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Existing channel estimation schemes for wideband systems generally estimate the channel matrix by pre-estimating the common
support, which has a limited validity owing to the efect of beam squint. It is worth noting that the learned approximate message
passing (LAMP) network need not pre-estimate the support and has obtained a relatively reliable estimation quality in the
narrowband systems. In order to degrade the performance penalty caused by inaccurate estimation of the support in the wideband
millimeter-wave MIMO systems, a prior-aided Gaussian mixture LAMP (GM-LAMP) network combining with residual learning
is presented. Specifcally, the multicarrier Gaussian mixture threshold shrinkage function is constructed for the GM-LAMP
network, which can directly estimate the wideband beamspace channel while avoiding pre-estimating the support; then,
considering the impact of channel noise and the coarse estimation error by the GM-LAMP, a residual network (ResNet) is
designed to improve the estimation performance. Simulation results validate the efciency of the proposed network (referred to as
GLAMP-ResNet) with the lower computational complexity compared with the existing schemes.

1. Introduction

Beamspace channel estimation is essential for wideband
millimeter-wave (mmWave) Multiple-Input Multiple-Out-
put (MIMO) [1, 2] systems with lens antenna array to select a
small number of dominant beams with larger path gains [3]
and reduce the number of radio-frequency (RF) chains [4]
for the lower hardware cost and power consumption.
However, the efect of beam squint (Beam squint is used to
imply that the support (i.e., the index set of non-zero ele-
ments in a sparse vector) of wideband beamspace channel
tends to be frequency-dependent) [5] brings new challenges
for the beamspace channel estimation, especially under the
wider wideband and the larger number of antennas [6].

By exploiting the sparsity of beamspace channel, the
beamspace channel estimation can be formulated as a sparse

signal recovery problem [7]. Existing channel estimation
schemes for wideband systems generally estimate the
channel matrix under the common support assumption in
frequency domain [8–10], which has a limited validity owing
to the efect of beam squint and inaccurate estimation of
frequency-dependent support. Specifcally, a simultaneous
orthogonal matching pursuit (SOMP)-based method is
presented in [8]. Terein, the channel estimation is
expressed as a multiple measurement vector problem with a
common support (i.e., the channel support at diferent
frequencies is assumed to be the same), which can be solved
by the SOMP algorithm. In 2017, the orthogonal matching
pursuit (OMP)-based algorithm [9] was proposed. It frst
estimates the support of the wideband beamspace channel at
some frequencies independently by the OMP algorithm.
Ten, it combines them into the common support at all
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frequencies. Unfortunately, the common support assump-
tion in [8, 9] has limited validity in the practical wideband
mmWave MIMO systems. To circumvent this problem, the
successive support detection (SSD) algorithm [10] is pro-
posed, where each support is uniquely determined by its
spatial direction at the carrier frequency. Yet, it assumes a
fxed sparsity for diferent frequencies, which will discard
more nonzero elements of the components with greater
sparsity.

Notedly, the studies in [8–10] adopt the scheme of pre-
estimating support to estimate the wideband beamspace
channel. However, therein, diferent frequencies share a
common support and identical sparsity, which is not
completely consistent with the actual channel. It is worth
noting that the learned approximate message passing
(LAMP) network need not pre-estimate the support and has
obtained a relatively reliable estimation quality in the nar-
rowband systems [11, 12]. If we can construct the threshold
shrinkage function (TSF) of the LAMP network for wide-
band systems, the possibility of achieving satisfactory esti-
mation accuracy will increase.

In this paper, a prior-aided Gaussian mixture LAMP
(GM-LAMP)-based network combining with the residual
network (ResNet) is presented, referred to as the GLAMP-
ResNet. Te contributions of this paper can be summarized
as follows:

(1) Te GM-LAMP network is proposed to obtain a
preliminary estimation of the wideband beamspace
channel. In particular, the multicarrier Gaussian
mixture TSF (mcGM-TSF) is constructed in the GM-
LAMP network. Diferent from the channel esti-
mation methods in [8–10], the mcGM-TSF need not
pre-estimate the support, which can degrade the
performance penalty caused by inaccurate estima-
tion of the support in the wideband millimeter-wave
MIMO systems. Furthermore, the mcGM-TSF ex-
ploits the prior information that beamspace channel
elements follow the Gaussian mixture distribution,
which can improve the estimation performance
compared with the traditional TSF of the LAMP
network.

(2) Te ResNet is designed to refne the preliminary
estimation of the GM-LAMP network. Specifcally,
the ResNet contains several residual blocks and each
consists of three convolutional layers, and the basic
idea of ResNet is to learn the mapping from the
output of GM-LAMP to the noise. After training, the
ResNet can further reduce the impact of channel
noise and refne the coarse estimation from the GM-
LAMP network.

(3) Simulation results verify that the proposed GLAMP-
ResNet can achieve better channel estimation per-
formance by normalized mean squared error
(NMSE), which has the comparable computational
complexity, compared with the traditional LAMP
network.

2. System Model

Tis paper considers an uplink wideband mmWave MIMO
system with M subcarriers, as shown in Figure 1, where the
base station (BS) employs a lens antenna array with N

antennas and NRF RF chains to serve K single-antenna
users. To characterize the dispersive wideband mmWave
MIMO channel, the Saleh−Valenzuela multipath channel
model [13, 14] is adopted. Te spatial channel vector hm of a
certain user at subcarrier m can be presented as

hm �

��
N

L

􏽲

􏽘

L

l�1
Ale

− j2πτlfmψ ηl,m􏼐 􏼑, m � 1, 2, · · · M, (1)

where L is the number of paths, Al and τl are the complex
gain and the time delay of the l-th path, respectively, and ηl,m

is the spatial direction at subcarrier m that can be defned as
ηl,m � fm/cd sin αl, where fm � fc + fs/M(m − 1 − M

−1/2) is the frequency of subcarrier m with fc and fs

presenting the carrier frequency and bandwidth, respec-
tively, c is the speed of light, αl is the physical direction, d is
the antenna spacing, and ψ(ηl,m) � 1/

��
N

√
[e− j2πbηl,m ]b∈j(N)

denotes the array steering vector, where
j(N) � j − N + 1/2, j � 1, 2, · · · , N􏼈 􏼉 [15].

Te wideband mmWave MIMO system as Figure 1
employs a lens antenna array to convert spatial channel
into beamspace channel, thereby this mmWave system is
also often referred to as the beamspace MIMO system. Te
role of lens antenna array can be simulated by a spatial
discrete Fourier transformmatrixU ∈ jN×N, whose elements
denote the array steering vectors of N predefned spatial
directions. Specifcally, the U can be expressed as
U � [ψ(η1),ψ(η2), · · · ,ψ(ηn), · · · ,ψ(ηN)]H, where
ηn � 1/N(n − N + 1/2), n � 1, 2, · · · N are the N spatial di-
rections. Ten, the beamspace channel vector 􏽥hm of a certain
user at subcarrier m can be expressed as 􏽥hm � Uhm.

In the uplink channel estimation, the orthogonal pilot
transmission strategy is used and a certain user is considered
without loss of generality. After Q instants of pilot trans-
mission, the received pilot vector at BS after combining, CP
removal, and M point FFT can be presented as

zm � W􏽥hms + Wnm � W􏽥hms + neff
m , (2)

where s is the transmitted pilot symbol, nmjj(0, σ2IN) is the
noise vector with σ2 representing the noise power, neff

m is the
efective noise vector andW of size P × N (P � QNRF) is the
combining matrix, whose elements can be randomly selected
from the set 1/

��
P

√
−1, +1{ } with equal probability if the

adaptive selection network is realized by low-cost 1 bit phase
shifters [16]. Combining all frequencies with assuming s � 1
[10], the overall measurement matrix can be obtained as

Z � W 􏽥H + Neff
, (3)

where Z � [z1, z2j · · · jzM] is the measurement matrix, 􏽥H �

[􏽥h1, 􏽥h2, · · · , 􏽥hM] is the beamspace channel of a certain user,
and Neff � [neff

1 ,neff
2 , · · · ,neff

M ] is the efective noise.
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3. Wideband Beamspace Channel Estimation

3.1. Pre-Estimation Based on GM-LAMP. In the proposed
GM-LAMP network as shown in Figure 2, the overall
measurement matrix Z will be inputted to the AMP network
for training layer parameters under the Gaussian mixture
channel prior assumption (Considering the previous con-
tribution of modeling beamspace channel with the Gaussian
mixture distribution [17]). For the T-layers GM-LAMP
network, the t-th layer channel pre-estimation is as follows:

􏽢􏽥Ht+1′ � ξgm rt; θt; σ
2
t􏼐 􏼑, (4)

where rt � 􏽢􏽥Ht
′ + Atut is one of the layer parameters to be

trained, ut � Z − W 􏽢􏽥Ht
′ + atut−1 + btu∗t−1 for t � 0, 1, · · · , T −

1 with frst-layer inputs 􏽢􏽥H0′ � 0, u−1 � 0, a0 � 0 and b0 � 0.
Te atut−1 and btu∗t−1 are called Onsager correction [18],
which can be obtained by calculating the derivative of ξgm

with respect to rt. It should be noted that rt ∈ j
N×K contains

the channel data of K users and each user has one carrier in
narrowband mmWave systems [11]. However, a single user
has multicarriers in wideband mmWave systems, so the
dimension of rt in (4) is N × M (i.e., rt has the channel
characteristics of M subcarriers). In this paper, the mcGM-
TSF ξgm is constructed to make it suitable for wideband
mmWave systems. Te ξgm in (4) can be presented by

ξgm rt; θt; σ
2
t􏼐 􏼑 �

􏽐
G
g�0pt,g􏽥μt,g rt( 􏼁jj rt; μt,g, σ2t + σ2t,g􏼐 􏼑

􏽐
G
g�0pt,gjj rt; μt,g, σ2t + σ2t,g􏼐 􏼑

, (5)

where σ2t is the noise variance in the t-th layer, G is the
number of Gaussian variables following to the Gaussian
mixture distribution, pt,g, μt,g,and σ2t,g, respectively, repre-
sent the probability, mean, and variance of the g-th Gaussian
variable in the t-th layer; the set of previous distribution
parameters θt � pt,g, μt,g, σ2t,g􏽮 􏽯 is a trainable matrix, gen-
erally called the shrinkage parameters, 􏽥μt,g(rt) and
jj(rt; μt,g, σ2t + σ2t,g) can be expressed as

􏽥μt,g rt( 􏼁 �
σ2tμt,g + σ2t,grt

σ2t + σ2t,g

jj rt; μt,g, σ2t + σ2t,g􏼐 􏼑 �
1

πσ2t,g
e

− rt− μt,g( 􏼁∗ rt− μt,g( 􏼁/σ2t,g ,

(6)

where jj(rt; μt,g, σ2t + σ2t,g) denotes the probability density
function of the g-th Gaussian component in the t-th layer.

By constructing the mcGM-TSF ξg,m as (5) in the GM-
LAMP network, the pre-estimation of wideband beamspace
channel can be obtained by (4). After T iterations, the fnal
output of the GM-LAMP network can be written as 􏽢􏽥H′ � 􏽢􏽥HT

′
.

3.2. ResidualOptimizationBased onResNet. Considering the
impact of channel noise and the coarse estimation error by
the GM-LAMP network, the ResNet is introduced to narrow
the gap between the pre-estimated channel 􏽢􏽥H′ and the label
value 􏽢􏽥H. Compared with some traditional convolutional
neural networks, e.g., AlexNet, VGG, and GoogleNet, the
ResNet has achieved promising performance by introducing
fast links that directly pass the data fow to later layers, which
can ease the training of the neural network. As a result, signal
attenuation caused by multiple stacked nonlinear trans-
formations can be efectively avoided and faster training
speed can be achieved. Terefore, this paper introduces the
ResNet as an important module to further improve the
estimation performance. Te proposed ResNet is composed
of multilevel residual blocks, where each block consists of
convolutional layers and activation function layers as shown
in Figure 3.

In the ofine training phase, 􏽢􏽥H′ and 􏽢􏽥H are the input and
label of the ResNet, respectively, and the corresponding
residual optimization problem can be modelled as

minL(Ψ) � 􏽘
N

n�1
􏽘

M

m�1

􏽢􏽥Hn,m − 􏽥Hn,m‖
2

2,

������ (7)

where Ψ is the optimization variables, also the trainable
parameters, and 􏽢􏽥H is the output of the ResNet.
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3.3. Structure of the Proposed GLAMP-ResNet. In the pro-
posed GLAMP-ResNet scheme as shown in Figure 2, the
number of Gaussian variables in the shrinkage function
ξg,m is set as G � 4, and the mean and variance of all
Gaussian variables are both set as 0 considering the
sparsity of the wideband beamspace channel. Te con-
volution kernels of 7 × 7, 5 × 5, 3 × 3 and the features
mapping of 64, 32, 1 are adapted, respectively, to the frst,
second, and third convolution layer of each residual block
(Te values of the hyper-parameters, such as the size of
the convolution kernels and the number of feature maps
are mainly chosen according to the scale and dimension
of the dataset; furthermore, the trade-of between esti-
mation accuracy and computational complexity also
needs to be considered). In addition, the number of re-
sidual blocks is equal to 3 (considering an attractive
trade-of between the computational complexity and
system performance). Ten, the output of the GLAMP-
ResNet can be written as

􏽢􏽥H � jResNet jGM LAMP At, θt( 􏼁,Ψ( 􏼁, (8)

where jResNet(·) and jGM LAMP(·) are themapping function in
the GM-LAMP network and ResNet, respectively.

4. Simulation Results

In our simulations, a lens antenna array with N � 256 and
NRF � 8 is used. Te number of users and instants of pilot
transmission is set as K � 8 and Q � 16, respectively. Te
channel parameters are set as follows [19, 20]: (1) L � 3; (2)
Aljjj(0, 1) for l � 1, 2, 3; (3) αljj(−π/2, π/2) for l � 1, 2, 3.

In order to better determine the number of GM-LAMP
network layers (T) and the number of residual blocks (F), the
NMSE performance comparison experiments have been
conducted. Te comparison results are shown in Figures 4
and 5, respectively. Relying on the classic AMP network, the
number of T can be determined through the NMSE per-
formance of the AMP network under diferent layers. It can
be seen from Figure 4 that the NMSE performance can
hardly be improved with increasing layers (T) when T is
equal to 8, thereby the optimal number of T is determined as
8. Similarly, the number of residual blocks (F) can be de-
termined by testing the NMSE performance under diferent
number of residual blocks. It can be seen from Figure 5 that
the improvement of NMSE performance reaches one lim-
itation when the number of F is increased to 3, thereby the
number of F is set to 3.

Figure 6 shows the NMSE performance of the proposed
GLAMP-ResNet compared with the existing wideband
beamspace channel estimation algorithms. It can be seen
that the performance of the SOMP algorithm [8] and the
OMP algorithm [9] are inferior, because they both assume
that the support of sparse channel is the same in frequency
domain. In the SSD algorithm [10] the support is difer-
entiated by the spatial direction, thereby the corresponding
performance is signifcantly improved. From another per-
spective, the AMP algorithm introduces the threshold
shrinkage function to pass the approximate channel esti-
mation among diferent layers of the AMP network;
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however, the parameters of diferent layers are fxed, which
induces the limited performance; in contrast, the Learned
AMP (LAMP) can optimize the layer parameters by deep
learning, and the NMSE performance can be improved by
about 4 dB, which has been verifed in this paper; then, the
channel prior information of beamspace channel elements is
exploited as the GM-LAMP algorithm, or the LAMP channel
pre-estimation is combined with residual learning as the
LAMP-ResNet, which can bring 1 dB and 3 dB performance
improvement compared with the LAMP network, respec-
tively; inspired by them, the GLAMP-ResNet is proposed
with the NMSE up to 7 dB compared with the SSD
algorithm.

To further verify the validity and universality of the
GLAMP-ResNet, this paper tests the NMSE performance of
the trained GLAMP-ResNet under diferent number of
subcarriers (M) as Figure 7. It can be seen from Figure 7 that
the NMSE performance is relatively better under M � 512,
because the number of subcarriers in the training set is M �

512. When the number of subcarriers is changed during
online estimation, it is found that the NMSE performance
does not change signifcantly, which indicates that the
NMSE performance of the GLAMP-ResNet is hardly
infuenced by the number of subcarriers. Besides, Figure 8
also verifes the stability of the proposed method under
diferent bandwidth.

For the computational complexity, a single convolu-
tional layer in the ResNet needs the computation as
j(S2V2JinJout) [21, 22], where S and V are the spatial lengths
of the flter and the output feature map, respectively, Jin and
Jout are the number of input and output channels, respec-
tively, and the calculation time of the AMP and GM-LAMP
is comparable to j(TMN); here, T, M, and N are the number
of AMP network layers, subcarriers, and antennas, respec-
tively. Since the product j(TMN) is far larger than

j(S2V2JinJout) in mmWave MIMO systems, the computa-
tional complexity of the GLAMP-ResNet can be approxi-
mated as j(TMN). By contrast, the complexity of both the
OMP and SOMP algorithm can be presented by
j(MPL3Ω3) + j(NMPLΩ), and the complexity of the SSD
algorithm is j(NML) + j(MPLΩ2) + j(MPL2Ω2). Here, Ω
(e.g., Ω � 4) denotes the sparsity level of the beamspace
channel. Tus, the proposed scheme can improve the system
performance without signifcantly increasing the compu-
tational complexity.
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5. Conclusion

Tis paper introduces one GLAMP-ResNet scheme for
wideband beamspace channel estimation in mmWave
MIMO systems, which mainly involves the following works:
(1) constructing the multicarriers Gaussian mixture
threshold shrinkage function for the GM-LAMP network to
pre-estimate the wideband beamspace channel, not the
support, thus the key challenge of channel estimation error
from support estimation bias is avoided; (2) the strategy of
pre-estimation combined with the second denoising can
improve the fnal channel estimation accuracy without
signifcantly increasing computation. Besides, the proposed
channel estimation scheme can be applied in the other
communication systems.
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