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Small objects in traffic scenes are difficult to detect. To improve the accuracy of small object detection using images taken by
unmanned aerial vehicles (UAV), this study proposes a feature-enhancement detection algorithm based on a single shot
multibox detector (SSD), named composite backbone single shot multibox detector (CBSSD), which uses a composite
connection backbone to enhance feature representation. First, to enhance the detection effect of small objects, the lead
backbone network, VGG16, is kept constant, and ResNet50 is added as an assistant backbone network, and the residual
structure in ResNet50 is used to obtain lower feature information. The obtained lower feature information is then fused to the
lead network through feature fusion, allowing the lead network to retain rich lower feature information. Finally, the lower
feature information in the prediction layer increases. The experimental results show that CBSSD has a significantly higher
recognition rate and a lower false detection rate than conventional algorithms, and it still maintains a good detection effect
under low illumination. This is of great significance to small object detection using images taken by UAVs in traffic scenes.
Furthermore, a method to improve the SSD algorithm is proposed.

1. Introduction

Recently, with the rapid development of artificial intelli-
gence, unmanned aerial vehicle (UAV) detection technology
has been widely applied to real traffic scenes [1, 2]. Vehicle
and pedestrian detection, as an important part of UAV
detection technology, is of research significance [3, 4].
Object detection methods can be classified as conventional
machine learning and deep learning methods. Conventional
machine learning methods first preprocess the image, and
then the candidate area is determined using the sliding win-
dow technique. Subsequently, features of the candidate
regions are extracted, and a classifier is used to determine
the classification information of an object to realize object
detection. Common machine learning methods include the
scale-invariant feature transform [5], histogram of oriented
gradient [6], Harr [7], and speeded up robust feature [8].
However, because conventional machine learning methods
are based on the manual design of features, and the process
of feature extraction is too complex, these methods often
face problems, such as poor generalization ability, slow

detection speed, low detection accuracy, and difficulty in
adapting to detection tasks in different scenarios.

To address the abovementioned problems, the general
object detection method based on convolutional neural net-
works (CNNs) has gradually gained research attention. At
present, object detection methods based on deep convolu-
tional networks are classified as two- and single-stage detec-
tion methods. Among the two-stage detection methods, the
Faster R-CNN proposed by Ren et al. [9] has the best perfor-
mance. This network introduces a regional proposal network
(RPN) that can simultaneously predict the object boundary
and object score of each position. After end-to-end training,
high-quality regional suggestions are generated to improve
the detection accuracy of the network. Given the efficiency
issue, the single-stage method was proposed, with represen-
tative methods being you only look once (YOLO) [10] and
the single shot multibox detector (SSD) [11–13]. YOLO uses
the feature graph at the top of the CNN to predict category
confidence and border bias, and it processes the detection
problem as a regression problem, which provides the advan-
tage of fast detection. However, YOLO uses a fully connected
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network, which leads to the loss of spatial information, posi-
tioning errors, and missed object detection, especially a poor
detection effect on small objects, affecting the final detection
accuracy. SSD borrows the Anchor idea in Faster R-CNN
and uses multiple feature maps of different scales for detec-
tion. SSD can detect objects of various sizes because the
receptive fields of each feature map are different. However,
the semantic information of the SSD shallow feature map
is poor; therefore, it is not suitable for small object detection.
To further improve the detection effect of SSD on small
objects, Li et al. [14] proposed a feature fusion SSD (FSSD)
model, which is an enhanced SSD model with a novel light-
weight feature fusion module. This can significantly improve
SSD performance. In the feature fusion module, the features
of different layers are connected at different scales. Some

subsampling blocks generate new feature pyramids, which
are sent to multi-bounding box detectors to predict the final
detection results. Recently, Liu et al. [15] proposed a new
target detection method called the composite backbone net-
work architecture (CBNet). This approach improves the per-
formance of object detectors by combining multiple
identical backbones, and CBNet can be easily integrated into
most of the advanced detectors, thus significantly improving
their performances.

In summary, although object detection technology has
been well developed, problems still arise in the detection of
small objects. To solve this problem, we propose a composite
backbone SSD (CBSSD) object detection method. Based on
the CBNet network, we introduce the ResNet50 [16–18] net-
work as an auxiliary backbone network based on the SSD
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Figure 1: Block diagram of CBSSD algorithm.
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Figure 2: Block diagram of SSD algorithm.
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network. The residual structure was used to improve the fea-
ture extraction ability of the network, retain richer underly-
ing information, and merge deep and shallow features to
improve the detection accuracy of the network.

2. Methods

Based on the CBNet network, the CBSSD method consists of
a lead backbone network SSD and an assistant backbone net-
work ResNet50, as shown in Figure 1.

2.1. Lead Network

2.1.1. Network Structure. In this study, the SSD model with
VGG16 [17, 19, 20] as the main network was selected.
VGG16 is a classical network with a network depth of 16.
It uses 3 × 3 convolution kernels of a single size. The SSD
method is based on the feedforward convolution network,
which generates a set of priori-bounding boxes of fixed sizes
and scores in the priori-bounding boxes of object class
instances and then generates the final detection result
through nonmaximal suppression (NMS) [21, 22]. The first
few network layers are based on the standard architecture
of high-quality image classification, which is called the basic
network. Feature extraction layers, conv8_2, conv9_2,
conv10_2, and conv11_2, were added to the basic network.
SSD differs from YOLO in that SSD performs predictions
on the previously selected five feature maps in addition to
object detection on the final feature map.

Figure 2 shows the schematic of the SSD network predic-
tion. Note that the detection process is not only conducted
on the added feature graph but also on the basic network

feature graphs conv4_3 and conv7 to ensure that the net-
work has a good detection effect on small objects.

2.1.2. Priori-Bounding Box. SSD designs a priori-bounding
box of different quantities, scales, and width-to-height ratios
for each feature graph. These priori-bounding boxes are
composed of a series of object-bounding boxes of fixed
quantity and size generated by certain rules. The specific size
of the priori-bounding box is determined by the scale and
width-to-height ratio, and each layer of the feature map cor-
responds to a scale, which is generated as

sk = smin +
smax − smin
m − 1

k − 1ð Þ, k ∈ 1,m½ �, ð1Þ

where sk represents the scale of the priori-bounding box in
the kth feature graph, smin is 0.2, smax is 0.9, m represents
the number of feature graphs used for detection, and the
value of m is 6 in SSD. Each grid on each layer of the feature
map must set different numbers and sizes of priori-
bounding boxes. In particular, each grid of conv4_3,
conv10_2, and conv11_2 generates four priori-bounding
boxes with a width-to-height ratio ar1 of {1,2,1/2}. conv7,
conv8_ 2, conv9_2 each grid on conv7, conv8_2, and
conv9_2 feature maps produce six priori-bounding boxes
with a width-to-height ratio ar2 of {1,2,1/2,3,1/3}. After
determining the scale and width-to-height ratio, the size of
the priori-bounding box can be obtained as follows:

wa
k = sk

ffiffiffiffiffi
ar ,

p

hak =
skffiffiffiffi
ar

p ,
ð2Þ

where wa
k and hak are the width and height of the priori-

bounding box, respectively, and ar is ar1 or ar2. For the
priori-bounding box with a width-to-height ratio of 1,
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Figure 3: Composite connection backbone: ⨁ is the addition of the elements. Only three layers of composite connections are used in
practice.

Table 1: mAPs of several algorithms on Pascal VOC 2012 datasets.

Method SSD300 FSSD YOLO3 CBSSD

mAP 77.21 78.82 69.33 82.77
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another scale sk′ is added, which can be calculated as

sk′ =
ffiffiffiffiffiffiffiffiffiffiffi
sksk+1

p
: ð3Þ

In SSD, the number of priori-bounding boxes in the first
detection layer is 38 × 38 × 4 = 5776, 19 × 19 × 6 = 2166, 10
× 10 × 6 = 600, 5 × 5 × 6 = 150, 3 × 3 × 4 = 36, and 1 × 1 × 4
= 4. In total, the network outputs 5776 + 2166 + 600 + 150
+ 36 + 4 = 8732 priori-bounding boxes.

2.2. Composite Backbone Network. The objects in UAV
images are mostly small and are subject to severe fuzzy
and texture distortion problems and obscure features. Thus,
it is difficult for some networks to extract key feature infor-
mation and influence the recognition ability of classifiers.
Therefore, based on CBNet [23], a composite backbone net-
work was proposed, which combines two public backbone
networks. Moreover, ResNet50, which can better maintain
the details of the lower layer, was selected as the assistant
backbone network. By maintaining the lead backbone net-
work, the lower features extracted by ResNet50 are fused
layer-by-layer into the VGG16 lead backbone network. The
feature layer obtained after fusion is replaced by the original
feature layer of the lead backbone network as a new feature
layer for the next convolution step (Figure 3).

In the assistant backbone network, the result of each
phase can be considered as a higher-level feature. The output
of each feature level is part of the lead backbone input and
flows to the parallel phase of the subsequent backbone. In
this manner, multiple higher and lower features are fused
to produce richer feature representations. This process can
be expressed as follows:

Fout = Fl ⨁ Fa, ð4Þ

FOUT = ε Foutð Þ, ð5Þ
where⨁ represents element addition, Fl represents the out-
put features of the lead backbone at the current stage, Fa
represents the output features of the assistant backbone,
Fout represents the display feature fusion results, and FOUT
is the input value of the next layer of the lead backbone.
The process from Fout – FOUT is tuned via channels. As
shown in Equation (5), ε acts as a 1 × 1 convolution opera-
tion. In theory, this composite connection method can be
used at the trunk layer, and our experiment used the most
basic and useful composite connection method. This shows
that the proposed composite connection method is not lim-
ited by the feature size. To simplify the operations, 150 ×
150, 75 × 75 and 38 × 38 feature layers were selected on the

lead backbone corresponding to the output of the three-
layer ResNet50.

2.3. Loss Function. The positive and negative sample genera-
tion rule of the SSD involves the calculation of the intersec-
tion over union (IOU) of each real-bounding box and all
priori-bounding boxes and the matching of the priori-
bounding box with the largest IOU value with the real-
bounding box. For the other unmatched priori-bounding
boxes, when their IOU exceeds the threshold of 0.5, the
priori-bounding boxes are matched with the real-bounding
boxes. If the IOU of a certain priori-bounding box and those
of all real-bounding boxes exceed 0.5, the real-bounding box
with the largest IOU is matched with the priori-bounding
box. The priori-bounding boxes matched with the real-
bounding boxes were set as positive samples, and the
unmatched boxes were set as negative samples. As the net-
work performs forward calculation, 8732 priori-bounding
boxes are generated, most of which are negative samples.
This results in an imbalance between the positive and nega-
tive samples. As a result, when calculating loss, negative
samples occupy a large proportion, making it difficult for
the model to converge. Therefore, after matching, a difficult
sample-mining strategy is used to control the ratio of posi-
tive to negative samples at 1 : 3 and input the samples into
the network for training.

The loss function selected in this study was the same as
that used in the conventional SSD network, which is the
weighted sum of positioning loss (smooth L1 [24–26]) and
confidence loss (Softmax [27–29]), as expressed by

L x, c, l, gð Þ = 1
N

Lconf x, cð Þ + αLloc x, l, gð Þð Þ, ð6Þ

where x is the matching result of the prediction-bounding
box and the real-bounding box of different categories, c is
the category confidence information of the prediction-
bounding box, l is the location information of the
prediction-bounding box, and g is the location of the real
enclosure. N represents the number of matched priori-
bounding boxes. When N = 0, the total loss is 0. α is the
weight coefficient, Lloc ðx, l, gÞ is the position loss, and Lconf
ðx, cÞ is the classified loss. The position loss is a smooth L1
loss between the prediction-bounding box and the real-
bounding box, as expressed by

Lloc x, l, gð Þ = 〠
N

i∈Pos
〠

m∈ cx,cy,w,hf g
xkijsmoothL1 lmi − ĝmj

� �
, ð7Þ

Table 2: mAPs of different networks on the Visdrone2019 datasets.

Method mAP Car Van Bus Truck Motor Tricycle People Pedestrian Bicycle Awning-tricycle Ignored regions Others

SSD300 11.47 0.43 0.21 0.26 0.21 0.08 0.05 0.04 0.07 0.00 0.02 0.00 0.01

FSSD 11.65 0.41 0.22 0.25 0.20 0.08 0.08 0.05 0.06 0.01 0.04 0.00 0.00

YOLO3 14.21 0.46 0.26 0.30 0.26 0.11 0.09 0.06 0.09 0.02 0.04 0.00 0.02

CBSSD 19.00 0.61 0.26 0.35 0.26 0.21 0.13 0.15 0.21 0.04 0.05 0.00 0.00
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where xkij represents whether the ith prediction-bounding
box and the jth real-bounding box match in category k. If
they match, the value is 1; if they do not match, the value
is 0. Similar to Faster R-CNN, SSD performs regression on
the central coordinate (cx, cy), width w, and offset of height
h of the priori-bounding box. The calculation method is
expressed by the following:

ĝcxj =
gcx
j − dcxi

� �
dwi

,

ĝcyj =
gcy
j − dcyi

� �
dhi

,

ĝwj = log
gw
j

dwi

� �
,

ĝhj = log
ghj
dhi

 !
:

ð8Þ

The classic Softmax loss was used for loss classification,
as expressed by

Lconf x, cð Þ = − 〠
N

i∈Pos
xpij log ĉpi

� �
− 〠

i∈Neg

log ĉ0i
� �

whereĉpi =
exp cpi

� �
∑pexp cpi

� � ,
ð9Þ

where xpij represents whether the ith prediction-bounding
box and the jth real-bounding box match in category P. If
they match, the value is 1; if they do not match, the value
is 0. In ĉpi = exp ðcpi Þ/∑p exp ðcpi Þ, cpi represents the prediction
probability of the ith prediction-bounding box in category P,
and ĉ0i represents the probability that there is no object in the
prediction-bounding box.

3. Experiment

3.1. Implementation Details. The proposed framework uses a
composite connection of VGG16 and ResNet50 as the back-
bone. In the training phase, the learning rate of the first 50
epochs was set as 5 × 10e−4, and the learning rate was auto-
matically reduced by 50% when the loss function did not
decrease by more than three times. The initial learning rate
of the training for more than 50 epochs was set as 10e-4,
and the learning rate was automatically reduced by 50%
when the loss function did not decrease by more than three
times. The training was completed when the loss function
did not decrease after three attempts at lowering the learning
rate. The experimental environment used in this study was
as follows: CPU was Intel I5-9400F; the main frequency
was 2.90GHz (six cores); 16GB memory; GPU was
RTX2060Super; the operating system was 64-bit Windows;
and the machine learning framework was Tensorflow2.3.

3.2. The Datasets. Two datasets were used in this study: Pas-
cal VOC 2012 datasets [30] for testing the feasibility of the
network and Visdrone2019 UAV aerial photography data-
sets [31] for training.

3.2.1. Pascal VOC2012 Datasets. As one of the benchmark
datasets, Pascal VOC2012 has frequently been used in object
detection, image segmentation experiments, and model
effect evaluations. The datasets consist of four major catego-
ries and 20 subcategories, with 17125 images, including
images and test images.

3.2.2. Visdrone2019 Aerial Datasets. The Visdrone2019
aerial datasets are low-altitude aerial datasets, mostly used
for small object detection. There are 13 types of objects in
the datasets and 7,634 images in the datasets. Most of the
images in the datasets are traffic maps, which contain dense
small objects.

3.3. Performance Inspection. In this study, the mean average
precision (mAP) was used to evaluate the quality of the
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Figure 4: Average precision (AP) of different algorithms on Visdrone2019 datasets.
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model. A larger mAP indicates a higher detection
performance.

The calculation methods for mAP are expressed by the
following:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

AP =
∑Precision
AllImage

,

mAP =
AP

Class num
,

ð10Þ

where TP represents the number of accurately predicted tar-
get boxes, FP represents the number of target boxes that
failed to predict, FN represents the number of missed
ground truths, and AP represents the average precision.

3.4. Performance Test. To test the detection effect of the pro-
posed network, a performance test was conducted using the
Pascal VOC 2012 datasets, and the performance was com-
pared with conventional object detection algorithms. The
experimental results revealed that the proposed network
outperformed several conventional object detection algo-
rithms in terms of mAP. As shown in Table 1, the proposed
algorithm demonstrated the highest mAP, thus confirming
its superior feasibility.

3.5. Training. To verify the detection effect of the proposed
network on small objects, training was conducted using the
Visdrone2019 UAV aerial photography datasets, and the
performance of the proposed CBSSD algorithm was com-
pared with the conventional object detection algorithm.
Experimental data show that the proposed algorithm exhib-

ited a significant improvement over the original network in
terms of mAP. As shown in Table 2, the detection accuracy
was improved by 7.5% compared with the original algo-
rithm, and the improvement rate was as high as 65%. The
improvement was therefore confirmed.

As shown in Figure 4, CBSSD has advantages in detec-
tion accuracy for each category of objects, especially for
small objects.

Figure 5 shows the detection results of the CBSSD on the
Visdrone2019 datasets. As shown in the figure, CBSSD can
maintain high performance despite dense and blurred
images and uneven lighting.

Figure 6 shows a comparison of the detection results
between the CBSSD algorithm and the classical detection
algorithm. The figure shows that the CBSSD algorithm has
a better detection effect than several classical object detection
algorithms.

The CBSSD algorithm has a significant effect on dense
small object detection, as shown in Figure 7. Unmanned
aerial images are an important feature of many small objects,
and the general algorithm for this type of object detection
exhibits a lower performance, because the characteristics of
the figure for this type of object in information loss are seri-
ous. CBSSD maintains the characteristic diagram with more
low-level detail information; therefore, for this type of
object, the detection effect is better.

The CBSSD algorithm still has good detection effects for
images with weak light intensities and uneven lighting, as
shown in Figure 8. CBSSD is also excellent in low-light envi-
ronments, where the object texture is distorted, which makes
detection more difficult.

In summary, the experiments showed that the detection
accuracy of the proposed CBSSD algorithm significantly
improved. Object detection and recognition were signifi-
cantly increased, recognition accuracy significantly
improved, and error detection reduced. For dense small

Figure 5: Results of CBSSD on Visdrone2019 datasets.
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(a) SSD (b) FSSD

(c) YOLO3 (d) CBSSD

Figure 6: Comparison of confidence between CBSSD and classical object detection algorithms.
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(a) SSD (b) FSSD

(c) YOLO3 (d) CBSSD

Figure 7: Comparison of dense object detection effect between CBSSD and classical object detection algorithm.
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(a) SSD (b) FSSD

Figure 8: Continued.
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objects, the detection effect was significantly enhanced. In
particular, in the case of uneven lighting, fuzzy still main-
tained a good detection effect.

4. Conclusion

This study analyzed the problems associated with small
object detection from UAV aerial images. By combining
the existing feature extraction trunk in the form of a com-
posite connection, a trunk with stronger feature expression
ability is proposed, which solves the problem of poor moni-
toring when UAV aerial images were captured in dense,
fuzzy, and uneven light. The experimental results showed
that, compared with other algorithms, the proposed CBSSD
algorithm significantly improved the detection effect of small
objects in UAV aerial images. Hence, UAV aerial image
detection technology can be better applied to traffic scenes.
Moreover, an improvement method for the SSD algorithm
was proposed.

In the future, a clustering algorithm will be used to clus-
ter the size of feature-bounding boxes suitable for an SSD
network, to solve the problems associated with manually set-
ting the size of feature-bounding boxes in the SSD network,
and to further increase the detection effect of small objects.
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