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Servo systems of robotic exhibit nonlinear coupling with multidimensional characteristics, which poses a challenge to existing
modeling and identi�cation techniques. According to a kind of robot servo system which runs repetitively operations over a
prespeci�ed �nite time interval, a low-order sampling characteristic modeling method is derived in this work. Characteristic
parameters are allowed to vary from both time axis and iteration one; the forgetting gradient learning algorithm is utilized to
estimate characteristic parameters. Furthermore, the e�ectiveness of the proposed algorithms is proved via theoretical analyses
and numerical simulations.

1. Introduction

As an important part of the industrial Internet system,
robots are attracting more and more attention. Existing
robot control methods mostly depend onmodels. Because of
the dynamic characteristics of controlled objects, the
complexity of control tasks and operating environment, it is
often di�cult to establish accurate mathematical models.
Nonnegligible unmodeled dynamics have higher require-
ments on system models and the robust performance of
closed-loop systems needs to be improved. In order to re-
duce the impact of unmodeled dynamics on the perfor-
mance of control systems, most existingmethods build high-
order models of systems. Modeling and control technology
for high-order systems is extremely complex and di�cult to
implement. �e feature modeling method provides a pre-
dictable way to model complex systems. It does not need to
establish a precise dynamic model of the system nor does it
use a system reduction or linearization method. Instead, it
expresses the model as a low-order time-varying di�erence
equation, taking into account factors, such as system state,
external environment, and control variables, and compresses
the dynamic information into feature parameters. �e Euler
approximation is often used to discretize the continuous
system, and the equivalent characteristic model [1–6] is

given. �e feature model can also be performed with exact
discretization to give a sampling feature model of the system.
Without limiting the sampling interval and control tasks, a
feature model with rapidly changing (even abrupt) char-
acteristic parameters may be obtained [7, 8].

Stochastic gradient algorithm and its derivative algo-
rithm are popular for training network weights and avoid
the matrix operation compared with the recurrence least
squares algorithm and the small online computation, which
has attracted much attention [9–17]. �e consistent con-
vergence results of the parameters are still available for the
stochastic gradient algorithm under weaker incentives. �e
martingale theory and stochastic process theory are powerful
tools to analyze the convergence of recurrence algorithms.
From the published results, most methods are targeted for
stationary systems, where the estimated parameters are
stationary.

When dealing with time-varying systems, it is found that
the stochastic gradient algorithms do not have the ability to
track the time-varying parameters. In the �eld of time-
varying system identi�cation, more consideration is given to
how to correct the recursive algorithms, that is, how to
construct the correction algorithm of the recursive algo-
rithms, so as to achieve e�ective tracking of the time-varying
parameters and improve the convergence rate of the
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parameters. It is well known that if the time-varying pa-
rameter change law is not known, there is no consistent
parameter estimation convergence [18–21]. Based on this
conclusion, one abandons the attempt to achieve complete
tracking of time-varying parameters and instead works on a
correction algorithm of how to construct and analyze re-
cursive algorithms, expecting to give lower upper bounds on
the estimation error of time-varying parameters. Common
correction algorithms such as weighted recursive algorithms
include rectangular windows, exponential windows (for-
getting factors), etc. For irreducible nonstationary processes,
these results can more accurately evaluate the parameter
estimation accuracy, which has important applications in
practical engineering applications.

When the system parameters are repetitive and inde-
pendent, the instant change system runs repeatedly on a
finite interval, the system parameters change over time, but
the next time, it repeats this change, the instant change
parameter to a repetition invariant. “Recursive” algorithms
are constructed along the repetition axis, and the learning
algorithm gives its complete estimates regardless of pa-
rameter slow change, fast change, and even mutation
[22, 23]. However, in practical situations, there are often
system parameters that change not only along the time
domain but also with the number of iterations, that is, it-
eration dependence. If the time-varying parameter changes
with the number of iterations are unknown, then similar to
the recurrence algorithm, the iterative learning identification
algorithm based on the principle of repeated invariant
cannot track the system parameters effectively. We consider
introducing the forgetting factor in the iterative learning
algorithm and propose the forgetting gradient learning al-
gorithm to estimate the iteration-dependent time-dependent
system parameters. -en, under the premise of satisfying the
repeated continuous incentive conditions, the performance
analysis of the proposed algorithm is used and the simu-
lation examples are completed to illustrate the effectiveness
of the forgetting gradient learning algorithm.

2. Description of the Problem

Actual robot servo systems are mostly continuous nonlinear
time-varying coupling processes, considering the following
systems:

y
(n)

(t) � f y(t), _y(t), · · · , y
(n− 1)

(t), u(t), _u(t), · · · ,

u
(m)

(t), t + ξ(t),
(1)

where u stands for input and y for output, and ξ(t) rep-
resents external disturbances.

With the development of computer control technology,
the analysis and synthesis process of the robot servo system
needs a sampling model. -e following discrete nonlinear
time-varying coupling processes are also considered:

y(k + 1) � f(y(k), y(k − 1), · · · , y(k − n), u(k),

u(k − 1), · · · , u(k − m), k) + ξ(k).
(2)

Here, we consider relaxing the initial condition that
f(0, 0, · · · , 0, t)∧f(0, 0, · · · , 0, k) can be arbitrary values.

-e goal of this paper is to build a sampling feature
model for a robot servo system. For iteration-dependent and
time-varying feature parameters in the model, the amnestic
gradient learning algorithm is used to estimate them. To
further validate the effectiveness of the proposed learning
algorithm, the random process theory is used to analyze the
model and a numerical example is given to verify the ef-
fectiveness of the proposed algorithm.

-e rest of this paper is arranged as follows: the third part
establishes the sampling characteristic model of the servo
system, the fourth part puts forward the forgotten gradient
learning algorithm, the fifth part gives the convergence
analysis process of the learning algorithm, the sixth part
verifies by numerical examples, and the seventh part gives
the conclusion of this paper.

3. Characteristic Modeling for the Servo System

We consider the following discrete nonlinear system:

y(k + 1) � f(y(k), y(k − 1), · · · , y(k − n), u(k), u(k − 1), · · · , u(k − m), k)

−f(0, y(k − 1), · · · , y(k − n), u(k), u(k − 1), · · · , u(k − m), k)

+f(0, y(k − 1), · · · , y(k − n), u(k), u(k − 1), · · · , u(k − m), k)

−f(0, 0, · · · , 0, k) + f(0, 0, · · · , 0, k) + ξ(k)

�
zf(·)

zy(k)
y(k) +

zf(·)

zy(k − 1)
y(k − 1) + · · ·

zf(·)

zu(k − m)
u(k − m)

� φT
(k)θ(k) + v(k),

(3)
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where
φ(k) � [y(k), y(k − 1), · · · , u(k − m)], θ(k) � [(zf(·)/zy

(k)), (zf(·)/zy(k − 1)), · · · , (zf(·)/zu(k − m))], v(k) �

f(0, 0 , · · · , 0, k) + ξ(k); in the same way, we can obtain the
following:

y
(n)

(t) �
zf(·)

zy(t)
y(t) +

zf(·)

z _y(t)
_y(t) + · · ·

zf(·)

zu
(m)

(t)
u

(m)
(t)

+ f(0, 0, · · · , 0, t) + ξ(t),

(4)

which denotes ai(t) � (zf(·)/zy(i)(t)), bi(t) � (zf(·)/zy(j)

(t)), where i � 0, 1, · · · , n; j � 0, 1, · · · , m, then

y
(n)

(t) � 

n

i�0
ai(t)y

(i)
(t) + 

m

j�0
bj(t)u

(j)
(t)

+ f(0, 0, · · · , 0, t) + ξ(t).

(5)

-e characteristic modeling method establishes a
characteristic model for a nonlinear higher-order system by
compressing the characteristic information to the charac-
teristic parameters. Obviously, the lower the order of the
characteristic model, the faster the change of the feature
parameters. We consider building a first-order sampling
characteristic model for the controlled system [7], and we
can see that

y(k + 1) � a(k)y(k) + b(k)u(k) + v(k). (6)

In general, we can also set up second-order and third-
order sampling feature models of the controlled system, that
is, formula (5) can be written into formula (3).

3.1. Forgetting Gradient Learning Algorithm. We consider
the following single-input single-output (SISO) discrete
time-varying system repetitively operates over a prespecified
finite time interval:

A q
−1

, k, t yk(t) � B q
−1

, k, t uk(t) + vk(t), (7)

where t � (0, 1, · · · , N) denotes time domain, and k �

(1, 2, · · ·) denotes iteration domain. uk(t) and yk(t) represent
the input and output of the system, respectively. vk(t) is the
interference variable. A(q−1, k, t) and B(q−1, k, t) are time-
varyingpolynomialsof shiftoperatorsofSISOdiscrete systems,
where A(q−1, k, t) � 1 + a1,k(t) + a2,k(t) + · · · + ana,k(t) and
B(q−1, k, t) � b1,k(t) + b2,k(t) + · · · + bnb,k(t). a1,k(t), a2,k(t),

· · · , ana,k(t) and b1,k(t), b2,k(t), · · · , bnb,k(t) are the unknown
parameters. We denote φk(t) � [−yk(t − 1), −yk (t − 2), · · · ,

−yk(t − na), uk(t − 1), uk(t − 2), · · · , uk (t − nb)]T,θk(t) � [a

1,k(t), a2,k(t), · · · , ana,k(t), b1,k(t), b2,k(t), · · · , bnb,k(t)]T, and
n � na + nb.

Equation (6) can be rewritten into the following re-
gression model:

yk(t) � φT
k (t)θk(t) + vk(t). (8)

Similar to the stochastic gradient algorithm, a forgetting
gradient learning algorithm for identifying iteratively de-
pendent time-varying systems is presented:

θk(t) � θk−1(t) +
φk(t)

rk(t)
yk(t) − φT

k (t)θk−1(t) , (9)

rk(t) � λrk−1(t) + φk(t)
����

����
2
. (10)

3.2. Convergence Analysis of Forgetting Gradient Algorithm.
-e learning algorithm obtains parameter estimation based
on the input and output data obtained when the system runs
repeatedly in the operating interval. Because the operating
interval is limited, we cannot obtain the convergence
analysis results in the conventional sense. Only repetitive
convergence results can be obtained. -at is, for t ∈ 0, 1,{

· · · , N − 1}, the corresponding convergence classification is
as follows

Repetitive consistency:

lim
k⟶∞

θk(t) � θ(t), a.s. (11)

Repetitive boundedness:

lim
k⟶∞
Ε θk(t) − θk(t)

����
����
2
≤ ε<∞, a.s. (12)

When the system parameters are iteratively independent,
using the learning algorithm, we can obtain the repeated
consistency convergence results of the parameters.When the
system parameters are iteratively dependent, we analyze the
convergence performance of the forgetting gradient learning
algorithm represented by equations (9) and (10).

For fixed time t ∈ 0, 1, · · · , N − 1{ }, Fk(t) is denoted as a
σ algebra consisting of the input and output data obtained by
k repeated operations. In order to analyze the convergence of
the proposed learning algorithm, the following assumptions
are derived.

Hypothesis 1. vk(t) satisfies

E vk(t) Fk−1(t)
  � 0, a.s. (13)

Hypothesis 2. -ere exists uniformly bounded σv(t) with
respect to t such that

E v
2
k(t) Fk−1(t)

 ≤ σ2v, a.s. (14)

Hypothesis 3. -e following repetitive persistent excitation
conditions are established:

α(t)I≤
1
N



N

i�1
φk+iφ

T
k+i ≤ β(t)I, a.s, (15)

where both α(t) and β(t)>0, N>n.
From formula (10), we obtain as follows:

rk(t) � λrk−1(t) + φk(t)
����

����
2

� 
k

i�1
λk−i φi(t)

����
����
2

+λk
r0(t). (16)

-en,
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Nrk(t)�N
k

i�1
λk−i φi(t)

����
����
2
+Nλk

r0(t)

≤
k

i�1
λk−i φi(t)

����
����
2
+

k

i�0
λk−i φi(t)

����
����
2
+···

+ 
k

i�2−N

λk−i φi(t)
����

����
2
+Nλk

r0(t)

≤
k

i�1
λk−i



N−1

l�0
φi−l(t)

����
����
2⎡⎣ ⎤⎦+ φk(t)

����
����
2
+

1

i�0
λi φk−i(t)

����
����
2

+···+ 
N−2

i�0
λi φk−i(t)

����
����
2
+Nλk

r0(t),

(17)

where Hypothesis 3 is satisfied, 
N−1
l�0 λi‖φi− l(t)‖2 ≤ nNβ,

then

Nrk(t)≤ nNβ
k

i�1
λk−i

+ φk(t)
����

����
2

+ 
1

i�0
φk−i(t)

����
����
2

+ · · · 
N−2

i�0
φk−i(t)

����
����
2

+ Nλk
r0(t)

≤ nNβ
k

i�1
λk− i

+(N − 1)nNβ + Nλk
r0(t)

�
1 − λk

1 − λ
nNβ +(N − 1)nNβ + Nλk

r0(t),

(18)

i.e.,

rk(t)≤
1 − λk

1 − λ
nβ +(N − 1)nβ + λk

r0(t). (19)

Take limit of both sides of this inequality

lim
k⟶∞

rk(t)≤
1

1 − λ
nβ +(N − 1)nβ

�
nNβ − λ(N − 1)nβ

1 − λ
.

(20)

For system (6), we define the transitionmatrix as follows:

Lk+1,k(t) � I −
φk(t)φT

k (t)

rk(t)
 . (21)

-e upper bound of λmax[LT
k+N,k(t)Lk+N,k(t)] is then

solved, and this bound is denoted as A(t). Let xk(t) be the
unit eigenvector corresponding to the maximum eigenvalue

λmax(t) of the matrix LT
k+N,k(t)Lk+N,k(t), and we construct

the difference equation

xk+1(t) � I −
φk(t)φT

k (t)

rk(t)
 xk(t), (22)

then xk+N(t) � Lk+N,k(t)xk(t)

Taking norm on both sides of the abovementioned
equation, and it follows that ‖xk+N(t)‖2 � xT

k (t)LT
k+N,k(t)

Lk+N,k(t)xk(t)≤A(t), according to (22) and rk(t)>
‖φk(t)‖2,

x
T
k+1(t)xk+1(t) � x

T
k (t) I − 2

φk(t)φT
k (t)

rk(t)
+

φk(t)φT
k (t)

rk(t)
 

2
⎡⎣ ⎤⎦xk(t)

≤ x
T
k (t) I − 2

φk(t)φT
k (t)

rk(t)
+
φk(t)φT

k (t)

rk(t)
 xk(t)

≤ x
T
k (t)xk(t) −

φT
k (t)xk(t)

����
����
2

rk(t)
.

(23)

We transpose both sides of this inequality and that

φT
k (t)xk(t)

����
����
2

rk(t)
≤ xk(t)

����
����
2

− xk+1(t)
����

����
2
, (24)

then



N−1

i�0

φT
k+i(t)xk+i(t)

����
����
2

rk+i(t)
≤ xk(t)

����
����
2

− xk+N(t)
����

����
2 ≤ 1 − A(t),

(25)

for any i ∈ [0, N − 1],

xk+i(t) − xk(t)
����

���� � 
i−1

j�0

φk+i(t)φT
k+j(t)

rk+j(t)
xk+j(t)

����������

����������

≤ 

i−1

j�0

φk+i(t)
������
rk+j(t)



������������

������������

φT
k+j(t)xk+j(t)

������
rk+j(t)



������������

������������

≤
����������
i(1 − A(t))


.

(26)

Taking trace to repetitive excitation condition A3), we
obtain as follows:



N−1

i�0
φk+i(t)

����
����
2 ≤ nNβ, a.s. (27)

In the condition (A3), we multiply xT
k (t) to the left and

xk(t) to the right and use the formulas (15), (19)–(22) to
obtain as follows:
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αN≤xT
k (t) 

N−1

i�0
φk+i(t)φT

k+j(t)xk(t)

≤

���������������

nNβ−λ(N−1)nβ
1−λ



x
T
k (t) 

N−1

i�0

φk+i(t)φT
k+j(t)

������
rk+i(t)

 xk(t)−x
T
k (t) 

N−1

i�0

φk+i(t)φT
k+j(t)

������
rk+i(t)

 xk+i(t)+x
T
k (t) 

N−1

i�0

φk+i(t)φT
k+j(t)

������
rk+i(t)

 xk+i(t)⎡⎢⎣ ⎤⎥⎦

≤

���������������

nNβ−λ(N−1)nβ
1−λ



x
T
k (t) 

N−1

i�0

φk+i(t)φT
k+j(t)

������
rk+i(t)

 xk(t)−xk+i(t)( 

����������

����������
+ x

T
k (t) 

N−1

i�0

φk+i(t)φT
k+j(t)

������
rk+i(t)



����������

����������
xk+i(t)⎡⎢⎢⎣ ⎤⎥⎥⎦

≤

���������������

nNβ−λ(N−1)nβ
1−λ



x
T
k (t)

����
���� 

N−1

i�0

φk+i(t)φT
k+j(t)

������
rk+i(t)



����������

����������
xk(t)−xk+i(t)

����
����+ x

T
k (t)

����
���� 

N−1

i�0
φk+i(t)

φT
k+j(t)
������
rk+i(t)

 xk+i(t)

����������

����������

⎡⎢⎢⎣ ⎤⎥⎥⎦

≤

���������������

nNβ−λ(N−1)nβ
1−λ


����

nNβ
 ��������

N(N−1)

2


�������
1−A(t)


+

����

nNβ
 �������

1−A(t)


 .

(28)

It is derived as follows:

A(t)≤ 1 −
(1 − λ)α2N

((1/N) + 2(
����������
(N − 1/2N)


) +(N − 1/2)) n

2
Nβ2 − λn

2
Nβ2 + λn

2β2 
. (29)

Lemma 1. Let the nonnegative sequence xk(t), ak(t), bk(t)

satisfy the following relation:

xk+1(t)≤ 1 − ak(t)( xk(t) + bk(t), (30)

where ak(t) ∈ ([0, 1]), 
∞
k�1 ak(t) �∞, xk(0)<∞, then

lim
k⟶∞

xk(t)≤
bk(t)

ak(t)
, (31)

where the right limit is assumed to exist.

Suppose the observed noise vk(t) and the parameter iter-
ation-dependent system parameter change rate ωk(t) � θk(t) −

θk−1(t) are zero-mean random noise sequences unrelated to the
input uk(t) and the following relationships are satisfied:

(A2) Ε vk(t)  � 0,Ε ωk(t)  � 0,Ε vk(t)ωk(i)  � 0,

(A3) Ε vk(t)vk(i) 

(A4)

Ε v
2
k(t)  � σ2v(t)≤ σ2v <∞,

Ε ωk(t)
����

����
2

  � σ2ω(t)≤ σ2ω <∞.

(32)

If PE condition (A1) is satisfied, the parameter estimation
error θk(t) − θk(t) given by the forgotten gradient learning
algorithm is repetitively bounded, which is solved below.

Solution: Define the parameter estimation error vector

θk(t) � θk(t) − θk(t). (33)

We assume θ0(t) is independent of vk(t), and
E[‖θ0(t)‖2]<∞, it can be obtained by using the formulas (7)
and (9).
θk(t) � θk−1(t) − θk(t) + θk−1(t) − θk−1(t)

+
φk(t)

rk(t)
φT

k (t)θk(t) + vk(t) − φT
k (t)θk−1(t) ,

� θk−1(t) − ωk(t) −
φk(t)φT

k (t)

rk(t)
θk−1(t)

+
φk(t)φT

k (t)

rk(t)
ωk(t) +

φk(t)

rk(t)
vk(t),

� I −
φk(t)φT

k (t)

rk(t)
 θk−1(t) − I −

φk(t)φT
k (t)

rk(t)
 ωk(t)

+
φk(t)

rk(t)
vk(t),

� Lk+1,k−N+1(t)θk−N(t) − 
N

i�0
Lk+1,k−i+1(t)ωk−i(t)

+ 
N−1

i�0
Lk+1,k−i+1(t)

φk−i(t)

rk−i(t)
vk−i(t).

(34)

Taking norms on both sides of formula (34)
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θk(t)
����

����
2 ≤ θ

T
k−N(t)L

T
k+1,k−N+1(t)Lk+1,k−N+1(t)θk−N(t)

+ 2θ
T
k−N(t)L

T
k+1,k−N+1(t) 

N−1

i�0
Lk+1,k−i+1(t)

φk−i(t)

rk−i(t)
vk−i(t)⎡⎣

− 
N

i�0
Lk+1,k−i+1(t)ωk−i(t)⎤⎦

+ 
N− 1

i�0
Lk+1,k− i+1(t)

φk− i(t)

rk−i(t)
vk− i(t) − 

N

i�0
Lk+1,k−i+1(t)ωk−i(t)

���������

���������

2

.

(35)

Taking expectation on both sides of formula (35),

Ε θk(t)
����

����
2

 ≤A(t)Ε θk−N(t)
����

����
2
+N 

N−1

i�0
A(t)

φk−i(t)
����

����
2

rk−i(t)
����

����
2 vk−i(t)
����

����
2

+(N+1)

N

i�0
A(t) ωk−i(t)

����
����
2

≤A(t)Ε θk−N(t)
����

����
2
+N 

N−1

i�0
A(t)

1
rk−i(t)

σ2v

+(N+1)
N

i�0
A(t)σ2ω

≤A(t)Ε θk−N(t)
����

����
2
+N

2
A(t)

1−λ
λN−1

nα
σ2v

+N(N+1)A(t)σ2ω.

(36)

From Lemma 1 and A(t)< 1, it is derived as follows:

Ε θk(t)
����

����
2

 ≤
N

2 1−λ/λN−1
nα σ2v +N(N+1)σ2ω
1−A(t)

≤
1+2N

����������
(N−1/2N)


+ N

2
−N/2 

(1−λ)α2

n
2
Nβ2−λn

2
Nβ2+λn

2β2 
1−λ

λN−1
nα

σ2v +N(N+1)σ2ω .

(37)

Here, we give the convergence analysis results of the
forget gradient learning algorithm in the case of parameter
iteration dependence. According to formula (37), we can
obtain the bounded convergence effect of the algorithm, that
is, the parameter bounds converge to the true values and we
give the bounds of the convergence bounds. From formula
(37), when σ2ω � 0, which is equal to the system parameters
iterate independently, we take λ � 1. A random gradient
learning algorithm is obtained.

θk(t) � θk−1(t) +
φk(t)

rk(t)
yk(t) − φT

k (t)θk−1(t) ,

rk(t) � rk−1(t) + φk(t)
����

����
2
.

(38)

In this case, the consistent convergence result of pa-
rameters can be obtained according to formula (37), that is,
the parameter estimation converges completely to the pa-
rameter truth value.

4. Numerical Results

-is section completes numerical examples to demonstrate
that the learning identification algorithm can be used to
estimate time-varying parameters in dynamic systems as
shown in Figures 1 and 2.

Example 1. Consider the following nonlinear system:

_x1 � x2,

_x2 �
1 − e

− x1

1 + e
−x1

+ cos t sin x2u(  + u + _u,

y � x1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

-e expected trajectory is yd(t) � 10(10t3 − 15t4 + 6t5).
Using the sampling feature modeling method provided in
this paper and the adaptive learning control method pro-
vided in reference [7], a first-order sampling feature model is
established. Where the sampling time T� 0.005, the initial
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Figure 1: Input values.
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Figure 2: Parameters estimation.
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Figure 3: Tracking performance.
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Figure 4: -e error with respect to repetition.
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Figure 5: Parameter estimation errors after learning.
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value r� 1; the forgetting factor λ � 0.65, we can obtain as
follows:

Tracking performance is shown in Figure 3.
From the simulation results, using the sampled char-

acteristic modeling method provided in this paper, although
fast time-varying characteristic parameters are obtained, the
output of the system enables efficient tracking of desired
trajectories.

Example 2. Consider the following finite interval time-
varying system.

yk(t + 1) + a1,k(t)yk(t) + a2,k(t)yk(t − 1)

� b1,k(t)uk(t) + b2,k(t)uk(t − 1) + vk(t + 1),

(40)

where

a1,k(t) � −1.5 + 0.1 sin
50
t

  + 0.001
�
k

√
,

a2,k(t) � 0.7 +
0.1t

1000
∗ sin

πt

5
  + 0.001

�
k

√
,

b1,k(t) � 1 + 0.1
sin (2πt/61)

t
+ 0.001

�
k

√
,

b2,k(t) � 0.1 + 0.1
�
t

√
+ 0.001

�
k

√
.

(41)

In the simulation, we set finite interval length N� 1000.
For t � 1, 2, · · · , N, k � 1, 2, · · · , 4000, uk(t) as uniformly
distributed random variables on [-0.5, 0.5], forgetting factor
λ � 0.7, vk(t) � 0.01 randn. Here, randn is the production
function of random variables that obey (0, 1) normal dis-
tribution. In the random dependence learning algorithms

(8) and (9), we set the initial value r0(t) � 1, θ0(t) � 0. To
examine the convergence performance, we define
Jk � max

1≤ t≤N
lg|ek(t)|,ek(t) � yk(t) − φT

k (t)θk−1(t).

-e simulation results are shown in Figure 4–6. -e
prediction error is shown in Figure 4, and the parameter
estimation error is shown in Figure 5, and the parameters
estimate values in Figure 6. It can be seen from Figure 4 that
the prediction error decreases rapidly with the increase of
the number of iterations. In Figure 5, the parameter esti-
mation error asymptotically converges to zero in a small
field, and the simulation results show the uniform con-
vergence of the parameter estimation, which can almost
converge to real values.
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Figure 6: Parameter estimations after learning.
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To demonstrate the effectiveness of the proposed algo-
rithm, the simulation results are compared with stochastic
gradient method appeared in reference [17], where the finite
interval lengthN� 1000 ∗ 4000 and the other conditions are
same to which of the abovementioned simulation.-e errors
with respect to every interval are shown in Figure 7.

Parameter estimation errors after last recursive process and
parameter estimations after last recursive process are shown
in Figures 8 and 9.

From the simulation results, the bounded convergence
result is guaranteed, but the identification result is weaker
than the result of the method presented in this paper.
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Figure 9: Parameter estimations after the last recursive process.

˜ ˜

500 10000
t

500 10000
t

500 10000
t

500 10000
t

-0.2

-0.1

0

0.1

0.2

ã 2

-0.2

0

0.2

0.4

ã 1

0.4

0.6

0.8

1

1.2

b 1

-4

-3

-2

-1

0

b 2

Figure 8: Parameter estimation errors after the last recursive process.
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5. Conclusions

As modeling technology is of great importance to robots for
industrial Internet systems, the proposed sampled charac-
teristic model and forgetting gradient learning identification
method can be used to solve the parameter estimation
problem of time-varying systems running round-trip over
finite intervals. -e forgetting gradient learning algorithm is
derived for time-varying systems under finite-interval repeat
operations. We prove the repetition boundedness of the
learning algorithm under repeated continuous excitation
conditions and give the estimation error bounds given by the
proposed algorithm. -e completed simulations also verify
the effectiveness of the learning algorithm. Further, we
present the convergence analysis results of the stochastic
gradient learning algorithm, which can obtain consistent
convergence results for the parameters when parameter
iterations are independent.-emain purpose of this paper is
to propose this learning identification method and to clarify
the connection and difference between the learning iden-
tification and the existing recursive identification algo-
rithms. For the completeness of the theory and the
expression simplicity, for the consistency analysis of the
learning algorithm, we learn from the mature results of the
learning algorithm. However, there are still differences be-
tween the two algorithms, such as the recurrence algorithm
requires the PE condition along the time domain, while the
learning algorithm requires the repeated PE condition; the
assumption of the convergence consistency of the learning
algorithm and the estimation of the obtained convergence
rate are allowed to depend on time. Systematic results for
recursive identification are presented in literature [17], from
which we can learn for follow-up studies, including the case
of system interference such as colored noise, continuous
excitation, improvements of SPR conditions, and conver-
gence rate estimation.
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