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Electric buses have a significant penetration rate and high charging frequency and amount. Therefore, their charging load has a
momentous influence on the power grid’s operation and dispatch. There are important theoretical and practical reasons to study
electric bus charging load prediction; however, the intermittent and random charging behavior of buses makes it more difficult to
predict charging load predictions, particularly, in real time. To accomplish this, in this paper a WNN (wavelet neural network)-
based dynamic load prediction model for charging electric buses is suggested. We start by using distance and shape to group the
charging load curve which, in fact, is done with spectral clustering. As a second step, we take into account a wide range of charging
load-affecting variables such as temperature and time of day, in order to better train the WNN. Moreover, the charge loads for
each cluster are predicted based on model parameters; subsequently, the forecast day’s total charging load is then calculated by
summing the prediction results for each cluster; finally, the proposed method is validated using a real city data set. In our empirical
evaluation, it has been found that, under various indicators, the proposed method’s ability to precisely forecast the charging load of
electric vehicles has significantly improved. In fact, this allows for better guidance of charging user, planning, and expanding the

power grid in consideration of electric vehicle charging loads.

1. Introduction

The USA, the European Union, and the Republic of China all
plan to achieve carbon neutrality goals by 2050, indicating
that the energy system’s transformation and reform are
imminent. It has become critical to the transformation of the
energy system to rapidly advance the development of electric
vehicles and the efficiency with which those vehicles use
energy [1, 2]. In light of the widespread adoption of electric
vehicles, the planning and operation of the energy system
will face new challenges. There is a lot of interest in dis-
patched energy systems and related topics from both do-
mestic and international researchers [3-5].

As smart grids and intelligent transportation networks
come together, the development, application, and research
of electric vehicles and their charging infrastructure have all
been moving forward at breakneck speed in recent years [6].
A large number of public transportation vehicles are being

used in the promotion and application of transportation
electrification, including buses. Electric buses have a sig-
nificant penetration rate and high charging frequency and
amount, so their charging load has a momentous influence
over the power grid’s operation, management, and dispatch.
Consequently, the study of electric bus charging load pre-
diction is of great theoretical and practical importance.
Buses, on the other hand, depart at set times each day and
only stay for a short period of time. As a result, it is more
difficult to predict the charging load over time due to the
intermittent and random charging behavior of buses [7, 8].

There are a wide range of traditional methods for pre-
dicting power loads. New load types, such as distributed
generation and electric vehicles, have posed significant
challenges to traditional methods of load forecasting because
of the widespread availability of these new load types. The
distribution of EV (electric vehicle) charging load time is
different from the law of electric load because of the
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characteristics of different charging methods, travel rules,
charging efliciency, charging frequency, etc. As a result, the
EV charging load is subject to a greater degree of ran-
domness in time. This is due to a wide range of factors,
including weather, road conditions, and operating status [9].

Many AI (artificial intelligence) and learning-based
methods have recently been used to predict the amount of
electricity needed to charge an electric vehicle, such as
shallow networks and deep learning algorithms. A common
problem with traditional approaches established on shallow
networks is their inability to deal with both learning and
convergence at the same time. As an example, deep learning
(DL) can characterize complex functions with less param-
eters thanks to its excellent feature learning ability. In order
to predict EV charging load at multiple time scales, some
researchers proposed a new DL method utilizing an LSTM,
i.e., long short-term memory [9, 10]. The kernel principal
component analysis (PCA) and a noninferior sorting genetic
algorithm have been proposed as a way to optimize the
parameters of convolutional neural networks for EVs. Be-
sides these approaches, numerous methods for predicting
the short-term demand have been also suggested in the
literature. To predict electric vehicle charging loads, some
researchers used the LSTM network model, and experiments
have shown that LSTM forecasting is accurate and effective.
In addition, the charging load of electric buses is intermittent
and temporal because of the short interval between electric
buses. As an example, the LSTM neural network model can
be used to effectively solve the time scale problem of EV
charging and improve the accuracy in load prediction
[11-13].

Through comparing electric buses with electric taxis or
private cars, we find that their operating times and routes are
more predictable. However, depending on how frequently
and at what times they run, different routes of electric buses
are affected [14]. It is because of the characteristics that the
driving laws are quite different, which results in a large
difference in charging load. Current electric bus loading
forecasting methods focus on charging loads for individual
electric bus groups. A clustering algorithm can be used to
group EV users with similar characteristics into one cluster,
which can then be analyzed to better understand individual
differences in order to improve overall load forecasting
accuracy. Load clustering allows us to gain a better un-
derstanding of the electricity consumption patterns of in-
dividual customers by comparing trends and periodicities in
the load curve and by accurately measuring similarities in
the load’s shape and contour over time clustering.

Cluster analysis of user load has been the subject of
numerous studies in the last few years. Algorithms for
clustering data include the well-known and most widely
used K-means, DBSCAN, FCM, and spectral algorithms. To
perform a load curve clustering analysis, some researchers
have proposed an improved variant of the K-means algo-
rithm that incorporates agglomerative hierarchical cluster-
ing [15]. Additionally, some researchers have employed
spectral clustering to categorize the load curves in massive
data sets using information direct segmental aggregation
approximation. In fact, the spectral clustering has
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advantages in data dimensionality reduction, load classifi-
cation effectiveness, stability, and computational complex-
ity. Most current clustering methods, on the other hand, rely
solely on distance to determine how similar two curves are
[16-18].

This paper uses a spectral clustering algorithm based on
distance and morphological similarity measures to address
the aforementioned issues, and it takes into account the
unique characteristics of electric buses when clustering the
information. In addition, EV charging load has time series
characteristics such as trend and periodicity, as is typical for
time series data. Spectral clustering and a WNN are used in
this paper to develop a charging load prediction method for
electric buses. The foremost and most important contri-
butions of the research conducted in paper could be
shortened as follows.

(i) A WNN-based dynamic load prediction model for
charging electric buses is suggested.

(ii) By using distance and shape to group the charging
load curve, a particular spectral clustering approach
is presented.

(iii) We take into account a wide range of charging load-
affecting variables such as temperature and time of
day in order to better train the WNN.

(iv) Finally, charge loads for each cluster are predicted
based on model parameters, and the forecast day’s
total charging load is then calculated by summing
the prediction results for each cluster.

The rest of the paper is arranged as follows. In Section 2,
state-of-the-art related work is discussed. The methodology
of the research is presented in Section 3. This section also
discusses the proposed method in detail. In Section 4, we
deliberate experimental settings, parameters, and the
attained outcomes. Lastly, we conclude this paper in Section
5 and also deliberate several directions for future
consideration.

2. Related Work

As a result of the double carbon target and the related
strategic layout, it is becoming increasingly challenging for
the distribution network to keep up with the rapid growth
and disorderly charging of electric vehicles [1, 3-5]. This is
because of the double carbon target. When electric vehicles
are allowed to connect to the power grid, there is a risk that
the local distribution network will become overloaded, there
will be a decline in the power’s quality, and there will be a
decline in the economy of the grid. It is possible to reduce the
negative effects of EV charging on the distribution grid while
also creating significant economic and social benefits if new
technology can be used to charge electric vehicles in an
orderly manner. This is made possible by the fact that electric
vehicles can be charged on demand [6, 8].

Therefore, an accurate EV charging load prediction is
essential for assessing the impact of disorderly charging on
the distribution network, formulating distribution network
power planning, and implementing an orderly charging
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control Xiao strategy. These three processes are all related to
implementing an orderly charging control Xiao strategy [9].
It is important to collect basic load data from a variety of
locations, including neighborhoods, office buildings, and
commercial areas, as well as massive travel data from users
and data on the demand for charging electric vehicles.
Because people, vehicles, roads, and piles all affect the
charging load of electric vehicles, it is also important to
collect data on the demand for charging electric vehicles.
Because there are so many different data categories and
information dimensions [11], it is possible to derive a variety
of widely used methods for predicting the amount of load
that will be generated when charging an electric vehicle.

Because electric vehicles are mobile loads, each one’s
charging characteristics are unique. The charging behavior
of each vehicle is difficult to analyze and accurately model.
Research approaches for electric vehicle (EV) charging load
are currently separated into three different groupings: (i)
behavior analysis, (ii) simulation, and (iii) data analysis
[8, 13, 14]. The vehicle travel patterns can be analyzed using
Markov chains and other models, such as traffic travel
matrices, to build models that reflect the travel patterns of
vehicles in a specific area and time period. The Monte Carlo
simulation and hypercube sampling algorithms are used in
simulation analysis [15]. Create a probability model for the
charging load of electric vehicles. Analysis of historical data
is accomplished by applying statistical methods, machine
learning, and cloud computing. For example, some aca-
demics have used survey data to estimate the probability
distribution of EV charging behavior and then developed an
EV charging load model, realizing that the enormous and
difficult-to-explain EV charging load can be broken down
into an EV charging load probability model with multiple
types. A multi-objective optimization model of the charging
network is built using the Monte Carlo simulation tech-
nique, which simulates the EV charging load and incor-
porates the random characteristics of the EV charging load.
A power supply imbalance can occur when models of EV
charging load are limited to just time series or space, as
discussed above [16, 17]. But these models do not account
for the full spatiotemporal characteristics of EV charging
load. As a result, the distribution network must take into
account the EV charging load and duality of space and time.
To better understand the impact on network reliability, some
researchers have constructed a spatiotemporal model of the
EV charging load in the full trajectory space. It is important
to take into account the spatiotemporal characteristics of EV
charging loads when developing an integrated energy system
plan [18].

Some researchers have developed a real-time dynamic
path stochastic simulation based on travel chains and
Markov decision processes [13]. This simulation helps re-
searchers circumvent the issue of having to charge electric
vehicles at fixed locations at the same time and more ac-
curately reflects the stochastic nature of the spatial move-
ment of electric vehicles in real time. Other researchers
categorize the travel space according to the purpose of the
activity, and then they use the travel chain and the Markov
primary state transfer matrix to obtain the characteristics of

the vehicle’s spatial movement [19]. This allows them to
determine the spatiotemporal distribution characteristics of
the charging load. The abovementioned literature is able to
determine how various factors affect the charging load by
simulating a user’s travel demand and analyzing the results.
On the other hand, due to the randomness and complexity of
the model, it is difficult to predict [20]. A number of re-
searchers have proposed a model for the prediction of
charging demand. This model takes into account the road
topology and travel speed in the area surrounding the
charging station. Additionally, this model supplies param-
eter values for the queuing theory model by employing a
dynamic traffic flow model as an additional type of prob-
abilistic analysis method [7, 14, 21]. Furthermore, methods
comparable to these are, albeit, able to take into consider-
ation the spatial distribution features of charging load and,
subsequently, can show a significant part in the design,
production, and process of charging stations; however, they
have some limitations in manipulating the complete
charging load of the system and need to be studied further to
overcome these limitations.

The station network configuration layout of integrated
energy systems is currently being researched in both the
USA and other countries, and it can be roughly divided into
two categories. One of these categories is known as a hybrid
configuration, and the other is known as a distributed
configuration [22]. The first thing that needs to be done is
to optimize the equipment selection and capacity of the
pipe network layout in the station’s energy supply area
based on the configuration of the station’s energy supply
area. Second, it is necessary to simultaneously optimize the
capacity selection or network layout of each station in
addition to the energy supply station and its supply range in
the planned area. The first approach takes into consider-
ation only the planning of the supply side because, in
today’s world, energy supply and demand scenarios are
becoming increasingly complex and diverse. These are the
kinds of investigations that fall under the rubric of related
studies, and their objectives include not only optimizing
the lower-layer structure of a number of energy hubs but
also planning the upper-layer expansion of the energy
network. Others suggest a two-layer method for optimizing
the configuration of the distribution network in order to
cut down on the daily operating costs as well as the total
cost of multiple optical storage. The concept of a smart
integrated energy system has been floated by a number of
scholars in the academic community. This system creates
an optimization model for the location and sizing of
multiple integrated energy stations while taking into ac-
count traffic flown; however, it does not take pipeline
network optimization in the region into consideration.
Others investigate how to optimally plan the pipe network
according to the characteristics of the region’s load, but
they do not take into account how to optimally optimize
station selection and capacity within the region’s multiple
combined cooling, heating, and power systems. When
planning the energy station network, the literature cited
above takes into account load characteristics; however, EV
charging load is not one of those characteristics [13-15].



The ability to accurately forecast short-term electric load
has a momentous influence on both the dispatching and
planning of electric energy. Accurate load forecasts can help
grid dispatching units develop cost-effective and reasonable
dispatching plans, and they are also a successful manner to
increase the entire utilization and management of power
generation equipment and the grid’s reliable and safe op-
eration. In addition to this, accurate load forecasts can help
improve the grid’s reliability and safety. In the past few years,
load forecasting has seen an increase in the application of
both swarm intelligence algorithms and neural network
models. Several researchers came up with the idea of a fruit
fly optimization algorithm that was improved as well as a
generalized regression neural network. An enhanced
method for load forecasting has been developed through the
utilization of particle swarm algorithms and RBF neural
networks. The accuracy of a BP neural network prediction
model was improved with the help of a multi-island genetic
algorithm. A new wavelet network-optimized firefly algo-
rithm is a suggestion that has been made by a number of
researchers. The overall performance of all of the models
described above is superior to the performance of just one
model taken on its own [7, 17, 20].

3. Proposed Method

The conceptual framework for this paper’s dynamic load
prediction method for charging electric buses is depicted in
Figure 1. The charging load characteristics of an electric bus
are inextricably linked to the vehicle’s operating hours as
well as the routes that it takes. Following some basic data
preprocessing and cleaning, the charging loads are grouped
together into a cluster of electric buses with similar patterns
of electricity consumption. This is made possible by the fact
that the charging loads are clustered based on distance and
shape. WNN is utilized in the process of both group training
and charging load prediction. In conclusion, the total pre-
dicted charging load is obtained by adding up the predic-
tions that were produced by the various WNNGs.

The way in which electric buses are operated can have a
significant impact on the amount of load that is placed on
the various charging lines. If electric buses are grouped solely
according to route, then the daily load of each individual bus
will not be taken into account, and neither the load volume
nor the load curve trend will be able to provide a clearer
picture of the daily load. As a consequence of this, clustering
can be utilized to take into account the unique ways in which
different people carry out their tasks. Before the raw data can
be used for clustering, it must first go through the steps of
preprocessing and cleaning as outlined below.

Firstly, standardize the bus electric load data using

5 () = 210 = Ximin (1)

i,max — %, min

where x;(¢) is the load value of load curve i in time ¢, and
Xi min and x; .. are the minimum and maximum load

values of the load curve i, respectively. Then, we have the
load matrix Y which is given by
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FiGure 1: Framework of dynamic load forecasting method for
electric bus charging.

Y= : . (2)
Ym = Vur

where 7 is the amount of load curves, and we assume that
its value is predefined in this work. The spatial charac-
teristics of the charging load are, to a large extent, pre-
determined, as the working hours and driving routes of
buses, as well as the locations of charging stations, are
clearly defined. Due to the relatively short amount of time
that passes between electric bus departures, it is not pos-
sible to maintain continuous long-term charging, as shown
in Figure 2. As a direct consequence of this, the charging
load curve for electric buses exhibits characteristics of
being intermittent.

The spectral graph theory is the theoretical founda-
tion for another type of clustering algorithm called the
spectral clustering algorithm. By first constructing an
undirected weighted graph based on similarity, the
problem of clustering is converted into that of graph
partitioning. The weight of the connection that corre-
sponds to each piece of data that has been preprocessed
and cleaned is used by the algorithm to determine which
data point will serve as the vertex of the graph. If you are
going to divide the graph using graph theory, the best way
to do it is to maximize the similarity between subgraphs
and minimize the similarity between subgraphs. In other
words, you want to maximize the amount of overlap. The
spectral clustering algorithm is utilized to determine
distance and shape similarity, in addition to load curve
similarity, in order to classify the data. This allows for the
classification of load curves.

The distance between different load curves d;; is given
and can be estimated in

di; =Y (- y;®))- (3)

Similar to the load matrix, at this time we can obtain the
similarity matrix D using
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After obtaining the distance matrix, we also need ad-
ditional indicators to describe the difference between dif-
ferent load curves. In this paper, the gray correlation
coefficient is used to describe the similarity of different load
curves. The gray correlation coefficient is illustrated math-
ematically as given in

iy 30,0+ a1, 93,

- |yi(t) —yj(t)l + ocmaxij'yi(t) _y]’(t)l O

ij

where « is the resolution factor. The calculation method of
the degree of correlation is as follows:

o % (7)
Then, we can get the similarity matrix C using
€11 "t Cin
C=|: "~ i} (8)
c e

Then, we can run spectral clustering to get classification
results.

The genetic algorithm (GA) is an evolutionary technique
that determines the optimal parameter assignment for
complex calculations by using the genetic and evolutionary
properties of natural organisms. This method is named after
the computer program that uses this approach, which is called
a genetic computer. The GA is a form of random algorithm, in
its most basic form. It starts with a population in a set of
representative problems that already have solutions and then
performs constant evolution in accordance with the evolution
mode of the language and the fitness function of the pro-
portion. It is possible to determine, through the processes of

GA evolution and mutation crossover, which parameters
from a global pool of parameters produce the best results. The
fitness function for this paper is as follows in

. 1
Fit = 5 )
where E is the loss function of the WNN model. This should
be noted that when used with a wavelet neural network, the
GA improves the speed and accuracy of finding the optimal
starting point for the network. This should be noted that the
WNN model contains (a) an input layer, (b) a hidden layer,
and (c) an output layer. The basic organization of the WNN
model is shown in Figure 3.
The wavelet neuron can be articulated mathematically as
given in

w(x) = cos(1.75x)exp(—0.5x2). (10)

The output of the hidden layer A; is expressed in

h, :hi(M) (11)

a;

The output of the output layer is mathematically
expressed in

z(m) = ) w,,h(i). (12)

Lastly, the predicted value is characterized by E and is
estimated using

E=)(3(m) - y(m). (13)

In conclusion, the methodology of this paper is sys-
tematized into the succeeding three contiguous sections:

(1) The first concern is the management of data. The data
that were acquired are subsequently evaluated and
subjected to correlation analysis. Following the re-
moval of factors that did not exhibit a significant
correlation with the data on energy consumption,
multiple linear regression is carried out on the
factors that continue to have an effect, and the data
are then split into a training set and a test set.

(2) The second strategy is called GA optimization, and it
involves adding the training set and test set to the GA
for training, encoding the initial value, setting the
fitness function, and then carrying out operations
such as selection and crossover mutation, after
selecting appropriate network weights and scaling
translation scale values. After this, the original value
should be replaced in WNN.

(3) At long last, the conclusion of the WNN prediction
model is presented. After determining the optimal
weights and scaling translation scale values, the next
step is to determine whether or not the training
process should be stopped based on the maximum
number of network model training iterations and the
convergence error of the training network. This is
done after obtaining the optimal weights. After
running the simulation, the results are obtained.
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4. Experiments and Results

In the data set that was released in February 2022, and which
was used for this investigation, there are a total of 85 electric
bus numbers, as well as, other important information of EVs,
for instance, transaction volume, charging start time,
charging end time, and electric bus numbers. In February
2022, the Meteorological Data Network will be capable of
providing complete day-to-day weather data while also
taking into account the effects of climate change. The as-
sumption is made that the weather will continue to be the
same for the full twenty-four hours; consequently, the
charging loads are counted every sixty minutes.

The data from 85 different electric buses’ daily charging
loads are selected and then clustered using spectral analysis
in this paper. The data cover a period of 31 days. SC and DBI
are the indicators that are being used for the evaluation, and
Figure 4 illustrates the change curve. Figure 4 demonstrates
that when K is equal to 8, both the SC index and the DBI
index have reached their ideal values. These values are shown
to be optimal in the figure. In light of this, the ultimate
number of clusters decided upon was eight.

As a result of the cluster analysis performed in the
second section, a total of eight distinct clusters of charging
load curve classification are obtained, with each cluster
containing a unique set of line vehicles and charging load
curves originating from a distinct range of dates. The actual
value of the charging load that is taking place in each cluster
at the given date and time is accumulated as the input of each
WNN for the purpose of load training and prediction. A
ratio of 8:2 is maintained between the training set and the
test set for every data type.

As can be seen in Figures 5-7, predictions are made for
the first three classes in order to determine how well our
method performs in terms of its ability to make predictions.
Although it is obvious that the EV charging loads of various
classes vary considerably from one another, the daily load
distribution rules between classes are relatively consistent,
and the level of accuracy with which they can be predicted is
high.

Figure 8 illustrates how the loss value shifts during class 3
training as the amount of time spent in the training phase
increases. The example used here is class 3. The data
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presented in the figure demonstrate that the training of the
model can converge steadily and has a significant predictive
effect.

The process of recharging electric vehicles has a sig-
nificant impact on the distribution network in two different
ways:

(1) The first effect is the immediate one that is caused by
centralized charging. An electric vehicle is a piece of
electrical equipment that has a high power output
and a nonlinear load. A temporary voltage drop that
is greater than the norm may occur if a large number
of electric vehicles are charged at the same time by
the same charging station. If only one phase of the
grid’s power is used for AC charging, an imbalance
in all three phases of the grid’s power will result.
From this point of view, optimizing the charging
load curve in such a way that the user’s charging time
is spread out and the charging load is constant over
time can help alleviate the power quality issue that is
caused by the charging of electric vehicles on the
power grid.

(2) The second step is to expand the capacity of the
distribution network so that it can carry a greater
load. The total load that is placed on the distribution
network is equal to the addition of the charging load
to the load that is considered to be conventional.
Charging electric vehicles in a disorganized manner
raises the total amount of electricity consumed and
widens the power gap between the peak and the
valley. In the worst-case scenario, transmission
congestion will occur because of the superposition of
the charging load curve and the conventional load
curve if the two curves have complementary shapes.
As the total load curve flattens out, there will be an
increase in the percentage of time that distribution
network equipment is put to use.

5. Conclusions and Future Work

The electric buses have a significant penetration rate, as
well as, a high charging frequency and amount; therefore,
the charging load that they produce has a momentous
impact over the operation, management, and dispatch of
the power grid. Despite the fact that the intermittent and
random charging behavior of buses makes it more difficult
to predict charging load predictions in real time, there are
important theoretical and practical reasons to study
electric bus charging load prediction. A WNN-based
dynamic load prediction model for charging electric buses
is being proposed as a means of achieving this goal. We
evaluated the proposed model by utilizing distance and
shape in order to group the charging load curve. Spectral
clustering is the method that is used to accomplish this. In
the second step, we trained the WNN, in a better way, by
taking into account a wide range of variables that affect the
charging load. These variables include temperature and
the time of day, for example. The charge loads for each
cluster are predicted based on the model parameters, the
forecast day’s total charging load was then calculated by
adding the prediction results for each cluster, and finally,
the proposed method was validated utilizing actual data
from the city.

The ability of the proposed method to precisely and
exactly forecast the charging load of electric vehicles has
been found to have improved under a variety of indicators.
This allows for better guidance for charging users as well as
for planning and expanding the power grid in consideration
of electric vehicle charging loads. In the future, we will focus
on how to apply deep clustering and deep neural network-
related technologies to electric bus power loads. Moreover,
we will also investigate that how deep learning methods
along with the attention mechanisms can be used to improve
the forecasting accuracy. We can also use the proposed
method to predict the traffic flow which is also a related
research field, and we intend to use the prediction method
for similar purposes. The data gathered from the EV's can be
huge, and this would also be essential to reduce its size
through integrating a data aggregation approach. We plan to
integrate a data reduction mechanism and use the edge
model to improve the performance of the system. When



complete day-to-day weather data are available, then we will
also take this into account to study the effects of climate
change.

Data Availability

The data used to support the findings of this study can be
obtained from the corresponding author upon request.
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