Þ

where g is the MFCC feature value before normalization. h is
the MFCC feature value after normalization. gmin is the
minimum value among the MFCC features. gmax is the
maximum value among the MFCC features.

Table 1: Types of consonant errors.

Error type Specific description

Non_aspiration
Clear consonants such as “p”, “k”, and “p” appear at the beginning of words and lack the process of airflow

when pronouncing them.

Final_ devoicing
The vocal folds do not vibrate when the turbid consonants are pronounced, resulting in incorrect clearing

of the turbid consonants

Interdental fricative to_stop Friction sounds are pronounced as bursting sounds

Interdental_fricative to labial
fricative

Interdental friction develops into interlipolar friction

Interdental fricative to alveolar
fricative

Interdental friction develops into gingival friction

Stop to fricative Blast sounds are pronounced incorrectly as fricatives

R_to_trill The curly tongue “r” has a vibrato

W_to_labial_fricative The “w” creates a friction between the lips

H_to_velar-fricative “h” produces soft palate friction
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3.5. Improving Random Forest Algorithms. GAN is a genera-
tive model that uses an adversarial approach to learn the
distribution of real samples. The model can generate new
samples with high quality without pre-modeling. In the pro-
cess of pronunciation detection, the data set used for detec-
tion is unbalanced due to the small amount of anomalous
data in certain classes, thus, this paper uses GAN to generate
a few classes of training samples to reduce the impact of
unbalanced training samples on detection accuracy.

SDAE is a deep learning method that contains input
layers, N implicit layers and output layers. SDAE takes
DAE as the basic unit and stacks them sequentially layer
by layer to form a deep network structure, which has deep
feature extraction ability and enhances the generalization
ability of the model by using the noise reduction property
of DAE. SDAE can downscale the high-dimensional data
to the maximum extent possible to get the most characteris-
tic data and get the reconstructed the original data can be
more easily learned by random forest.

Considering the characteristics of data with high
dimensionality and imbalance, we combine the advantages
of GAN and SDAE to improve the classification accuracy
of the random forest algorithm by addressing the short-
comings of the traditional random forest algorithm to the
pronounced data. After using GAN to generate minority
samples, we combine the generated minority samples and
the original dataset to form a new dataset, which is then
sampled by the Bagging algorithm to produce multiple sub-
sets with a balanced sample distribution. Each subset is

then feature-dimensioned using SDAE. Each reduced-
dimensional data sample corresponds to each decision tree
and is trained. In the detection phase, the GAN-SDAE-RF-
based English pronunciation detection model is constructed
by combining the classification results of each decision tree
for voting and finally pooling all the decision trees to form
a forest and derive the classification results. The overall
framework is shown in Figure 1.

3.5.1. Minority Class Training Data Expansion. Data genera-
tion for fewer pronunciation types in the training data using
GAN generation adversarial networks is performed by intra-
category expansion in the following steps.

Step 1 Firstly, multiple real data sets including few wrong
pronunciation types are separated separately.

Step 2 The 128 data is converted into a 12× 12 matrix
vector according to the GAN model input format, with the
remaining 16dimension0 complemented.

Step 3 Given a 144-dimensional noise s with values in
the range [-1, 1] of the generated model, the generated fake
data is mixed with the separated real data and the discrimi-
nator is trained.

Step 4 The discriminative model is trained according to
the set number of iterations until the discriminative result
is optimal. At this point, the parameters of the discriminant
model are fixed and the discriminant results are fed back to
the generation model.

Step 5 The training iterations of the generative model are
performed according to the set number of iterations until the

Training dataset

English
pronunciation data

Detecting dataset

Data preprocessing Normalized processing

GAN for data expansion Balanced processing

Split into multiple data subsets

Use the bagging algorithm

SDAE for feature extraction Dimensionality
reduction processing

Training each subset of data

Random forest optimization

Optimized random forest model

Detection of classification results

Figure 1: Framework of English pronunciation detection model based on GAN-SDAE-RF.
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worst discriminative result is obtained. At this point, the
parameters of the generative model are fixed and the process
is iterated until the GAN model is balanced.

Step 6 The generated minority class data are supple-
mented with the original data as expanded samples, and the
expanded samples are reorganized into 144-dimensional fea-
tures, and the front-dimensional128 data are taken as the
expanded samples to obtain a balanced training dataset.

3.5.2. SDAE Training Process. The expanded data is sub-
jected to feature extraction using SDAE. The training pro-
cess is.

Step 1 Construct the first DAE. set each rule θy : i1, i2,
⋯, it is the hidden layer neuron of the object network, and
i1, i2,⋯, it is the set of input layer neurons.

Step 2 Determine the connection weights Mθy between
θy and i1, i2,⋯, it . When the input neuron corresponds to
the activation element in the rule, then M=1, otherwise
M= -1. The remaining weights that have little relationship
with θy are set to smaller random values. The neuron bias
is set to a random value.

Step 3 Train the network using the back propagation
algorithm and update the connection weights.

Step 4 Repeat steps 1~ 3 for each DAE until all DAEs are
trained.

3.5.3. Random Forest Generation Process. The GAN model,
SDAE feature extraction and random forest algorithm are
constructed to parallelize the design. As shown in Figure 2,
the whole parallelized design idea is as follows.

Step 1 The dataset captured on the network is first
numerically and normalized, and then the GAN model is
expanded with a minority class sample from the minority
class sample.

Step 2 The few class samples generated by the GAN
model with the original data samples are integrated to obtain
a new and balanced dataset, which is randomly sampled by
the Bagging algorithm to produce several equally distributed
subsets of data.

Step 3 Each data subset is subjected to feature extraction
by SDAE to obtain the reconstructed new data subset.

Step 4 Each data subset is trained with the corresponding
decision tree model according to the decision tree generation
method.

Step 5 All the decision trees are aggregated to form an
improved forest.

4. Experimental Data Analysis

In order to validate the deep learning-based intrusion detec-
tion model in this paper. The experimental environment
configuration of this paper is listed as Table 2.

4.1. Parameter Setting. The initial parameters of the GAN
include batch-size set to 50, epoch set to 100. learning rate
set to 0.0002. Relu function is selected as the activation
function of the model. Adam optimizer is utilized. The final
generator loss and discriminator loss variation curves are
shown in Figure 3. From the figure, it can be seen that the

generator and discriminator losses start to converge when
the training times reach about 5500.

The SDAE is a deep learning model whose initial param-
eters are weights obtained by minimizing the reconstruction
errors of the original and reconstructed data through layer-
by-layer greedy training. The cross-entropy of the initial
parameters is fine-tuned by the BP algorithm to ensure the
minimum reconstruction error to obtain the optimal result.
The number of nodes in the input layer is consistent with
the eigenvalues of the numerically processed data, which is
set to 122. The highest accuracy is obtained by comparing
different SDAE network structures, which is 122-100 for
DAE1, 100-60 for DAE2, 60-30 for DAE3, and 30-5 for
DAE4. The batch-size is set to 64 while epoch is set to

Original imbalance dataset

Original minority class sample

GAN

Generate few class samplesOriginal dataset

New dataset

SDAE feature extraction

Extraction

Input

Output

Subset 1 . . . Subset N 

Decision
tree 1 . . . Decision

tree N

Trees

Figure 2: New Random Forest Generation.

Table 2: Configuration of experimental environment.

Experimental environment Environment configuration

Deep learning framework Keras+ Tensorflow

The operating system Windows 10

Graphics card NVIDIA GTX960

CPU Intel i5-6300HQ

Memory 12G
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3000. After several experiments, the mean square error is
chosen as the criterion of reconstruction error, and the
MSE stabilizes after 5 training sessions. The number of
training times for each layer of DAE and SDAE model is
set to 10. The influence of noise ratio on the accuracy is
analyzed by experiment. The accuracy of the noise ratio is
highest in the interval of [0.2, 0.6], and the mean value is
selected by combining the results of multiple experiments,
so this setting is 0.4.

The categorical_crossentropy is selected as the loss func-
tion, which is specifically used for the multi-categorization
problem, and the bach_size is set to 64 and epoch to 10.
The model is trained by back propagation using the Adam
optimization algorithm.

Through simulation experiments, the overall random
forest model performance is synthesized, as shown in
Figure 4. The final forest size chosen by the algorithm is

550 trees, with the deepest decision tree 12 and weights of
1、3、1、5、3.5, respectively.

4.2. Analysis of Experimental Results. For decision tree
generation algorithms, there are different feature selection
measures, such as ID3, C4.5 and CART, etc. In the academic
research on decision tree algorithms, there is no definite
statement on how to select a decision tree algorithm, there-
fore, this paper selects the optimal decision tree algorithm
via experimental method. The ID3, C4.5 and CART decision
tree algorithms are compared in test set validation for classi-
fication error detection accuracy and algorithm performance
(training time) in cross-validation. The results are show-
cased in Table 3.

C4.5 Decision tree algorithm has the highest classifica-
tion error detection accuracy. For the phoneme elongation
class of pronunciation errors, there is little difference in the
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Figure 3: Loss curves for generators and discriminator.
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classification error detection accuracy between the CART
and ID3 algorithms. For the test set errors, the best perfor-
mance was achieved by the C4.5 decision tree algorithm.
There was no significant difference in the classification accu-
racy for the three types of pronunciation errors, which was
stable between 81% and 87% in each test.

Experimental verification of the error detection perfor-
mance of the system in English consonants and English
vowels is shown in Table 4.

In this paper, the error detection and correction perfor-
mance of the English pronunciation system for English
vowels is significantly higher than that for consonants. The
error detection rate of the system for vowels is 84.11%,
which is 7.74% higher than that of the system for conso-
nants. The reasons for the higher error detection and correc-
tion performance of the system for vowels than for
consonants are: Firstly, the pronunciation characteristics of
vowels are relatively homogeneous compared with those of
consonants, which mainly depend on the position of the
tongue in the oral cavity. Besides, the vocal folds, some
organs of the oral cavity and the tongue are all involved in
the articulation of consonants. Secondly, vowel error types
are more comprehensively labeled.

5. Conclusion

An English pronunciation detection system based on
improved random forest is proposed in the paper. Firstly,
the process of forced alignment and acoustic feature extrac-
tion in data acquisition is explained step by step. Then the
corpus applyed in this paper is constructed and acoustic
feature extraction of MFCC is performed. Additionally, the
random forest algorithm based on GAN-SDAE-RF is
designed, and the algorithm selection of English pronuncia-
tion error detection system based on improved random
forest is described in detail. Finally, the results of model
validation from the test set are analyzed to compare the
effect of pronunciation error detection in this paper and
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Figure 4: Forest size and algorithm performance impact graph.

Table 3: Comparison of the accuracy and performance of the three algorithms.

Category Performance Riseing Lowing Shorting

ID3
Accuracy (%) 75.6 78.6 82.1

Test set error (%) 5.6 6.5 4.5

C4.5
Accuracy (%) 86.7 81.6 82.6

Test set error (%) 5.1 4.3 3.9

CART
Accuracy (%) 85.1 79.6 82.5

Test set error (%) 7.9 7.52 6.95

Table 4: Comparison of performance on vowels and consonants.

Type Precision Recall
F-

value

Error
detection
accuracy

Error
correction
accuracy

Consonants 82.17% 82.78% 76.37% 76.37% 61.15%

Vowels 89.72% 86.48% 84.11% 84.11% 75.87%
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the comparison between various pronunciation error types.
The accuracy and performance of three decision tree algo-
rithms to construct a random forest are also compared
and analyzed. The feasibility of the English pronunciation
detection system based on the improved random forest is
verified from various perspectives. The next step is to
further study the English pronunciation error detection
system and improve the performance of the system for
real-time applications.
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