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The accurate prediction of the transaction volume of the core accounting system is of great significance to the stable operation of
commercial banks. After fully investigating the transaction volume history of the core accounting system and discovering the
unique time-series attributes of the data, this study proposes a transaction volume prediction model of the core accounting system
of commercial banks based on the improved bat algorithm and the optimized gating loop unit neural network. The chaos
algorithm, reverse learning, evolution, and search mechanisms are implemented to improve the search efficiency of solving the
global optimization problem, to overcome the shortcomings of the original bat algorithm, such as early maturation and easily
falling into the trap of a local optimal solution, and to enhance the algorithm’s optimization ability and precision. Moreover, the
bat algorithm’s optimization ability is fully utilized, and the optimal parameters of the GRU model, such as network layers and
neural units, are determined. Finally, the effectiveness of the combination model is evaluated using historical transaction data
from the core accounting system stored in a bank data warehouse. The experimental results show that the improved combined
GRU model performs well in mean squared error, root mean squared error, and mean absolute error, which is superior to the
original GRU model and the traditional time-series forecasting ARMA model. The proposed combined model can be effectively

applied to the transaction volume prediction of the core accounting system of commercial banks.

1. Introduction

With the continuous spread of the worldwide epidemic,
more and more transactions are moving from offline to
online, and the demand for online financial services of
commercial banks in various industries has shown a surging
trend. According to the statistical data analysis of the China
Banking Service Report in 2021 released by the China
Banking Association, the banking industry achieves multi-
dimensional digital intelligent service transformation
through product service iterative process around the de-
velopment concept of technology-enabled business inno-
vation, assisting enterprises in resuming production as soon
as possible, supporting entities’ economic development, and
preventing financial risks [1].

At present, commercial banks offer various service
channels to customers through the combination of online

and offline operation modes. Customers can do business
online via Internet banking, mobile banking, and bank
APPs, or they can accomplish associated tasks manually at a
counter. The development of various service channels will
test the transaction capacity of the core accounting systems
of commercial banks [2]. To avoid hardware failure due to a
rise in transaction volume, the service load is often enhanced
through hardware redundancy. This strategy, on the other
hand, will make equipment operation and maintenance
more complicated and, as a result, will surely prolong the
time it takes to maintain the equipment. At the same time, it
will make managing the software service interface more
complicated, and it may even result in a waste of service
resources and computer computing power. Therefore, the
research on the accurate prediction of system transaction
volume is of great significance in reducing the redundancy of
commercial bank systems [3].
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Machine learning, as a hot topic in current forecasting
research, has the advantages of mining the internal implicit
relationship of historical data, analyzing the data hierarchy,
and automatically feeding back data features through
learning [4]. Because of the advantages of machine learning,
more and more machine learning is applied in different
fields [5]. Wang [6] used the gated recurrent neural network
(GRU) model to analyze the big meteorological data, ex-
cavate the correlation between meteorological elements, and
estimate each meteorological element. Tong [7] adopted the
GRU model based on social, economic, and epidemiological
characteristic data to study the current COVID-19 epidemic
situation and predict its changing trend. Aiming at the
problem of network intrusion security, Liang [8] proposed
to dig deep into the network data information by sum-
marizing the characteristics of network activities and used
the GRU model to classify and identify the information,
providing a brand-new idea for the processing of network
intrusion search. In particular, the GRU model has a high
prediction accuracy for time-series attribute data. However,
its complicated internal structure leads to more complicated
super parameters, which has a large influence on the pre-
diction accuracy [9, 10].

Presently, the bat algorithm (BA) has been widely used in
wind energy development, model prediction [11], UAV path
planning [12], and economic development [13]. Some
scholars have made corresponding improvements to BA. Cai
et al. [14] introduced Gaussian disturbance into BA and
adopted different speed updating strategies to improve the
global exploration ability. The authors in [15] combined the
tone fine-tuning operator of harmony search to improve the
convergence accuracy and speed of BA. Huang et al. [16]
proposed an improved binary BA by using neighborhood
search and dynamic inertia weight strategy. The authors in
[17, 18] used the ergodicity of chaos to study the optimi-
zation efficiency of different chaotic mapping for BA. In [19],
the chaos of elite individuals is optimized by logistic
mapping and dynamically shrinks the search space to avoid
BA falling into local optimum prematurely. Many scholars
turther simulate bat behavior from the biological point of
view, combined with habitat selection and adaptive com-
pensation of the Doppler effect, and apply it to practical
engineering problems [20-23]. He et al. [24] integrated the
simulated annealing algorithm and Gaussian mutation into
BA and made use of the advantages of the simulated
annealing algorithm, which not only enhances the explo-
ration ability of BA but also accelerates the convergence
speed. Although BA has the advantages of rapid conver-
gence, few parameters, and strong robustness, BA also has
the disadvantages of easily falling into local optimum and
low solution accuracy, like other heuristic optimization
algorithms.

Therefore, this study proposes a combined BU-GRU
neural network model to predict the transaction volume of
the core accounting system of commercial banks. The major
contributions of the proposed study are as follows:

(i) Fuch mapping is introduced into the bat algorithm
to produce uniformly distributed individuals.
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Improving the initial population quality can im-
prove the search efficiency of solving the global
optimization problem.

(ii) Evolutionary mechanism and search mechanism are
introduced to enhance the ability to get rid of local
extremum and give full play to the information
leading ability of the optimal individual.

(iii) A GRU combination model based on the bat al-
gorithm is proposed, which can give full play to the
optimization ability of the bat algorithm and op-
timize the super parameters of the GRU neural
network.

(iv) Aiming at the unique time-series attributes of
transaction volume data in the core accounting
system of commercial banks, it is proposed to op-
timize GRU neural network model based on an
improved bat algorithm, which can overcome the
problems of low precision and large error of tra-
ditional time-series data prediction.

The rest of the paper is organized as follows: Section 2
provides an overview of the GRU neural network. Section
3 provides a detailed description of the bat algorithm and
different optimization techniques. Section 4 describes the
proposed ESCBA-GRU model. In Section 5, experimental
analysis is presented, and Section 6 is about the
conclusion.

2. GRU Network

GRU neural network is a variant neural network model
proposed to solve the gradient explosion problem of the
recurrent neural network (RNN) model. The core of this
algorithm is a combination of a sigmoid function and some
relational operations, which together constitute the GRU
control and information selection mechanism. By using the
sigmoid function, the inherited memory state and the
current input data are calculated and mapped between 0 and
1 to simulate the memorizing and discarding state of data.
Similar to the mechanism of three control gate units in the
long short term memory (LSTM) model, there are two
control units in GRU, reset gate and update gate, because the
GRU model evolved from the LSTM model [25]. Therefore,
the two-gate structure is simplified from the three-gate
structure. The input-output structure of the GRU model is
shown in Figure 1.

h indicates the information transmitted between each
nerve unit, x specifies the input information, and y is the
output information of the current nerve unit. However, at
every moment or in the final full connection calculation,
GRU is constantly updating itself. The update is based on its
inheritance and combined with the current alternative an-
swers. Inside the neural unit, this genetic information will be
processed and calculated. In this way, such neural units are
connected in series to form a network-like model with a
complex structure and direct or indirect connection between
neural units [26]. The internal structure of the model is
shown in Figure 2.
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FiGure 1: The input-output structure of GRU.
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FIGUure 2: GRU internal control gate structure.

2.1. Update Gate. Z, indicates the update gate of GRU at the
current time ¢, which is responsible for determining how
much information content is transmitted to the next neural
unit. If Z, it is infinitely close to 1, h,_; will be equal to h,,
which means that the received information will be directly
transmitted to the next unit without being processed or
forgotten. On the contrary, if Z, it is infinitely close to 0, h,_,
is not equal to h,, which means that the received information
will be forgotten through machining calculation and will not
be passed on to the next unit [27]. The process of updating
the gate is expressed as follows:

1

where § is used to indicate sigmoid function, W is the
update gate weight corresponding to h,_; when solving Z,,
and x, indicates the currently entered information.

z,=86(W, e [h_y,x])s

2.2. Reset Gate. r, indicates the reset gate at the current time
t, and r, determines the influence of h,_, on h,_;. When r, is
approximately equal to 0, ,_; will not pass on information
to h,_,. When r, is approximately equal to 1, h,_, will pass on
information to h,_,. The reset gate operation is expressed as

ry = 8(Wr * [ht—l’xt])’ (2)

where W, indicates the reset gate weight corresponding to
h,_, when solving r,.

2.3. New Memory. The update gate Z, determines the
current time, and the information amount of the previous
time is included in the condition of result judgment. h,_,
indicates the comprehensive calculation result at the current
input information and the information transmission h,_; of
the hidden layer at the previous moment, which includes the



newly input information and the above information. The
new memory process is computed as

l;t = tanh(W;o [r,*h_y, xt]). (3)

2.4. Hidden Layer. The hidden layer state h,_; of GRU at the
current moment is calculated based on h,_; h and at the
previous moment, and the weight relationship between them
is controlled by Z,. The equation of its information trans-
mission and the calculation process is as follows:

hy=(1-2Z)*h_; +z* h,. (4)

2.5. Results. After determining h, at the current moment, the
output of this neural unit can be completed, and finally, y,
data can be obtained after calculation. The output process is
as follows:

¥ = 0(W,oh,). (5)

Because of this special result, each unit has new input
information and genetic information at the previous mo-
ment, which makes the network have the characteristics of
dealing with nonlinear feature sequences.

Studies have shown that the GRU’s hidden layer number
H, model iteration number N, learning rate Ir, and learning
rate calculation factor decay have a great influence on the
prediction results, while the bat optimization algorithm has
better performance than other swarm intelligence algo-
rithms in the whole optimization process [28]. Therefore, the
bat algorithm is proposed to optimize the relevant super
parameters of GRU.

3. Bat Algorithm (BA)

The BA is a new heuristic optimization algorithm based on
swarm intelligence. It is developed according to bats’
characteristics of using echolocation to search for prey and
avoid obstacles.

3.1. Basic Bat Algorithm. In BA, x! and v}, respectively,
indicate the position and speed of the i-th bat in the t-th
generation. f; and A shows the frequency and loudness of
the bat, respectively, and 7! is the pulse emission rate. The
position of the bat indicates the feasible solution. Because
bats do not know the specific location of prey at first in the
algorithm, they are randomly initialized by the following
equation:
xfj = x?‘in + rand (0, 1)()6';”‘x - x}nm). (6)
After the initial setting of each parameter is completed,
the algorithm enters the following three main iterative
processes:

(i) Random flight: the spatial position of bats is
updated by
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fi:fmin-'—(fmax_fmin)ﬁ

t t—1 t-1 *
Vi = +(xi -Xx )fl , (7)
xf = xffl + vf
where f., and f, .. are the minimum and maxi-
mum values of frequency, f€[0, 1] is a random
number that obeys uniform distribution, and x* in-
dicates the global optimal solution currently searched.

(ii) Local search: once the optimal solution is generated,
alocal search is performed around its neighborhood
by a random walk of the following equation:

X"V = xF eAl, (8)

where g€ [0, 1] is a random vector and A! is the
average loudness.

(iii) Update of control parameters: when bats accept new
prey, their loudness and pulse emission rate are
updated by the following equation:

AT = aA]
{ tirl 0 1 ’ ©)
r; =1; (1 —exp(-yt))

where a and y are both constants. As the iteration

progresses, when the bat approaches the optimal

solution, the loudness gradually decreases, and the
pulse emission rate gradually increases.

From the characteristics of the BA, we can see that its
main problems are summarized as follows.

The BA generates the initial population solution through
random initialization as given in equation (6). If the random
solution is close to the optimal solution, it will converge at a
faster speed. Once the random solution is far from the
optimal solution, it may converge slowly, which has a great
influence on algorithm optimization [29].

The algorithm is performing global exploration (equa-
tion (7)). At this time, bats fly towards the best individual of
the population. If the best individual is far from the global
optimum, the population will easily fall into the local op-
timum. Equation (8) means local development. With the
iteration, r; increases, and the possibility of rand >r; de-
creases. So, the algorithm performs development in the early
stage and performs exploration in the later stage. Too much
development and too little exploration will lead to premature
convergence, and too much exploration and too little de-
velopment will make it difficult to converge to the optimal
solution, which will reduce the overall search performance.

No matter the exploration or development, the search
process is completely dependent on a random walk, and the
method is single, which makes bat individuals lack flexible
mutation ability in iteration. There is no effective mechanism
to jump out of the local extremum, which cannot guarantee
rapid convergence to the optimal solution.

Therefore, the improvement of the BA in this study is
embodied in three aspects: generating a suitable initial pop-
ulation, having the ability of continuous evolution and getting
rid of early maturing, and updating adjustment parameters.
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3.2. Fuch Chaotic Mapping. Chaos is a characteristic of a
nonlinear system, which is mathematically defined as a
random number generated by a simple deterministic
function. Integrating chaos into a metaheuristic optimiza-
tion algorithm, the core is to use the randomness, ergodicity,
and irregularity of chaotic variables to replace random
variables that obey the standard probability distribution for
optimization search, to search the whole solution space,
generate evenly distributed individuals, and improve the
initial population quality [30].

At present, the chaotic mapping widely used in literature
is logistic mapping and tent mapping. Among them, logistic
mapping is sensitive to initial values. Only when the control
parameter is 4 can it completely enter the chaotic state, with
a high probability of taking values at both ends of the interval
and uneven traversal. Tent mapping has better ergodic
uniformity. But it has a small period and fixed point, which
makes it easy to fall into local circulation and reduces the
efficiency of chaos optimization. The Fuch map proposed
has stronger chaotic characteristics than logistic mapping
and tent mapping [31]. This mapping has the advantages of
insensitivity to initial value, ergodic equilibrium, and faster
convergence and can generate chaos even when the initial
value is not zero. Because of the above analysis, this paper
uses Fuch mapping as the mapping function of chaotic
search, which is specifically defined as follows:

Ciyp = COS —, (10)
Ct
where ¢;#0, i € Z*.

Since the value range of variables generated by logistic
mapping and tent mapping is [0, 1] when mapping the
decision variable x; into a chaotic vector for chaotic search, it
is necessary to first limit the chaotic initial value of each
dimension x; to [0, 1] by the following equation:

x xmin
_ id — id
lid T max min” (11)
Xid  ~ Xid

Then, carrier operation is carried out on the generated
chaotic initial vector /; through logistic mapping or tent
mapping function to generate chaotic vector ¢;. Finally, it is
transformed into the spatial vector of the original solution by
the following equation:

! max min min
Xig = Cid(xid — Xiq ) T Xy - (12)

Fuch mapping does not depend on the initial value; the
chaotic sequences generated when the initial value changes
slightly are completely different and irregular [32]. There-
fore, when searching for chaos, it is not necessary to first
transform the decision variable x; into the chaotic variable
interval by equation (11). The chaotic vector can be directly
generated by equation (10). After carrier operation, it is
restored to the original solution space.

3.3. Fuch Chaotic Search. Assuming that x'= (xi,
X5,...,Xp) indicates the solution vector to be optimized,
with D indicating the number of dimensions xj =

min min max

[, xp*], where x;'" and x]/** indicate the minimum and
maximum values of the k-th dimension of the solution
vector, respectively, the maximum iteration number of chaos
searches is MaxCt, and F(O) indicates the objective func-
tion, the steps of Fuch chaotic search proposed in this paper
are as follows:

Step 1. Initialize the initial value ¢ # 0 of chaotic vector
iteration, where i=1, 2, ..., MaxCt, k=1, 2, ..., d.

Step 2. Substitute into equation (6) to perform Fuch
mapping iteration to generate chaotic vector.
Step 3. Carry the chaotic vector ci! to the original
solution space to generate a new solution by using the
following equation:
i+1
i min max min (Ck + 1)
Xy = Xk +(xk - xp )T (13)

n

Step 4. Repeat steps 2—4 until the maximum number of
chaotic searches MaxCt is reached, and keep the so-
lution x,, with the optimal fitness value.

Step 5. Compare the new solution x’_ with the so-
lution x* to be optimized, and keep the optimal

solution.

3.4. Fuch Chaotic Reverse Initialization Strategy. To over-
come the defects caused by random population initialization
in the BA, this study combines Fuch chaotic initialization
with reverse learning initialization and proposes Fuch
chaotic reverse learning initialization strategy. In fact,
according to the probability theorem, the probability that the
current solution is farther away from the optimal solution
than its corresponding inverse solution is 50%, so searching
the current solution and the inverse solution at the same
time and keeping the optimal solution can make the pop-
ulation distribute as evenly as possible in the search space.
In this study, it is found that the upper and lower bounds
of the optimization variable are symmetrical, and the
benchmark function has a square term or an absolute term; if
the general reverse learning strategy is adopted, the initial
solution and the reverse solution are only opposite in sign, but
the corresponding fitness values are the same. Therefore,
when selecting the initial population, the same fitness value
corresponds to multiple solutions, which reduces the diversity
of population fitness values and often produces larger average
fitness values. To reduce this phenomenon, this study pro-
poses a new equation for generating the inverse solution:
)

X

op| = (14)
(xljnax _ xrpin)
J J
] 2

x’jZO,

i
, xj<0.

Each dimension of the initial solution is mapped to the
vicinity of the interval center value. Moreover, each di-
mension of the generated inverse solution is no longer just
the inverse number of the corresponding initial solutions, so



the inverse solution has different fitness values, which
further improve the diversity of population fitness values
and the quality of the initial solution.

If NP is the number of bat individuals, the initialization
steps are as follows:

Step 1. Iterate by equation (10) to generate a chaotic
vector sequence:
P (0 i i .
¢ =(c}sch.scp)s i=1,2,...,NP. (15)
Step 2. Carry the chaotic vector to the original solution
space by equation (13) to generate the initial solution x’.

Step 3. Get the corresponding inverse solution from the
initial solution x' according to equation (14).

Step 4. The initial solution x' and the reverse solution
op' are sorted according to the fitness value, and the top
NP solutions are selected as the initial solutions of the
population.

3.5. Local Search for the Best Individual Evolution Guidance.
In the BA, local search relies on the random walk in the
neighborhood of the current optimal solution, which leads
to the lack of mutation mechanism in the population. Local
search adopts the method of mutating randomly selected
individuals, which ignores the population optimal indi-
viduals and cannot make full use of the location information
left by them [32]. Therefore, we learn from the differential
evolution operator with strong local development ability,
take the best individual of the population as the reference
position, and introduce mutation and crossover operation to
guide the movement of the population. The mutation op-
erator is as follows:

t+1 * t t
Vij =Xt G"i,j(xrl,j - xr2,j)’ (16)

where ¢~ Ulo,1],je{1, 2, ..., d}.

The difference between x}, ; and x;, ; indicates that when
performing difference disturbance on the optimal solution
x*, the smaller the difference vector, the smaller the dis-
turbance. At the initial stage of iteration, the larger the
difference between different individuals, the greater the
disturbance. So the search is performed around the optimal
solution in a wide range. As the individual gradually ap-
proaches the optimal solution in the later stage of iteration,
the disturbance is small. The search range near the optimal
solution is reduced to enhance the local search ability and
improve the convergence performance. In equation (16), the
new solution is to exploit a new search area near the optimal
solution obtained in the last iteration and randomly select
two individuals to make a difference to guide bats to search
the optimal area as much as possible to improve their de-
velopment ability. Cross-operation of the individuals gen-
erated by variation is performed according to

f+1 . .
R ,rand (0, 1) < Crotj = j,,nq
ui;j - * . 4 (17)
Xj otherwise
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where Cr is the crossover probability, with a value within [0,
1], and jrang is an integer randomly selected from [1, D].
Individual crossover ensures that the value of at least one
dimension can be obtained from the mutant individual, thus
ensuring that the crossover individual is different from the
current optimal individual and mutant individual and
avoiding invalid crossover [25]. Otherwise, no new indi-
viduals will be produced, resulting in no evolution of the
population. The search will also come to a halt.

3.6. Introducing the Chaotic Global Search of Investigation.
In the artificial bee colony algorithm, if the honey source has
not been improved for L consecutive iterations, the corre-
sponding honey collecting bees will give up the honey source
and change to scout bees to search for new honey sources,
which is beneficial to get rid of the local optimum and
enhance the global optimization performance. Inspired by
the idea of scout bees, bats trapped in local optimum are
defined as scout bats in the bat algorithm, and new positions
are searched in the whole search space to replace the old ones
[25]. However, the scout bats’ research for the location is not
just like the scout bees’ giving up the old location and
searching randomly. They search for the new location with
two chaotic search strategies, respectively. For each scout
bat, based on the current position and random position, by
using Fuch mapping with good ergodic equilibrium, an
intermediate solution is generated by a chaotic search
strategy of a certain number of times. After comparing with
the original position, the optimal solution is kept as the
current position. In this way, the bats constantly jump out of
the local extremum.

For the scout bats x! and ¢! in the T-th iteration, they
indicate the number of Fuch chaotic sequences generated
according to equation (10), and their chaotic search based on
the current position is as follows:

xf}l = xik +(Zcf - 1)(xf’k - x;k), (18)
where ke{1,2,...,d},L,je{l,2,..., NP}, and i#j. Chaos
search based on random position is as follows:

X = xnt o (™ = ), (19)
where x" and x* indicate the minimum and maximum
values of the K-th dimension of the solution vector, re-
spectively. At this time, the two intermediate solutions are
searched by chaos iteration for a certain number of times
according to the described steps, and finally, the better
solution is selected.

For the above equation, the exploration ability is cer-
tainly improved by flying from the current position to other
randomly selected positions, which, however, may not be a
better position. This may lead the flight to a worse position.
This method limits the search to the neighborhood of the
current position [33]. Although the nearby areas are ef-
fectively exploited, the effect of better searching the whole
solution space cannot be achieved. By further expanding the
search scope and combining it with chaotic mapping, the
whole solution space can be traversed effectively, but the
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subtle search cannot be carried out, and the information
around the current individual is ignored. Therefore, the two
search strategies are used as independent ways to generate
intermediate solutions. Their respective advantages are
combined while avoiding their shortcomings so that indi-
viduals trapped in local optimum can independently choose
a better new position to replace the original position. The
combination of these two strategies can constantly get rid of
the constraints of the local extremum and enhance the global
exploration ability.

3.7. Adaptive Chaotic Updating of Parameters. In the basic
BA, the pulse emittance r controls the mutual conversion
between global search and local search, and the loudness A
determines whether to receive the new solution, which af-
fects the optimization efficiency to some extent. Therefore,
this study proposes a strategy of adaptive updating of pa-
rameters with the change of iteration times and chaotic
sequence, as follows:

A -A
4t+1 :|:<11_tmf>(t_tmaX)+ %f:||ct|
, (20)

ri—r i
= [(1 — tm{;‘)(t — ™) +rf]|ct|

where A; and A are the initial and final values of loudness
A, r;andr ; are the initial and final values of pulse emissivity,
t is the current iteration number, ™ shows the maximum
iteration number, and ¢’ is the chaotic sequence number.
The renewal equation of A is the linear decreasing function
multiplied by a chaotic number, and the renewal equation of
R is the linear increasing function multiplied by the chaotic
number. The linear function accelerates the updating speed
of parameters, and the chaotic sequence ensures that the
values can traverse the whole interval, thus controlling the
balance between development capability and exploration
capability.

3.8. Chaotic Bat Algorithm with Evolution and Search
Mechanism (ESCBA) Flow. To sum up, the implementation
process of the chaotic bat algorithm with evolution and
search mechanism (ESCBA) is as follows:

Step 1. Initialize algorithm-related parameters, in-
cluding the number of individual bats NP, variable
dimension number D, maximum iteration number
MaxlIt, search threshold L, chaotic search number
MaxCt, and individual update flag bit T.

Step 2. According to the description, initialize the
population with a chaotic reverse learning strategy,
calculate its fitness value, and find the optimal indi-
vidual x*.

Step 3. Traverse all individuals, update the frequency,
speed, and position information according to equation
(7), and generate a new individual x™".

Step 4. Generate a random number R;. If R, it is larger
than r;, perform mutation and crossover operation

according to equations (15) and (16), and reassign the
individual after evolution to x"".

Step 5. Generate a random number R,. If the fitness
X" is better than that of the current individual and R,
is less than P4, accept the new individual, reassign T to
0, update A and r according to equation (19), and go to
step 7; otherwise, go to step 6.

Step 6. Increase the value of T'by 1. If T'is greater than or
equal to L, then carry out MaxCt subchaotic search
according to equations (17) and (18), respectively, to
generate intermediate individuals med; and med,.
Select the better intermediate value and compare it with
the current individual, and keep the optimal value as
the new position of the current individual; if T is less
than L, go to step 7.

Step 7. Compare the obtained new individual with the
optimal individuals in the population. Update the
optimal individual, and judge whether the iteration
times reach Maxlt. If so, output the searched optimal
solution and the corresponding fitness value and exit;
otherwise, go to step 3.

4. ESCBA-GRU Combined Model

4.1. GRU Super Parameter Optimization Strategy. Since the
parameter adjustment process of the GRU neural network is
blind and random, the bat algorithm is introduced to com-
plete the optimization work [34]. Firstly, the number m of
parameters that the GRU neural network needs to adjust is
determined, and it is regarded as an m-dimensional vector
that needs to be processed by the bat algorithm. Secondly,
determine the value range of this m-dimensional vector; that
is, lock the vector space of this m-dimensional vector that
needs to be optimized by the bat algorithm. Then, regard GRU
neural network as a function, which is called and executed by
the bat algorithm. Every time, this m-dimensional vector is
used as the super parameter of GRU to train the data model.
Finally, the trained network model is used to predict the test
data, and the error value is obtained by comparing the
predicted value with the real value. The error value is returned
to the bat algorithm as the evaluation index of optimization.
To clearly show the error between the predicted data and the
true value, the mean square error (MSE) function and LOSS
function are introduced to express the difference between the
predicted value and the original value. The language de-
scription of this function is to calculate the sum of squares of
distances at corresponding points between predicted data and
original data. The evaluation function is expressed as follows:

1 ¢ 2
MSE == (7,-7)"
i=1

(21)

m ) 2

LOSS (5, y) = Y. (y(l) - f») ,

i=0

where parameter N indicates the number of samples, y; is the

true value of the samples at the ith position, and y indicates
the predicted value of the ith position predicted by the
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TABLE 1: Reference function.
Function Name Search range Minimum value Characteristics
f1 Ackley [-32, 32] 0 Multimodal
2 Griewank [-600, 600] 0 Multimodal
f3 Rastrigin [-5.12, 5.12] 0 Multimodal
f4 Sphere [-100, 100] 0 Unimodal
5 Schwefel [-10, 10] 0 Unimodal
f6 Shifted Rastrigin [-5, 5] -330 Multimodal
7 Shifted Rosenbrock [-100, 100] 390 Multimodal
8 Shifted Schwefel [-100, 100] —450 Unimodal
9 Shifted Sphere [-100, 100] —450 Unimodal

model. The geometric meaning (y; — 7)* shows the distance
between the true value and the predicted value at the same
point, which is used here to measure the gap between the
predicted value and the true value. When the gap between
the predicted value and the true value is large, whether it is
positive or negative, it will get a large value. That is, it is far
from the true value. In this algorithm, the result value of
MSE will be used as the evaluation function, and the nu-
merical value will be fed back to the improved bat algorithm
for the evaluation and judgment of the current optimization
result value. The optimization algorithm will judge whether
the current position is better than the historical point
through the evaluation result to decide whether to update
the current point.

4.2. Execution Process of the Combined Model. The purpose
of constructing the combined GRU model based on the
optimized bat algorithm is to improve the results of data
prediction by the neural network and reduce the error
between the predicted value and the true value. According to
the description of the combined neural network model in the
previous section, it can be concluded that the steps of the
model in the process of execution are as follows:

Step 1. Initialize parameters, including the population
size N of the algorithm, the dimension D of the problem
variable, and the maximum iteration times of the
algorithm.

Step 2. Determine the adaptive function and the LOSS
function after GRU training, and calculate the mean
square error to get the evaluation index.

Step 3. Search for the best GRU parameter in the pa-
rameter vector space.

Step 4. Complete the optimization process of the
ESCBA and obtain the optimal solution. The results are
imported into GRU neural network as parameters to
complete the data prediction.

Step 5. According to the prediction result, calculate the
error value, and return the error value to ESCBA as the
evaluation index. Finally, update the optimal solution
position according to the evaluation index.

Step 6. Iterate step 3, step 4, and step 5 until the iteration
requirements are met or the maximum number of it-
erations is reached.

Step 7. Get the network parameters of the optimal
solution, import them into the neural network, and
complete the model training.

Step 8. Use the model to predict and analyze the test
data.

Step 9. Get the prediction result value.
Step 10. End

5. Experimental Analysis

5.1. Experimental Data. The experimental data of this study
was from a bank’s data warehouse, and the target data
collected were the transaction volume data of the bank’s core
system. The data collection time was from July 20, 2018, to
July 1, 2020. The data were summarized in minutes, with a
total of 1,026,721 samples of data. Among them, the data
from July 20, 2018, to January 30, 2020, were selected as
model training data, including 763,349 samples of data. The
data from January 30, 2020, to July 1, 2020, were selected as
test data to test the fitting effect of the model, including
263,372 samples of data.

5.2. Data Processing. For the abnormalities of the collected
data, according to the convention of cleaning data with big
data, the missing part of the collected data was filled with the
average value of the data in the same period of this point.
After cleaning, the experimental data were processed and
normalized in the range of [0, 1]. After cleaning and pro-
cessing, the data had a good comprehensive contrast
property and were all at the same data level.

5.3. Experimental Analysis of Bat Algorithm. Nine bench-
mark functions with different characteristics were selected
to test the performance of the bat algorithm and make a full
investigation of the optimization ability of the algorithm.
The function name, value range, global minimum, and
characteristics are shown in Table 1. Among them, {4, 5, 8,
and f9 are unimodal functions, mainly testing the opti-
mization accuracy and convergence speed of the algorithm.
f1, 12, 13, 16, and {7 are multimodal functions, mainly
testing the global search of the algorithm and its ability to
jump out of the local extremum to avoid premature
convergence.
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TaBLE 2: Performance comparison of different initialization strategies.
. Random initialization General reverse learning Fuch chaos inversion
Function
Fit Driver Fit Driver Fit Driver
f1 20.7497 18.1645 20.7483 18.4191 20.5793 19.8864
2 1.12E + 03 341.662 1.06E + 03 343.9945 960.117 372.0474
3 3.26E+03 8.5075 3.23E+03 8.6192 2.77E+03 9.3072
f4 1.21E + 05 56.8516 1.20E+05 57.3976 1.08E +05 62.1469
f5 3.85E+23 5.674 5.80E + 22 5.7708 3.84E+11 6.212
f6 469.0284 2.842 450.6013 2.8784 368.8445 3.1041
7 6.10E + 10 56.93 5.62E + 10 57.5255 4.65E+10 62.2366
f8 1.33E+06 56.9289 7.37E+ 05 57.6686 3.87E+05 62.0767
9 1.23E+05 56.9036 1.21E + 05 57.5548 9.81E + 04 62.1608
TaBLE 3: Comparison of optimization accuracy in 30 dimensions among all algorithms.
Function BA HSBA BAGW dBA SABA ESCBA
Best 17.7596 4.2553 0.9103 3.251 1.30E—- 10 1.33E—- 14
a Worst 19.9668 13.8567 19.9652 19.9668 5.09E — 10 2.45E - 10
Mean 19.7401 9.8034 19.004 4.5794 2.87E-10 3.53E-11
Std 0.5893 23872 3.8096 32719 7.32E-11 553E-11
Best 70.93 5.71E-03 1.30E-04 493E-10 4.44E - 16 0
0 Worst 299.824 0.0918 0.0224 0.0221 0.0295 1.11E-15
Mean 167.9349 0.033 5.68E-03 7.68E - 03 0.0037 391E-16
Std 56.9986 0.0238 7.52E-03 7.92E-03 0.007 3.89E-16
Best 317.0197 169.1424 49.2816 115.9538 8.88E— 15 0
5 Worst 806.1842 406.9305 236.1797 288.302 0.995 227E-13
Mean 526.4121 278.6654 139.8219 218.8277 0.0404 2.96E - 14
Std 133.5952 61.605 39.6879 50.9537 0.1969 5.94E - 01
Best 0.0101 2.05E-04 4.75E-04 7.90E - 09 1.70E-19 1.90E - 27
£ Worst 0.194 0.0104 4.65E-03 2.30E-05 517E-18 3.39E-20
Mean 0.0543 2.39E-03 2.27E-03 1.61E - 06 1.31E-18 1.36E - 21
Std 0.0465 2.56E - 03 8.60E - 04 4.65E - 06 8.66E-19 6.78E — 02
Best 1.0537 0.1848 0.2578 1.30E - 03 5.40E - 10 7.32E- 14
s Worst 5.82E +05 21.1952 258.5819 0.9999 2.91E-04 8.23E-06
Mean 2.41E + 04 41951 24.0055 0.0728 1.70E - 05 3.73E-07
Std 1.16E + 05 4.8816 60.459 0.1988 5.52E - 05 1.64E — 06
Best -78.6817 -276.2715 —-261.0051 —290.2633 -330 -330
6 Worst 63.6291 -196.6759 —149.453 -162.8861 —329.005 -330
Mean —-2.8249 —224.5311 —-198.5203 —237.9454 —329.9801 -330
Std 33.7651 20.2644 37.5409 26.9607 0.1407 6.46E — 14
Best 414.8215 414.4444 413.0764 407.6861 390.0006 390
7 Worst 2.36E +03 1.19E + 03 9.54E +03 706.0761 467.0134 390
Mean 660.7911 524.9373 1.40E + 03 468.4775 408.4709 390
Std 438.4634 175.1471 2.12E+03 101.6758 15.6599 2.54E-08
Best ~442.9437 ~333.7772 ~449.6903 ~449.7759 ~450 ~450
" Worst 3.46E + 03 2.90E + 03 ~448.4075 ~449.0023 ~449.5068 ~449.9856
Mean 571.2265 496.6318 ~449.1955 ~449.4091 ~449.9609 ~449.9969
Std 1.04E + 03 915.4484 0.3811 0.2215 0.0791 4.77E-03
Best —449.986 —449.9996 —449.9992 —450 —450 —450
9 Worst —449.8731 —449.9402 —449.9953 —-450 —450 —-450
Mean —449.9543 —449.9941 —449.9977 —450 —450 —450
Std 0.0303 0.0121 8.61E - 04 6.21E - 06 1.20E-13 4.64E - 14
5.4. ESCBA Initialization Performance Analysis. In this pa- b 5
per, random initialization, general reverse learning initial- N 1 B 2
Diver = N ; D Z (xi’d md) , (22)

ization, and Fuch chaotic reverse initialization are used,
respectively. By calculating the mean value of initial pop-
ulation fitness (Fit) and diversity (Diver), the performance of

different initialization strategies is compared. The pop-

ulation diversity is computed as follows:

d=1

where NP indicates the population number and m indicates

the average initial solution. The greater the diversity, the
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TaBLE 4: Comparison of optimization accuracy in 50 dimensions among all algorithms.
Function BA HSBA BAGW dBA SABA ESCBA
Best 19.9643 10.0628 19.9628 4.4953 2.28E-09 1.80E-11
fl Worst 19.9668 15.4746 19.9648 19.9668 1.89E - 07 1.16E - 08
Mean 19.9652 13.4656 19.9645 8.0741 3.78E-08 2.01E-09
Std 5.46E — 04 1.3904 4.94E - 04 4.5963 4.56E - 08 2.59E-09
Best 172.5732 0.4679 1.08E — 03 447E-05 9.37E— 14 1.55E— 15
o Worst 530.4195 1.145 4.6493 0.0175 0.0344 410E-10
Mean 320.3457 0.9123 0.3484 6.57E- 03 0.003 3.59E- 11
Std 96.8166 01757 0.9989 7.27E - 03 0.0071 9.07E - 01
Best 605.8356 360.5412 177.8822 297.5844 2.06E-13 2.84E-13
7 Worst 1.36E + 03 685.127 526.9451 538.5685 2.0008 8.29E-10
Mean 1.04E + 03 507.1378 334.6462 430.5927 0.242 1.59E-10
Std 175.8792 83.0607 86.3076 66.059 0.6215 2.74E-10
Best 0.044 0.5955 7.96E — 03 9.78E — 04 1.38E-16 6.87E — 32
° Worst 3.8593 24.8722 0.0268 9.77E - 03 3.45E-12 3.03E-13
Mean 0.2882 3.9364 0.0158 441E-03 1.I8E- 13 1.23E-14
Std 0.7518 5.2077 491E-03 2.61E-03 517E-13 6.05E - 14
Best 2.0848 5.8794 1.529 0.4796 1.25E-05 1.09E-12
s Worst 7.66E + 08 34.682 9.62E + 09 3.9149 0.1548 1.79E - 05
Mean 4.29E + 07 15.5104 4.00E + 08 1.1988 0.0124 3.48E-06
Std 1.57E+08 8.0402 1.92E+09 0.7185 0.0301 5.54E-06
Best 174.4835 ~201.8228 ~178.8785 ~212.3889 -330 -330
. Worst 359.0934 ~31.9945 64.8509 ~91.7885 ~328.0098 -330
Mean 278.8857 ~128.393 -60.2807 ~148.2952 ~329.8386 -330
Std 46.8769 43.0127 5.53E + 01 29.8312 0.4647 2.61E - 09
Best 447.9727 856.3206 435.6838 434,0916 390 390
& Worst 8.90E + 04 1.10E + 04 6.03E+ 03 1.47E+ 03 541.1077 390
Mean 7.10E + 03 2.69E + 03 1.12E+ 03 574.5079 431.3087 390
Std 2.09E + 04 2.32E+03 1.54E + 03 206.452 29.0897 5.77E—-06
Best 1.17E+03 2.92E+03 ~382.2297 ~419.309 ~448.3683 ~450
" Worst 4.81E +04 2.27E+04 ~261.4164 ~383.9354 ~344.2566 ~449.1829
Mean 1.56E + 04 1.19E + 04 ~347.715 ~406.4232 -425.8122 ~449.937
std 1.04E + 04 6.16E +03 27.0176 9.0109 20.4383 0.1762
Best —449.9699 —449.2918 —449.993 —449.9995 —450 —450
0 Worst 1.03E+03 —355.2089 -449.9705 —449.9902 —450 —450
Mean -386.1564 -439.1937 —449.9851 —449.9964 —450 —450
Std 295.4655 18.5233 5.14E-03 2.28E-03 1.20E-12 2.88E—-08

more dispersed the population distribution; otherwise, it is
dense. The smaller the fitness, the higher the quality of the
initial population solution.

In the experiment, the nine benchmark functions all
take 50 dimensions. The maximum number of iterations is
500, and the population size is 40. All of them run inde-
pendently 50 times. It can be seen from Table 2 that, in the
test of each function, the average fitness and average di-
versity of the population initialized by the Fuch chaotic
reverse learning strategy are better than the other two
initialization strategies, showing that the Fuch chaotic
reverse strategy of equation (9) can expand the diversity of
the population to a certain extent and improve the quality
of the initial solution.

5.5. ESCBA Optimization Accuracy Analysis. To verify the
performance of the ESCBA, this study selected the basic BA
[1], BAGW [6], HSABA [17], dBA [18], and SABA [19] for
the comparative experiment. In the experiment, the bat

number NP of all algorithms was set to 40, and the maxi-
mum iteration (Imax) was 500. Except that, the parameter
settings of other comparison algorithms were consistent
with their respective literature. The specific settings of each
parameter in the ESCBA were as follows: the maximum
pulse frequency fmax=2; the minimum pulse frequency
fmin=0; the crossover probability Cr=0.75; the search
threshold L = 25; the range of loudness A [0.6, 0.9]; the range
of pulse emittance R [0.1, 0.7]; the number of chaotic
searches Cmax=100. After each algorithm runs indepen-
dently 50 times for 9 benchmark functions in 30 dimensions,
50 dimensions, and 100 dimensions, the best, the worst, the
mean, and the standard deviation (Std) were calculated for
the optimization results, respectively, as shown in
Tables 3-5.

From the results of Tables 3-5, with the increase of
dimension, the accuracy of each algorithm decreases. On the
whole, the optimization effect of ESCBA and SABA is better
than other control algorithms. Among them, for 2, the
mean and variance of SABA are not as good as BAGW, dBA,



Mobile Information Systems 11
TaBLE 5: Comparison of optimization accuracy in 100 dimensions among all algorithms.
Function BA HSBA BAGW dBA SABA ESCBA
Best 19.9657 13.5022 19.9647 8.4357 4.30E-04 9.56E — 09
fl Worst 19.9668 19.9646 19.9661 19.9668 0.0101 1.67E-04
Mean 19.9661 15.0036 19.9657 14.3058 0.0029 421E-05
Std 2.49E - 04 1.2718 2.32E-04 4.6474 0.0023 5.08E - 05
Best 463.8012 3.8326 115.6962 4.88E-03 2.23E-05 2.88E - 14
0 Worst 1.38E+ 03 34.1334 256.5072 0.0262 0.0492 3.31E-06
Mean 803.5183 11.0961 212.4665 0.0136 0.0028 2.23E-07
Std 234.716 6.055 33.4015 6.15E-03 0.01 6.65E — 07
Best 1.88E + 03 759.4136 834.4371 872.5314 3.55E-05 7.78E—11
;3 Worst 4.36E + 03 1.53E+03 2.16E+03 1.25E+03 1.066 3.77E-05
Mean 2.95E + 03 1.22E+03 1.10E+ 03 1.08E + 03 0.1547 3.14E-06
Std 573.184 199.7152 267.2813 95.9341 0.3519 7.72E-06
Best 0.7806 242.2646 0.1839 0.1529 3.88E-06 1.21E-31
f1 Worst 2.21E+04 2.99E + 03 0.4049 0.3586 1.38E-04 4.19E - 08
Mean 5.02E+03 1.36E + 03 0.2709 0.2468 2.25E-05 2.16E - 09
Std 6.34E + 03 712.0796 0.0544 0.0457 2.16E - 05 8.48E-09
Best 29.5942 55.9458 318.6646 38.7299 0.0048 6.78E—-07
s Worst 2.05E + 32 198.8244 1.02E+27 140.6062 0.2658 1.01E-03
Mean 8.21E + 30 91.4364 492E + 25 54.7943 0.0799 2.43E-04
Std 411E+31 29.3236 2.07E+26 18.7261 0.0644 2.95E-04
Best 167.2032 —10.1364 267.0111 158.6915 —329.9999 -330
f Worst 343.7372 24.6121 587.555 356.279 -327.985 -330
Mean 280.671 100.3726 365.1652 234.9092 —329.8393 -330
Std 46.23 67.0494 93.3562 52.4314 0.3965 1.53E-05
Best 1.72E+ 03 1.09E + 06 567.6221 608.3885 390.1261 390
7 Worst 2.00E + 08 2.57E+ 07 7.98E + 03 7.07E + 03 776.6743 390.0004
Mean 2.37E+07 4.55E + 06 1.65E+03 2.09E + 03 509.5479 390
Std 4.84E + 07 4.79E + 06 2.23E+03 2.08E+03 96.7224 7.87E - 05
Best 5.80E + 04 7.29E + 04 8.80E+03 5.51E+03 —191.8983 -450
3 Worst 2.64E + 05 2.27E+05 1.92E + 04 1.09E + 04 2.72E+03 —448.2102
Mean 1.21E+ 05 1.18E + 05 1.26E + 04 7.29E+03 882.4828 —449.8668
Std 4.78E + 04 3.79E + 04 2.20E+03 1.33E+03 878.9749 0.3833
Best -449.2562 87.1221 —449.834 —449.8136 —450 —450
0 Worst 2.46E + 04 2.66E + 03 —449.6486 —449.6389 —449.9999 —449.9999
Mean 3.87E+03 726.3181 —449.7498 —449.7574 —450 —450
Std 6.99E + 03 571.7735 0.0535 0.044 1.88E - 05 2.29E-05

and ESCBA in 30 dimensions, and it is not as good as dBA
and ESCBA in 50 dimensions. Except for {2 and f3 in 30
dimensions and 50 dimensions and except for {6 and {7 in
100 dimensions, dBA’s solution performance is better than
that of HSABA, BAGW, and BA, and BA has poor opti-
mization performance. Whether for unimodal function or
multimodal function, ESCBA has better performance than
other algorithms in different dimensions, among which
ESCBA has more obvious advantages in 100-dimensional
function. For multimodal functions f2, {3, f6, and {7, the
accuracy of ESCBA in each dimension is improved com-
pared with SAB. For {6, {7, 8, and {9, ESCBA can find the
theoretical optimal value in different dimensions, which
indicates that ESCBA has a stronger global searching ability.
Moreover, for {8, with the increase of dimension, the op-
timization value of SABA has a large deviation, and the
variance further increases, while ESCBA still keeps a good
optimization result. In addition, for f9 in 30 dimensions and
50 dimensions, ESCBA and SABA both reach the theoretical
optimal value. For 3 in 50 dimensions, SABA gets the best

TaBLE 6: Errors of data prediction results of GRU combined neural
network.

Algorithm MSE RMSE MAE
ARMA 138022.90 371.51 282.92
GRU 29297.17 171.16 134.30
ESCBA-GRU 24539.69 156.65 111.85

solution. But its mean and variance are not as good as
ESCBA, and the difference is obvious. Except for {9 in 50 and
100 dimensions, ESCBA has the smallest standard deviation
in different dimensions of other functions, which shows that
ESCBA has good stability and robustness as a whole.

5.6. GRU Combination Model Trading Volume Prediction
Experiment. To verify the ability of the GRU combination
model to predict the transaction volume data of the core
accounting system of commercial banks, the GRU model
was trained based on the training data set to generate a data
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FIGURE 3: Data prediction of GRU combined model and the curve of true values.

model. Finally, test data are used to test the predictive ability
of the model. In the experiment, to verify the predictive
ability of the GRU combined model, the original GRU model
and ARAM model are introduced to predict the experi-
mental data. The experimental data are shown in Table 6,
and the curve change of the predicted data is shown in
Figure 3.

It can be seen from the experimental data table that the
prediction error of the improved combined neural network
model is 17% lower than that of the standard GRU neural
network model. Besides, the RMSE evaluation index is 8%
lower, and the MAE evaluation index is 17% lower, re-
spectively. The prediction effect of the combined neural
network on the result value is better than that of the standard
GRU neural network.

Figure 3 shows that the curve change of the predicted
value of the GRU combined neural network is closer to the
true solution curve, and many points coincide with the true
value. This fitting effect has a certain guiding significance for
data decision-making.

6. Conclusion

Commercial banks are extremely important for social and
economic growth. As a result, predicting the transaction
volume of the core accounting system is of both theoretical
and practical significance. In this study, the theoretical basis
and optimization process of the bat algorithm is system-
atically studied, and the characteristics and shortcomings of
this algorithm are deeply analyzed. Based on keeping the bat
algorithm to simulate the hunting behavior of the bat
population, a chaotic bat algorithm with evolution and
search mechanism (ESCBA) is proposed, which introduces
Fuch chaotic reverse learning strategy to improve the initial

population diversity. The evolutionary mechanism is in-
troduced to ensure that the population can make full use of
the guidance of optimal individual information; the search
mechanism further enhances the ability to get rid of the local
extremum. The control parameters A and R are adaptively
updated so that the algorithm tends to be stable and con-
vergent and keeps the balanced exploration and develop-
ment ability. Finally, based on ESCBA, a model combined
with GRU neural network is proposed, and the super pa-
rameters of the GRU neural network are optimized by giving
full play to the advantages of the optimization algorithm.
Results showed that the improved combined GRU model
performs well in MSE, RMSE, and MAE, which are superior
to the original GRU model and the traditional time-series
forecasting ARMA model. Future work will focus on further
exploring the function of the GRU combined model and the
realization of automatic deployment and startup manage-
ment of application systems according to the prediction data
and building intelligent and dynamic application manage-
ment and early warning system.
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