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We propose a zero-day intrusion detection and response system (ZDRS) for responding to network security blind spots. An
existing detection and response system for the analysis of zero-day attacks uses a full-packet storage method; thus, the longer
the time required to recognize a zero-day attack, the higher is the packet storage capacity and inspection cost. To solve the
storage capacity and inspection cost problems, we design an architecture for ZDRS for a retroactive security check (RSC) using
a first-N packet storage method. For fast verification of the RSC result, we propose a drill-down session metadata searching
algorithm using session and flow metadata. The ZDRS comprises a network processing unit and a security processing unit.
The ZDRS network processing unit generates metadata for the RSC verification and efficiently stores packets using the first-N
packet storage method. The ZDRS security processing unit performs the RSC and RSC verification using the drill-down session
metadata searching algorithm. For ZDRS performance analysis, we implemented ZDRS and analyzed the storage efficiency,
detection efficiency, and detection speed of ZDRS at the campus level. As a performance analysis result of implementation, the
amount of data storage decreased from 3.4 terabyte to 62 gigabyte compared to the full-packet storage method by 1.82%, and
storage efficiency increased by 54.84 times. Furthermore, the detection rate of 99.55% based on the first 5-kilobyte size
compared to the full-packet storage method was confirmed.

1. Introduction

Information and communication technology (ICT) has been
rapidly developing into new network types such as digital
twin (DT), Internet of Things (IoT), cloud computing, and
vehicle networks. The appearance of new networks and tech-
nologies creates new applications and increases network
traffic. With developments in ICT, new security require-
ments are required, and new types of attacks have also
increased. However, the response to new and unknown net-

work attacks has no choice but to react reactively [1–8].
Keeping up with hackers’ efforts for attacks that mimic

normal behavior is difficult. There is no perceptible manner
to prevent hackers from attacking blind spots before the
security detection rule is implemented. Therefore, to
respond to such blind spots, a general procedure for recog-
nizing, analyzing, and responding to hacker attacks, creating
rules, and applying rules is necessary [9]. However, the
application of the new detection rule only responds to
attacks after that point in time, and checking for the attacks
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previously received is not possible. For example, for an
attack that leaks user information, analyzing which user
information has been leaked is necessary in order to prepare
future countermeasures. Therefore, analyzing the data from
the point of attack until the detection rule is applied is
necessary.

As mentioned above, a zero-day attack refers to an attack
that occurs during the time from the creation of a new/var-
iant security threat until the detection technology for blind
spots is provided. When a new security threat occurs, it takes
physical time for a new security rule or technology to be rec-
ognized and dealt with. This time is called the zero-day
attack period, and a method that can quickly and efficiently
detect and analyze attacks during the zero-day attack period
is required.

Several studies have been conducted to counter zero-day
attacks. Most research on zero-day attacks has focused on
detecting security threats in the past. It can be classified into
provenance tracking methods [10], detection method for
software defined network (SDN) [11], signature-based
detection methods [12, 13], machine learning-based method
[14–16], anomaly detection methods [14–20], and
specification-based detection methods [20–23]. However,
the detection of a zero-day attack requires stored data during
the zero-day attack period.

The detection of the zero-day period is performed
through forensic analysis of all packets stored during the
zero-day period. It stores all incoming packets for a certain
period and performs forensic analysis on all stored packets
using the abovementioned detection method-related studies
[24–27].

For blind spots, inspection through forensic data analysis
requires storing all packets during the zero-day attack period
and subsequently checking and analyzing all packets. How-
ever, as the zero-day attack period increases, the storage
capacity and cost increase rapidly. In addition, the analysis
time increased.

Therefore, in this study, we classify and define blind
spots for zero-day attacks. We propose a zero-day intrusion
detection and response system (ZDRS) for coping with blind
spots that can be solved. The ZDRS solves the problem of
existing forensic storage by drastically reducing the storage
cost through the first-N packet storage method.

We propose a recheck solution for blind spots using a
system architecture for a regression security check, a meta-
data generation algorithm, and a metadata search algorithm.
We solve the problem of existing forensic storage by drasti-
cally reducing the storage cost through the first-N packet
storage method in the ZDRS. In addition, we analyze the
number of detections, detection rate, storage efficiency, and
detection speed through a campus-level implementation on
the ZDRS.

The main contributions of this paper are as follows:

(i) We classify and define the type of blind spot

Existing studies have considered the security blind spot
as one area without classification. However, we classified
them into three categories to respond to more precise secu-

rity blind spots. In particular, security blind spots were clas-
sified into three types: operational security blind spots,
temporal security blind spots, and unknown security blind
spots according to the timing of security responses. Existing
studies have tried to solve the unknown security blind spot.
However, we introduce the threats of operational security
blindness and time security blindness and present solutions
for resolving operational security blindness and security
blindness in time

(ii) We present solutions for resolving operational secu-
rity blind spots and time security blind spots

One problem of the solution to solve the operational
security blind spot and temporary blind spot is packet stor-
age issue. In existing researches, packets are inspected
through a forensic method, so all packets for a certain period
are required. However, the forensic method increases cost
for packet storage because the longer the period to be
inspected and the greater the flow of data, the more packets
need to be stored. To solve this problem, we design an archi-
tecture for the ZDRS using the first-N packet storage
method. Moreover, we propose the RSC method using the
RSC algorithm for intrusion detection in a zero-day period
and propose a drill-down session metadata searching algo-
rithm and metadata generation method to support the cor-
rect verification of the RSC.

(iii) We verify the proposed ZDRS through implementa-
tion test

In real network environments where various protocols
coexist, implementation is performed in a campus network
to analyze the accuracy and efficiency of the ZDRS. In order
to test in the real network environment, it was approved by
Chungbuk National University, and we collected data at the
egress point of the Chungbuk National University network.
We also analyze the ZDRS test results based on the collected
data.

The remainder of this paper is organized as follows. We
review the related work in Section 2. We classified the blind
spots in Session 3. The ZDRS is introduced in Section 3.2.
We provide the implementation results of the ZDRS in Sec-
tion 4, , and the concluding statements are presented in Sec-
tion 5.

2. Related Work

In this section, we introduce research related to zero-day
intrusion detection as shown in Table 1, such as the prove-
nance tracking method, detection method of a software-
defined network, signature-based detection method, anom-
aly detection method, and specification-based detection
method.

Sun et al. proposed a provenance tracking method that is
a probabilistic approach and implemented a prototype sys-
tem ZePro for zero-day attack path identification. They used
Bayesian networks to identify the zero-day attack paths. To
capture the zero-day attack, a dependency graph called an
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object instance graph is first built as a supergraph by analyz-
ing system calls. To further reveal the zero-day attack paths
hidden in the supergraph, the system builds a Bayesian net-
work based on the instance graph [10].

Al-Rushdan et al. proposed a detection method designed
and implemented for SDN using a modified sandbox tool
called Cuckoo. The provenance tracking method is a proba-
bilistic approach that implements a prototype system ZePro
for zero-day attack path identification [11].

Hindy et al. and Bherde and Pund proposed a signature-
based detection method [12, 13].

Hindy et al. proposed an autoencoder implementation
for detecting zero-day attacks. CICIDS2017 and NSL-KDD
were used for the evaluation. Hindy et al.’s model benefits
greatly from autoencoder encoding–decoding capabili-
ties [12].

Bherde and Pund proposed a technique for detecting
zero-day attacks by using signature-based and knowledge-
based methods. This system is a combination of signature-
based and knowledge-based systems. [13].

Patidar and Khanderwal, Mirsky et al., and Bovenzi et al.
proposed machine learning-based detection method
[14–16]. In general, machine learning-based detection
methods are included in anomaly detection methods that
use machine learning as a method to find anomaly packets.

Patidar and Khanderwal proposed a solution based on
the detection of zero-day malware using machine learning
and artificial intelligence. They made an idea-level proposal,
and the performance of the proposed method has not veri-
fied [14].

Mirsky et al. introduce a kitsune and evaluate its perfor-
mance. The kitsune is a neural network-based network
intrusion detection system which has been designed to be
efficient and plug-and-play. It accomplishes this task by effi-
ciently tracking the behavior of all network channels,and by
employing ensemble of autoencoders for anomaly detection.
They discussed the framework’s online machine learning
process in detail and evaluated it in terms of detection and
runtime performance [15].

Bovenzi et al. proposed a hierarchical hybrid intrusion
detection (H2ID), a two-stage hierarchical network intru-
sion detection approach. The H2ID performs anomaly
detection via a novel lightweight solution based on a multi-
modal deep autoencoder and attack classification, using
soft-output classifiers. The attack classification can use any
machine/deep learning-based supervised classifier [16].

Patidar and Khanderwal, Mirsky et al., Bovenzi et al.,
Innab et al., Duessel et al., Aygun and Yavuz, and Bostani

and Sheikhan proposed an anomaly detection method
[14–20].

Innab et al. proposed a hybrid system between an
anomaly-based detection system and a honeypot to detect
a zero-day attack, consequently to integrate both approaches
in one hybrid model as enhanced solution of detecting the
zero-day attack that may occur in the system [17].

Duessel et al. proposed a detection method for zero-day
attacks using context-aware anomaly detection at the appli-
cation layer. They presented a new data representation,
called cn-grams, that allows to integrate syntactic and
sequential features of payloads in a unified feature space
and provides the basis for context-aware detection of net-
work intrusions. Also, they conducted experiments on both
text-based and binary application-layer protocols which
demonstrate superior accuracy on the detection of various
types of attacks over regular anomaly detection
methods [18].

Aygun and Yavuz proposed a network anomaly detec-
tion method with stochastically improved autoencoder-
based models, to detect zero-day attacks with high accuracy.
The key factor of their models is the threshold value which
was determined using a stochastic approach rather than
the approaches available in the current literature. Their
models were tested using the KDDTest+ dataset contained
in NSL-KDD, and their research achieved an accuracy of
88.28% and 88.65%, respectively [19].

Bostani and Sheikhan proposed a hybrid of anomaly-
based and specification-based IDS for Internet of Things
using unsupervised OPF based on the MapReduce
approach. Specifically, the specification-based intrusion
detection agents that are located in the router nodes ana-
lyze the behavior of their host nodes and send their local
results to the root node through normal data packets. In
addition, an anomaly-based intrusion detection agent that
is located in the root node employs the unsupervised
optimum-path forest algorithm for projecting clustering
models by using incoming data packets. In experimental
results, their method showed achieve true positive rate of
76.19% and false positive rate of 5.92% when both sink-
hole and selective-forwarding attacks were launched [20].

Bostani and Sheikhan, Siu and Panda, Althubaity et al.,
and Altaf and Majeed proposed a specification-based detec-
tion method [20–23].

Siu and Panda proposed a specification-based detection
method for attacks in a multiarea system. They described
the implementation of a three-area system model. Also, they
assessed the risk and devise several intrusion scenarios. Spe-
cifically, they injected false data into the frequency measure-
ment and Automatic Generation Control (AGC) signals.
And then, they developed a rule-based method to detect
anomalies at the system-level [21].

Althubaity et al. proposed a hybrid specification-based
intrusion detection system for rank attacks in 6TiSCH net-
works. Specifically, they proposed a hybrid specification-
based intrusion detection system (IDS) that consists of cen-
tralized and distributed modules installed on the sink and
RPL nodes, respectively, to prevent nodes from selecting an
intruder as their successors. This method also eliminates

Table 1: Classification of related work on zero-day attacks.

Category Reference

Provenance tracking method [10]

Detection architecture of a software-defined network [11]

Signature-based detection method [12, 13]

Machine learning-based detection method [14–16]

Anomaly detection method [14–20]

Specification-based detection method [21–23]
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intruders’ chances of becoming a time source and disrupts
the synchronization of 6TiSCH networks [22].

Altaf and Majeed proposed a specification-based intru-
sion detection model for OLSR. The specification-based
approach analyzed the protocol specification of an ad hoc
routing protocol to establish a finite-state-automata (FSA)
model that captures the correct behavior of nodes support-
ing the protocol. Then, this method extracted constraints
on the behavior of nodes from the FSA model. Thus, this
approach reduced the intrusion detection problem to moni-
toring the individual nodes for violation of the con-
straints [23].

These studies have been conducted to counter zero-day
attacks. Most research on zero-day attacks has been focused
on detecting security threats in the past. However, the detec-
tion of a zero-day attack requires stored data during the
zero-day attack period. There are no studies on how to store
zero-day data.

These studies used forensic analysis on all packets stored
during the zero-day period or perform for real-time detec-
tion. Consequently, as the zero-day attack period increases,
the storage capacity and cost increase rapidly. In addition,
the analysis time is increased. Also, these studies do not con-
sider how to store and retain data during the zero-day
period.

Therefore, we propose a ZDRS to cope with blind spots
that can be solved. The ZDRS solves the problem of existing
forensic storage by drastically reducing the storage cost
through the first-N packet storage method.

3. Zero-Day Intrusion Detection and Response
System (ZDRS)

In this section, we first classify and define the type of blind
spot. Subsequently, the architecture of the ZDRS is intro-
duced, which is based on a first-N packet storage method,
RSC algorithm, and drill-down metadata searching algo-
rithm. In addition, for metadata generation and packet stor-
age, the method of session metadata generation, first-N
packet storage method, RSC algorithm, and drill-down
searching algorithm are described.

3.1. Blind Spot. Figure 1 shows the blind spots of the net-
work security area. t1, t2, t3, and tx denote points of time
of event related to intrusion. Particularly, t1, t2, and t3 are
points of time where detection information is provided. tx
is the point of time where a new intrusion occurred with-
out it being recognized. This intrusion may not be a zero-
day intrusion. However, we consider for case of tx is a
zero-day intrusion.

t1 is the point of time that provided detection informa-
tion for any intrusion recognized before t1.

t2 is the point of time when detection information is pro-
vided regarding the intrusion of tx . It means that zero day
ends for the threat at tx.

t3 means the situation that detection information is not
provided yet for the intrusion of tx. It means that zero day
does not end for the threat at tx.

We classify security blind spots into three types: opera-
tional blind spots, temporal blind spots, and unknown blind
spots.

An operational blind spot is defined as a blind spot
that can detect an intrusion due to the presence of detec-
tion information; however, it was not recognized by
mistake.

In Figure 1, detection information was released at the
point of time t1 for any intrusion that occurred before t1,
but there is a delay for reflecting the new detection rule or
an operator’s mistake. In the operational blind spot, detec-
tion rules have already been provided, so confirming an
intrusion for stored past data is necessary. At this point of
time, the important thing is a time of stored past data. The
longer time is saved, the more data needs to be saved.

A temporal blind spot is defined as a blind spot where
the intrusion occurred in the past, but detectable informa-
tion is not recognized because that information is released
today.

In Figure 1, a new intrusion occurred in tx , but it was not
recognized. In t2, the detection rule for the intrusion was
provided. Therefore, performing inspection on past data
using the detection rule provided in t2 is necessary. As for
the temporal blind spot, the number of packets that need
to be inspected increases as the time increases when the
detection rule is delayed. Therefore, it is important how
quickly detection rules are provided and applied, or how
long period packets are stored for a zero-day attack period.

Unknown blind spots are defined as blind spots that
have not been recognized because intrusion has occurred
in the past, and detectable information has not yet been
identified. In Figure 1, it is a situation corresponding to t3,
indicating a situation wherein not only the release of detec-
tion rules but also the intrusion was not recognized. In other
words, because they do not even know that there was an
attack, they cannot respond to anything.

Extensive research is being conducted to solve blind
spots. However, most research on blind spots has been con-
ducted for unknown blind spots. The unknown blind spot is
an area that cannot be solved in the current system, which
has no choice but to reactively respond to unknown network
attacks. Therefore, research on unknown blind spots is being
used as an abnormal behavior-based method. To fundamen-
tally solve the unknown blind spot, studying a different
method from the current mechanism is necessary. Opera-
tional blind spots are not a technical research area related
to network attacks but rather a management tool research
area. A study on the temporal blind spot used forensic data
analysis to check packets during the zero-day period.

Most studies involving the blind spot are studies on the
detection method, as mentioned in Section 2. However, the
common problem with solutions is the storage space.

After recognition of the intrusion, a detection check
should be performed on the stored packet using a released
detection rule. However, as the time for intrusion recogni-
tion and provision of detection rules increases, the number
of stored packets increases, and it takes considerable time
to perform a check on the increased amount of data.
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In general, the method of performing detection and
checking for intrusion uses a forensic inspection method
that stores all packets and checks all packets [24–27].

However, to solve the common storage problem of blind
spots, we use the first-N packet storage method to reduce the
packet storage capacity while maintaining a certain level of
detection rate.

3.2. Architecture of ZDRS. The main purpose of the ZDRS is
to reduce the amount of packet storage and to perform and
verify fast RSC while maintaining a high detection rate in
detecting and responding to zero-day attacks.

Figure 2 shows the architecture of the ZDRS to achieve
the abovementioned purpose of the ZDRS. The ZDRS is
generally located at the edge between the local area network
(LAN) and the gateway.

The ZDRS is composed of a ZDRS network processing
unit and a ZDRS security processing unit.

The ZDRS network processing unit performs packet
capture, general packet processing, and flow and session
metadata generation. This creates metadata to be used for
RSC verification. In addition, it performs the operation of
a general network processing unit.

The ZDRS network processing unit is composed of the
following:

(i) Packet Capture Interface Module. It captures packets
in the network.

(ii) Packet-Processing Module. It performs conventional
packet processing.

(iii) ZDRS Flow Processing Module. It creates flow meta-
data of packets.

(iv) ZDRS Session Processing Module. It creates session
metadata of packets.

The ZDRS network processing unit is a software module
that operates in a host system in the case of a 1Gbps band-
width and operates in a separate hardware smart network
interface card (NIC) if the bandwidth is above 10Gbps.

For bandwidths of 10Gbps, because a large amount of
processor resources is required for packet capture, packet
processing, and storage, additional hardware smart NIC is

installed to satisfy the performance of the ZDRS network
processing unit.

The ZDRS security processing unit performs intrusion
detection and response to zero-day attacks that store
packets, performs RSC, and verifies the results of the RSC.

The ZDRS security processing unit is composed of
following:

(i) Storage Management Module. This module is used
to set the configuration of the first-N packet storage
method.

(ii) Retroactive Security Check Module. The RSC is per-
formed, and the RSC result is verified using the
drill-down session metadata searching algorithm.

(iii) External Interface Module. This module is used to
set a retroactive security check module and to con-
firm results from the outside.

(iv) Storage Device. It is conventional storage I/O device.

The ZDRS captures incoming packets and performs gen-
eral packet-processing procedures in the packet-processing
module. In addition, according to the configuration of the
first-N packet storage method set in the storage manage-
ment module, the flow metadata and session metadata are
created in the ZDRS flow processing module and the ZDRS
session processing module. Then, the packets are stored in
the storage device.

Thereafter, when a zero-day attack is recognized and a
detection rule is generated, the corresponding rule is
updated to the retroactive security check module by the
external interface module. The retroactive security check
module performs RSC for stored packets based on the
updated detection rule. Then, the retroactive security check
module verifies the RSC result using the drill-down session
metadata search algorithm based on session metadata and
flow metadata.

3.3. Metadata Generation and Packet Storage. In this section,
we introduce the metadata generation method and the first-
N packet storage method.

3.3.1. Metadata Generation. For verification of the RSC
result, we used a drill-down searching algorithm. The drill-

Time

t1 tx t2 t3

Operational blind
spot

Temporal blind
spot

Unknown blind
spot

Blind spot

PresentPast Future

Figure 1: Classification of blind spot.
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down searching algorithm uses the flow metadata and ses-
sion metadata for high-speed searching. We consider that
the same flow is a set of packets having the same 5-tuple
information within an active timeout and an inactive time-
out. Therefore, to classify the flow, the active timeout and
inactive timeout or TCP FIN flag of the packet is used. We
consider that the same session is a set of packets with the
same 5-tuple information until the application starts and
ends communication. Therefore, to classify the session, we
use the inactive timeout or TCP FIN flag of a packet. This
criterion for classifying sessions and flows is used for packet

storage in the first-N packet storage method and for generat-
ing the metadata. In general, the start and end of a session
are recognized by analyzing the packet header information.
Therefore, to reduce the burden of recognizing a session by
analyzing all packets, we generate metadata and perform a
metadata-based quick search.

First, we create the flow metadata from a packet. Figure 3
shows the structure of flow metadata. The flow metadata
comprises an id, tuple, packet_count, start_time, end_time,
tcp_flag, flow_state, session_id, and bytes.

The id is a flow identifier that is randomly allocated a
value to not be duplicated for the classification of flows.
The tuple is 5-tuple information comprising a source IP
address, destination IP address, source port number, desti-
nation port number, and protocol. The packet_count
denotes the number of packets in the flow. The start_time
is the start time of the flow. The end_time is the closed time
of the flow. The tcp_flag is the TCP flag of the flow. The
flow_state is flag state information on whether the flag is in
an active or a closed state. The session_id is the session id
of the flow, and the bytes denote the total packet sizes of
the flow.

Session metadata is created using flow metadata.
Figure 4 shows the structure of session metadata. The ses-
sion metadata comprises an id, tuple, flow_count, packet_
count, start_time, end_time, tcp_flag, session_state, and
bytes.

The id is a session identifier that is randomly allocated a
value to not be duplicated for the classification of sessions.
The tuple is 5-tuple information comprising a source IP
address, destination IP address, source port number, desti-
nation port number, and protocol. The flow_count is the
number of flows in the session. The packet_count is the
number of packets in each session. The start_time is the start
time of the session, and the end_time is the closed time of
the session. The tcp_flag is the TCP flag information for
the session. The session_state is a session state information
on whether the session is in an active or closed state, and
the bytes denote the total packet sizes of the session.

Zero-day intrusion detection and response system

ZDRS session processing module

ZDRS flow processing module

Packet processing module

Packet capture interface module

ZDRS network processing unit

Storage
management

module

ZDRS security processing unit

Retro active
security
check

module

External
interface
module

Storage device

Gateway
Core

network
Local area
network

Figure 2: Architecture of the ZDRS.

struct flow _metadata
{

uint64_t id; //Flow ID
five_tuple tuple; //5-tuple information
uint32_t packet_count; // The number of packet of the flow
timestamp start_time; //Flow start time
timestamp end_time; //Flow closed time
tcpflag tcp_flag; //TCP flag information of the flow
uint16_t flow_state; //Flag state information: active or closed
uint64_t session_id; //Session id of the flow
uint64_t bytes; //Total packet size(bytes) of the flow

}

Figure 3: Flow metadata structure.

struct session_metadata
{

uint64_t id; //Session ID
five_tuple tuple; //5-tuple information
uint32_t flow_count; //The number of flow of the session
uint32_t packet_count; //The number of packet of the session
timestamp start_time; //Session start time
timestamp end_time; //Session closed time
tcpflag tcp_flag; //TCP flag information of the session
uint16_t session_state; //Session state information: active or closed
uint64_t bytes; //Total packet size (bytes) of the session

}

Figure 4: Session metadata structure.
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The generated session metadata and flow metadata are
used in the drill-down searching algorithm for fast packet
search to verify the RSC result.

3.3.2. First-N Packet Storage Method. Figure 5 shows the
first-N packet storage method of ZDRS, including examples
of messengers, video on demand (VoD), and game applica-
tions [28]. The first-N packet storage method stores n-or
n-sized packets for a session. Assuming that a session of a
messenger application comprises 3 flows and a total of 18
packets, the initial 6 packets are stored to recognize the flow.
In the case of VoD application, when a session is composed
of 1 flow and a total of 14 packets, the initial 6 packets are
stored. In the case of a game application, when a session
comprises 2 flows and a total of 14 packets, the initial 6
packets are obtained. In other words, it stores the initial 6
packets for any session regardless of the application type
and flow.

The length of the session differed depending on the
application. In addition, the number of flows and packets

included in each session is different. However, if the initial
few packets can be checked for a session, it can confirm
the network signature [29]. In Park et al.’s research, the opti-
mal number of n packets was 5 [29]. However, the optimal
number may vary depending on the network conditions
and user requirements. The n unit can also be used as the
number or length of packets to be stored. In particular, when
used as the meaning of the length of a packet for a continu-
ous syn attack, its characteristics can be better captured.
Therefore, in this study, we implemented and tested its
length.

When a detection rule for a zero-day attack is issued, the
stored packets using the first-N packet storage method are
checked by the RSC module in the ZDRS.

3.4. Retroactive Security Check. In this section, we introduce
the RSC algorithm and the drill-down session metadata
search algorithm in the RSC module. In the RSC module,
the RSC operation and the drill-down session metadata

Application

Time

First-N packet

First-N packet

First-N packet

Messenger

VoD

Game

Packet Flow Session

Figure 5: First-N packet storage method of ZDRS.

Real-time IDS/IPS Recommend
the rule strategy

Security blank
Detection & analysis

Packet storage &
metadata generation

Packet capture

Retroactive security
check

Verification of
RSC result

(Drill-Down search)

Figure 6: Operation of the RSC in the ZDRS.

Packet

Flow

Session

Packet Packet

Flow

Packet Packet

Flow

Packet

Generating
session metadata

Generating
flow metadata

Extracting flow
information

Extracting packet
information

Figure 7: Drill-down search algorithm based on session and flow metadata.
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searching algorithm were used to detect zero-day attacks in
the past.

3.4.1. Operation of Retroactive Security Check. Figure 6
shows the operation of the RSC in ZDRS. The RSC conducts
a check for false-negative packets for a zero-day period.
When a packet is captured by the ZDRS in the network,
the ZDRS conducts real-time IDS/IPS for all captured

packets. Simultaneously, packets are stored according to
the setting of the first-N storage method. Subsequently, the
ZDRS flow and session metadata processing module create
metadata before storing the packets.

In the ZDRS, the RSC module performs RSC to respond
to operational blind spots and temporal blind spots. To
respond to a temporal blind spot, the RSC module performs
the RSC by updating a detection rule or confirming a zero-

Core network

Security
devices

Network device

Security threat
detection system DB

Figure 8: Implementation environment.

Table 2: Specifications of ZDRS security processing unit.

List Specification

Processor Intel Zeon Silver 4110 2.1GHz (8 core; 16 thread)

Memory 16GB (8GB RDIMM ×2)
Operating system Linux (Debian 8.9)

HDD SAS 7.2 k RPM 48TB (8 TB×6)

Table 3: Specifications of ZDRS network processing unit.

List Specification

Network processor 36-core 1.2GHz Tile-Gx36 processor

Memory DDR3 SODIMM type 8GB

Interface 1/10Gbps (SFP/SFP+) 4-port

PCIe type PCIe Gen2 8-lane

Supported operating system Linux: CentOS, Red Hat

Performance Full 20Gbps transfer to host

Table 4: Stored packets and storage rate of the ZDRS test.

First-N size 5 kB 10 kB 20 kB 30 kB 50 kB 100 kB 300 kB 1MB Full

Stored packets (GB) 62 85 128 159 209 291 445 662 3,400

Storage rate (%) 1.8 2.5 3.8 4.7 6.1 8.6 13.1 19.5

Number of detections 13,882 13,885 13,890 13,895 13,895 13,900 13,900 13,902 13,944
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day attack. For an operational blind spot, the RSC module
conducts periodic RSC according to the cycle set by the
operator.

After the RSC is executed, the RSC execution result is
verified through a drill-down search based on previously
created metadata. Thereafter, a security check was per-
formed through the continuous detection and analysis of
the security blank. When a new rule strategy is created, it
is reflected in the real-time IDS/IPS to remove the blind
spots for a zero-day attack.

3.4.2. Drill-Down Session Metadata Searching Algorithm.
Figure 7 shows the drill-down search algorithm based on
metadata to quickly verify the RSC results. After the RSC
module receives a search requirement owing to the predeter-

mined detection rule or the updated detection rule, this
module conducts a check for zero-day attacks in a blind
spot. Subsequently, the drill-down search algorithm per-
forms the following procedure to obtain false positives in
the RSC module. The RSC module finds an objective session
to compare false positive packets to session metadata by
using the session metadata information. The RSC module
then obtains an objective flow to compare the requested flow
to the flow metadata. The RSC module subsequently obtains
an objective packet to verify the RSC results to prevent false
positive detection and then rechecks the objective packet.

The drill-down search algorithm does not search all
packets or flows but instead searches for information in
the sessions, flows, and packet order. Therefore, the effect
of high-speed search was obtained.
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Figure 9: Number of detections of each first-N storage method versus the full-packet storage method.
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4. Implementation

In this section, we introduce the implementation environ-
ment and the results of the proposed ZDRS. We analyzed
the detection rate, storage efficiency, and RSC time in the
ZDRS versus the full-packet storage method.

4.1. Implementation Environment. The implementation
environment for the performance analysis of the ZDRS is
described. Figure 8 shows the implementation environment
at the campus level. The ZDRS was connected to the egress
point of Chungbuk National University’s local network to
collect data. The collected data were approved by Chungbuk
National University to be used only for this study.

In general, a campus-level network may consist of one or
more LANs within the campus network and is connected to
an external core network through a network device such as a
router or gateway. Here, when connecting to the core net-
work, it passes through a security device to block security
threats. For test of the ZDRS, we mirror packets between
the security device and the network device to the ZDRS. In
addition, a database is configured to store rule sets, inspec-
tion history, and traffic information. We used the emerging
threat Suricata open rule set for the detection rule. The flow
inactive timeout, flow active timeout, and session inactive
timeout were set as 15 s, 1800 s, and 1860 s, respectively.

Table 2 lists the specifications of the ZDRS security pro-
cessing unit. The processor is an 8-core 16-thread Intel Zeon
Silver 4110 with 16 gigabyte (GB) RDIMMmemory. It oper-
ates on the Debian 8.9 Linux, and the HDD is a 48-terabyte
(TB) SAS (7.4 k RPM).

The ZDRS security processing unit is a software module,
but if it uses a 10Gbps interface, it has to use an external
hardware network processing unit; otherwise, if it uses a
1Gbps interface, it can be implemented on the host system.
In this implementation, we implement the ZDRS using an
external hardware network processing unit to use a 10Gbps
interface.

Table 3 lists the hardware specifications of the ZDRS
network processing unit. The network processor was a
Tile-G36 processor.

Memory is a DDR3 type and is 8GB. It has an SFP+4-
port network interface. It uses 8-lane of the PCIe Gen2. It
operates on CentOS or Red Hat. These hardware specifica-
tions make it transfer packets of 20Gbps to the host. These
hardware specifications allow packets of 20Gbps to be trans-
mitted to the host.

4.2. Implementation Result. We collected the raw 3.4 TB
PCAP data during 9 hours and confirmed the storage and
detection rates of the collected data in the ZDRS. And then,
through replaying based on this full packet, we resaved the
data as each first-N storage method. Using this sample data,
the implementation results were compared with the results
of the proposed first-N storage method and full-size storage
method. In this implementation, the application classifica-
tion method based on the port number was applied in all
implementations to compare the results of the proposed
first-N storage scheme with those of the full-size storage
scheme.

In general, research on detection algorithms for zero-day
attack suggests correct detection rate and false positive rate
as experimental results. However, this paper does not pro-
pose a detection algorithm, but the ZDRS that solves the
problems of the forensic storage method through the first-
N packet storage method. Therefore, we used Suricata open
rule set. That is, the purpose of this experiment is to confirm
the detection rate of inspection for packets collected by the
first-N method compared to the full-packet method. There-
fore, true rate and false rate are not considered in this study.

Table 4 shows the stored packets, storage rate, and the
number of detections of the ZDRS test. While the full-
packet storage method stored and analyzed approximately
3.4 TB of data, the first 5-kilobyte (kB) size storage method
stored and analyzed approximately 62GB of data. The first
5 kB storage used approximately 1.8% storage space versus
the full-packet storage method. Also, the number of detec-
tions increases as approaches the full packet.

Figure 9 shows the number of detections for each first-N
storage method and the full-size storage method. The full-
size storage scheme detected 13,944 cases, while the first
5 kB and 1MB storage schemes detected 13,500 and 13,555
cases, respectively.

Figure 10 shows the detection rate of the first-N storage
method and the full-packet storage method. We calculate the
detection rate as follows using the number of detections in
Table 4.

Detection rate = Ndf

Ndn
∗ 100: ð1Þ

Ndf is the number of detections in full-packet storage
method. Ndn is the number of detections in first-N storage
methods. When the detection rate of the full-packet storage
method was taken as 100%, the detection rates of the first
5 kB and 1MB storage methods were 99.55% and 99.69%,
respectively. The first-N storage methods are more than
99.55%, and there is little difference compared to the full-
packet storage method. However, the difference between

First-N size (k Byte)

10 20 30 50 100 300 10005
0

10

20

30

40

50

60
St

or
ag

e e
ffi

ci
en

cy

Figure 11: Storage efficiency for first-N storage methods versus the
full-packet storage method.
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the first 5 kB size storage method and the first 1MB size stor-
age method was only 55 cases.

Figure 11 shows storage efficiency for the first-N size
storage method versus the full-packet storage method. The
result of the first 5 kB size showed that the data storage rate
decreased approximately 55-fold compared with the full-
packet method. Moreover, the result of the first 1MB size
showed that the data storage rate decreased approximately
fivefold compared with the full-packet method.

Figure 12 shows the ratio of RSC time for first-N storage
methods versus the full-packet storage method. The first
5 kB size storage method spent 7.9% RSC time versus the
full-packet storage method. Moreover, the first 1MB size
storage method spent 28% RSC time versus the full-packet
storage method. In other words, as the size of N decreases,
the RSC time decreases.

To evaluate the performance of ZDRS, it is necessary to
look at the all factors which are number of detections, detec-
tion rate, storage efficiency, and RSC time. For example, the
first 5 kB storage method has 444 fewer detections than the
full-packet method. However, the detection rate is only
0.45%, and the storage efficiency is 55 times higher. More-
over, the efficiency is only 7.59% of the time required to per-
form RSC in full-packet method. In other words, depending
on the application target, it is better to take a small amount
of first-N size in order to have the maximum storage effi-
ciency, and it is better to take a large first-N size for a strict
security check.

5. Conclusion

In this study, we designed and demonstrated a data storage
and regression security check system for responding to net-
work security blind spots. In detail, we propose a system
structure for regression security inspection, a metadata gen-
eration algorithm, and a metadata search algorithm to pro-
vide a solution for operational blind spots and temporal

blind spots. In addition, we used the first-N packet storage
method to drastically reduce the storage cost. As a perfor-
mance analysis result of implementation, the amount of data
storage decreased from 3.4TB to 62GB compared to the
full-packet storage method by 1.82%, and storage efficiency
increased by 54.84 times. The detection rate of 99.55% based
on the first 5 kB size compared to the full-packet storage
method was confirmed. That is, depending on the applica-
tion target, it is better to take a small amount of first-N size
in order to have the maximum storage efficiency, and it is
better to take a large first-N size for a strict security check.
In conclusion, it was confirmed that even if the packet is
saved with ZDRS’s first-N technology, it can be sufficiently
utilized for security check.

In this paper, we used the session-based first-N storage
method. In a future study, we plan to apply the flow-based
first-N storage method and compare the storage efficiency
and accuracy with the session-based first-N storage method.
This study used the session-based first-N method. However,
the flow-based first-N may have different inspection volume
and detection rate than the session-based first-N and may
have different characteristics depending on the type of
attack. Therefore, we plan to study the flow-based first-N
storage method. In addition, we will collect and test more
samples at various sites—research institutes and companies.
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