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Component corrosion is one of the potential safety hazards in transmission lines in mining areas. In order to solve the problem of
poor detection accuracy caused by the large proportion of small targets and complex background in the current distant view
corrosion inspection task by UAV, we propose a PWR-YOLOV5 detection method for corrosion components based on the
YOLOV5 algorithm. Firstly, a new feature fusion network, WA-PANet, is reconstructed on the basis of the path aggregation
network (PANet) to make full use of the features at di�erent stages and advance the detection accuracy of small targets in distant
view by deepening the process of feature fusion and introducing the skip layer connections and adaptive feature fusion factors.
Secondly, the pyramid split attention (PSA) module is introduced into the deep layers of the network to highlight the feature
expression of corrosion targets and enhance the ability to detect pixel-level objects. �en, we construct a receptive feature
enhancement network (RFENet), which can heighten the feature fusion e�ect of the WA-PANet and alleviate the problem of the
feature expression ability weakening due to the fusion of di�erent receptive �eld features. Finally, the EIoU Loss is adopted to
optimize the loss function and improve the positioning accuracy of the bounding box. �e experimental results show that the
mAP of the PWR-YOLOV5 algorithm can reach up to 95.37%, which is 5.22% higher than YOLOV5, and the detection speed is
64.9FPS. Compared with the algorithms such as YOLOV4, Faster R-CNN, and YOLOX, the improved algorithm has better overall
detection performance for the corrosion components of transmission lines in the mining area.

1. Introduction

At present, mineral security has risen to the level of a na-
tional strategy [1]. As an important branch of the national
power system, the maintenance of the power supply system
in mining areas plays a key role in the safety of mineral
production work. Transmission lines in mining areas are
mostly erected between mountains, rivers, and hills, and the
climate is humid. Antivibration hammers, insulators, and
other metal components are prone to rust on account of
exposure to a harsh environment for long term and may
even cause power supply faults such as components falling
and line breakage, which will a�ect the normal operation of
the power system in the mining area and seriously threaten
the mineral security [2]. �erefore, it is necessary to e�ec-
tively recognize and detect the corrosion £aws of trans-
mission line components and timely �nd rust spots and

repair corrosion problems, so as to ensure the safe and stable
running of the power supply equipment in mining areas.

With Jones in [3] and Araar et al. in [4] introducing
small unmanned aerial vehicles (UAV) into the inspection
task of transmission lines, the inspection method of “UAV
inspection +manual processing” appeared. A UAV was used
instead of manual work to collect images, which could
greatly reduce front-end labor costs. However, the way of
manual detection was greatly in£uenced by subjective
consciousness, resulting in serious missed and false detec-
tion [5].�e rapid development of computer technology had
realized the combination of computational pattern recog-
nition and power supply system inspection tasks, and then, a
new inspection method of “UAV inspection + image pro-
cessing” came into being [6]. In the task of detecting the
corrosion components by using image processing technol-
ogy, Recky and Leberl [7] used color space combined with a
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k-nearest neighbor window to realize the detection of
corrosion defects. A detection method for corrosion flaws of
antivibration hammers was given in [8] by introducing
histogram equalization, median filtering, morphological
processing, and the RGB color model. *e authors of [9]
studied the color and texture features of corrosion images
and applied the HSI color model and grey level co-occur-
rence matrix to identify corroded areas of images. Huang
et al. [10], respectively, adopted edge features’ enhancement
algorithms such as local difference and anisotropic Gaussian
kernel directional derivative, and threshold segmentation
and morphological processing techniques on grayscale
images to obtain the corrosion area ratio and color shadow
index of antivibration hammers, which realized the classi-
fication of corrosion grade. On the basis of texture features
of images, the authors in [11] also combined Fourier
transform and multiple color models to distinguish corro-
sion areas. *e methods mentioned above improve the
accuracy of corrosion detection to a certain extent, but they
are only applicable to detecting corrosion components with
a relatively simple background, sparse target distribution,
and obvious edge features.

In recent years, machine learning has developed rapidly
owing to the successive optimization of calculation capacity
and computational overhead. In [12], the authors extracted
color, gradient amplitude, and direction histogram, respec-
tively, by letting the aggregation channel feature algorithm to
build amultiscale ACF pyramid and also integrated it with the
AdaBoost classifier, Graph Cuts algorithm, and RGB color
model to judge whether the antivibration hammers were
corroded. *e algorithm achieved higher detection accuracy,
but it requested the way of manual design to extract features,
which was complicated in steps and heavy in workload.
Keeping up with the boom of object detection technology in
deep learning, Petricca et al. in [13] led a convolutional neural
network into the field of corrosion detection, providing a new
thought for corrosion component recognition.*e authors of
[14] first used Retinex, an image enhancement algorithm, to
decrease the interference of light and shadow on the corrosion
color and then employed FPN and RPN structures to redesign
the Faster-RCNN to achieve the defects classification and
position regression of anti-vibration hammers, which opti-
mized positioning accuracy of the algorithm to a certain
degree. Combined with the attention mechanism, a light-
weight corrosion targets’ detection method for power
equipment based on the SSD was presented in [15], realizing
the identification of rusted areas with fewer parameters, but
the average precision was only 71.35%. In [16], the authors
advanced an attention-guided multitask convolutional neural
network and connected it with the RPN structure to identify
the corrosion degree and abnormal state of power line
components. *e methods mentioned above lack specific
classification, and the shapes and appearances of different
components are disparate, resulting in a high detection error
rate.

To sum up, there are few studies on the detection of
specific corrosion components of transmission lines at
present, and the detection effect of related corrosion studies
is not satisfactory. So, we put the YOLOV5 [17] to the task of

detecting two corrosion components of transmission lines in
mining areas, including antivibration hammers and insu-
lators. According to the problems that there are a high
proportion of small targets and a great many background
interferents all caused by long-range shootings in image
acquisition by UAV, we propose four improvements and
optimizations as follows:

(i) *e weight adaptive path aggregation network
(WA-PANet) is constructed. On the basis of the
PANet, we deepen the process of feature fusion and
inlet skip layer connections and adaptive feature
fusion factors to enhance the detection accuracy of
different scale objects.

(ii) We introduce the PSA mechanism to fuse context
information of different scales and meanwhile
generate pixel-level attention for the targets, so as to
highlight the feature expression of small corrosion
targets.

(iii) *e RFENet is built to strengthen the fusion effect of
the WA-PANet and alleviate the weakening of the
feature expression ability induced by feature fusion
at different stages.

(iv) *e loss function of bounding box regression adopts
the EIoU Loss, which can improve the positioning
accuracy and convergence rate of the network.

2. Materials and Methods

2.1. Data Acquisition and Processing. *e data of trans-
mission line components in the mining area required for the
experiments in this study are provided by the Hemei Group
Power Supply Department. We use the Pr software to extract
frames from the video shot by the UAV and filter out a large
number of similar and background pictures. *ere are two
kinds of image resolutions 5184× 3888 pixels and
5472× 3078 pixels, respectively. On account the fact that the
data given above covers all components of overhead
transmission lines, we further screen out a total of 2705
images containing antivibration hammers and insulators
and then adopt the LabelImg, a deep learning target an-
notation tool, to mark the objects. *e labels are set to
FangRust (corrosion antivibration hammers), Fang_NoRust
(noncorrosion antivibration hammers), Jue_Rust (corrosion
insulators) and Jue_NoRust (noncorrosion insulators), and
the tagging format is VOC format. *e data processing part
applies the adaptive image scaling method to uniformly scale
the read images of different scales to the network input size
and accomplishes online data augmentation through ran-
dom clipping, mosaic data enhancement, etc., which en-
hances the robustness of the model and improves the
detection performance of the algorithm for different scale
targets, especially the small ones.

2.2. PWR-YOLOV5 Network. Although the YOLOV5 al-
gorithm shows a good performance in generic object
detection tasks, the color of corrosion is easily confused
with background items such as dead leaves and dust and is
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also greatly affected by the intensity of light. In addition,
the shooting distance of the UAV is not flexible to control,
leading to many small targets in the distant view, all of
which have a poor influence on the recognition of rusted
components. In order to adapt to the corrosion targets’
detection task in the actual scene, in this study, we first re-
design the feature fusion network WA-PANet by deep-
ening the feature fusion process and setting skip layer
connections and learnable feature fusion arguments,
which not only retains more details but also improves the
feature fusion effect. *en, the PSA mechanism is pulled
into the deep layers of the network, in which the softmax is
used to adaptively fuse the spatial features of different
scales and channel attention weights to generate pixel-
level attention to the objects. Next, we apply bottleneck
structures and dilated convolutions to construct the
feature enhancement network RFENet to capture the
multiscale features under different receptive fields in order
to strengthen the fusion effect of the WA-PANet and
enhance the detection accuracy of corroded targets at
different scales. Finally, the bounding box regression loss
function is optimized by the EIoU Loss, which solves the
problem of ambiguous definition of aspect ratio loss in
CIOU Loss and advances the positioning accuracy of the
network. Based on the innovations mentioned above, the
PWR-YOLOV5 detection algorithm for corrosion com-
ponents is proposed. *e structure of the PWR-YOLOV5
is shown in Figure 1.

2.2.1. Weight Adaptive Path Aggregation Network. *e
YOLOV5 algorithm uses the PANet for feature fusion, and
its structure is shown in Figure 2(a). In this module, the
method of bidirectional fusion is deployed to integrate deep
semantic information and shallow location information,
which promotes detection accuracy to a certain extent.
However, this fusion method does not distinguish the fea-
ture information at different stages, inducing negative fea-
ture fusion results. For the purpose of solving the problem
and boosting the detection performance of the rusted small
targets, on the basis of the PANet, we make the process of
feature fusion deeper, and meanwhile, import skip layer
connections and adaptive feature fusion factors [18] to es-
tablish the weight adaptive path aggregation network. *e
specific structure of the WA-PANet is shown in Figure 2(b),
where Pi represents the ith feature produced in the backbone
and Fi and Ni are the intermediate features generated during
the fusion procedure.

*e WA-PANet feature fusion network consists of two
branches. *e one top-down branch is used to transmit the
powerful semantic information and perform the fusion of
deep and shallow features, where the fusionmode of channel
cascade is applied to preserve more feature information. In
this study, we add an up-sampling operation to form the
feature map F2, which is fused with the feature map P2
yielded in the backbone to generate the large-scale feature
N2 with rich semantic and location information so as to
improve the performance of the network to identify small
corroded targets. *e other bottom-up branch is employed

to transfer detailed information with the purpose of en-
hancing the ability to locate objects at different scales. For
the sake of obtaining refined features, the skip layer con-
nections from input to output are set at nodes N3, N4, and
N5, respectively. Furthermore, due to the multiple input
features of these three nodes coming from different stages of
the network and contributing differently to the fusion re-
sults, we also introduce a learnable feature factor for each
branch of each node so that the algorithm adaptively learns
the importance of different stage features in the training
process. *e features of each node of the WA-PANet can be
expressed as the following equations (1)–(5):

F5 � Conv P5( 􏼁, (1)

Fi � Conv Concat Pi,Upsample Fi+1( 􏼁( 􏼁( 􏼁, i � 2, 3, 4, (2)

N2 � Conv F2( 􏼁, (3)

Ni � Conv
w1 × Pi + w2 × Fi + w3 × Resize Ni−1( 􏼁

w1 + w2 + w3 + ε
􏼠 􏼡, i � 3, 4,

(4)

N5 � Conv
w1 × F5 + w2 × Resize N4( 􏼁

w1 + w2 + ε
􏼠 􏼡, (5)

where Conv refers to a series of convolution operations
involved in feature processing, Upsample stands for the
nearest neighbor interpolation up-sampling, Concat means
that two features from different stages carry out splicing and
fusion on the channel dimension, that is, channel cascade,
and Resize means to adjust the size of the feature maps in the
two dimensions of space and channel. And wi is a learnable
parameter, which is multiplied by the input feature of the
corresponding branch at each node, so the larger the value of
wi is, the greater the influence of the branch on the fusion
results is, and ε is a constant, much less than 1, which is set to
prevent the denominator from being 0.

2.2.2. Pyramid Split Attention Mechanism. *ere are a large
number of interruptions in the actual scene, and the
background is complicated. At the same time, with the
deepening of the network, the features of small objects with
fewer pixels are gradually blurred, and the location infor-
mation is also less and less obvious. In an effort to effectively
suppress the complex background information and over-
come the influence of light intensity, the pyramid split at-
tention mechanism [19] is introduced into the deep layers of
the network to promote the detection accuracy for corroded
components. *e implementation of the PSA module is
shown in Figure 3.

First of all, we utilize the split and concatenation (SPC)
structure to obtain feature information of different scales
along the channel direction, and the SPC composition is
demonstrated in Figure 4. *e module divides the input
feature maps X into S parts in the channel dimension,
denoted as [X1, X2, . . . , XS−1], so each part has the same
number of channels C′ � C/S, and the feature of the ith
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Figure 2: (a) *e path aggregation network structure. (b) *e weight adaptive path aggregation network structure.
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Figure 1: *e PWR-YOLOV5 network structure. P is the PSA module; W presents WA-PANet; and R is RFENet.
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branch can be represented as Xi ∈ RC′×H×W, i � 0,

1, . . . , S − 1. In this study, the value of S is 4. After being
divided in this way, the input tensors are processed in
parallel by using convolution kernels of different scales, so as
to extract spatial information from feature maps of each
branch and gain features of different receptive fields and
depths. However, with the augmentation of the convolution
kernel size, the number of parameters also increases sig-
nificantly. In order to save computational overhead, the
group convolution is inlet; moreover, a new rule is also
designed for the selection of the grouping number. *e
relationship between the size of multiscale convolution
kernels and the number of groups can be represented as the
following formula:

G � 2(k− 1)/2
, (6)

where K is the size of the convolution kernel and G is the
number of groups. In particular, the number of groups is
defaulted to 1 when K � 3. *e generating process of the
multiscale features is given in (7), and then, the different scale
features produced by each branch are cascaded in channel to
obtain the feature map F in the following formula:

Fi � Conv ki × ki, Gi( 􏼁 Xi( 􏼁, i � 0, 1, 2, . . . , S − 1, (7)

F � Concat F0, F1, . . . , FS−1􏼂 􏼃( 􏼁, (8)

where ki � 2 × (i + 1) + 1 denotes the size of convolution
kernel applied in the ith branch, and the grouping number of
convolution operation in the ith branch is Gi � 2(ki− 1)/2, and
Fi ∈ RC′×H×W signifies the feature of different receptive fields
emerged on each branch, and F ∈ RC×H×W is the complete
multiscale feature maps acquired through the SPC module.

Secondly, the SEWeight [20] is used to pick up the
channel attention information of each branch feature, and
the attention weight vector of each branch channel is
procured by (9), in which Zi ∈ RC′×1×1 shows the channel
attention weights obtained from the different scale features
Fi:

Zi � SEWeight Fi( 􏼁, i � 0, 1, 2, . . . , S − 1. (9)

*en, the soft attention method is employed to handle
the channel attention weight vector Zi to adaptively select
the importance of multiscale spatial features across channels.
*e weight allocation pattern of soft attention is shown in
formula (10), where Softmax is adopted to weighting fusion
of the spatial and channel information of each branch to
obtain the weight atti, which contains the information of all
positions in the space and the attention weight in the
channel:

atti � Softmax Zi( 􏼁 �
exp Zi( 􏼁

􏽐
S−1
i�0 exp Zi( 􏼁

, i � 0, 1, 2, . . . , S − 1. (10)
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Figure 3: *e pyramid split attention structure.
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Finally, the fused attention weight atti of each branch is
multiplied by the corresponding scale feature Fi to fetch the
feature map Yi with multiscale pixel-level channel attention
in formula (11), and in the end, the multiscale refined output
is acquired through the concatenation operation that can
maintain the integrity of features, and the course can be
denoted as follows:

Yi � Fi ⊙ atti, i � 0, 1, 2, . . . , S − 1, (11)

Out � Concat Y0, Y1, . . . , YS−1􏼂 􏼃( 􏼁, (12)

where ⊙ indicates pixel-wise multiplication. *e PSA
module can integrate multiscale spatial information and
cross-channel attention through each split feature group,
which can not only achieve the fusion of different scales of
context information but also generate pixel-level attention to
the targets. In this study, we put the PSAmodule into the last
layer of the backbone and the top-down process of the WA-
PANet to strengthen the suppression of complex interfer-
ence information at a higher semantic level and highlight the
feature expression effect of small corrosion targets.

2.2.3. Receptive Feature Enhancement Network. In the
bottom-up course of theWA-PANet, features from different
stages need to be fused. Owing to the receptive fields of
different branch features are different, so the semantic in-
formation is dissimilar. *e fusion of multiple feature maps
at different semantic levels will greatly weaken the expres-
sion ability of multiscale features, which is not conducive to
the detection results of the algorithm. Based on the problem,
we use the bottleneck layers and dilated convolutions of
different scales to construct the receptive feature enhance-
ment network [21] that carries out enhanced extraction on
the multibranch fusion outputs of the WA-PANet to ad-
vance the feature expression of rusted targets at various
scales. *e structure of the RFENet module is shown in
Figure 5.

*e module is a multibranch structure. Firstly, a bot-
tleneck layer is adopted in each branch, namely, a 1× 1
convolution for dimensionality reduction and a n× n con-
volution to achieve the extraction of different scale features,
and then, a 3× 3 dilated convolution with a dilation rate of n
is followed to capture the feature information in a larger
receptive field area, and ultimately, the concat and shortcut
operations are applied to fuse the features of different re-
ceptive fields. With the purpose of compressing the number
of parameters, we deploy two 3× 3 convolutions, as well as
1× 7 and 7×1 convolutions to replace 5× 5 and 7× 7
convolutions, respectively. In this study, the module is
placed in the four output branches of the WA-PANet to
establish the RFENet, which can intensify the effect of
feature fusion and promote the recognition accuracy for
corrosion objects of different scales.

2.2.4. EIoU Loss. *e YOLOV5 algorithm applies the CIOU
Loss as the loss function of bounding box regression, which
takes into account three geometrical factors, including

overlapping area, center points’ distance, and aspect ratio.
Given a prediction box B and a ground truth Bgt, the CIOU
Loss can be defined as

LCIOU � 1 − IOU +
ρ2 b, b

gt
􏼐 􏼑

c
2 + α],

] �
4
π2 arctan

wgt

hgt
− arctan

w

h
􏼠 􏼡

2

,

α �
]

(1 − IOU) + ]
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where IOU is the ratio of the intersection area and the union
area of the prediction box and the ground truth, b and bgt

represent the center of B and Bgt, respectively,
ρ(·) � ‖b − bgt‖2 is the distance between b and bgt, c is the
diagonal length of the minimum bounding rectangle be-
tween the prediction box and the ground truth, and α and ]
are used to reflect the similarity of the aspect ratio between
the prediction box and the ground truth. In (13), ] reveals
the difference between aspect ratios, rather than the real
relationship between w and wgt or h and hgt. When w and h

meet formula (w � kwgt, h � khgt)|k ∈ R+􏼈 􏼉, the value of ] is
0, indicating that the length and width of the prediction box
and the ground truth are completely matched. As a result,
the loss of aspect ratio item is 0, and the bounding box
regression process is blocked, which is inconsistent with
reality. In addition, in the training process, the calculating
process of ] for w and h back propagation to obtain the
gradient is denoted in formula (14). According to the for-
mula, we can get z]/zw � −h/wz]/zh, in which the signs of
z]/zw and z]/zh are opposite. *us, if one of these two
variables (w or h) increases, the other will decrease, which
prevents the reduction of the real difference between the
prediction box and the ground truth:

z]
zw

�
8
π2

arctan
w

gt

h
gt − arctan

w

h
􏼠 􏼡∗

h

w
2

+ h
2 ,

z]
zh

� −
8
π2

arctan
w

gt

h
gt − arctan

w

h
􏼠 􏼡∗

w

w
2

+ h
2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Owing to the unclear definition of ] in the last item of
LCIOU, the convergence speed and positioning accuracy of
the algorithm are limited. *erefore, we introduce the EIOU
Loss [22], an optimization version of the CIOU Loss, to
compute regression loss. It is defined as

LEIOU � LIOU + Ldis + Lasp

� 1 − IOU +
ρ2 b, b

gt
􏼐 􏼑

c
2 +

ρ2 w, w
gt

􏼐 􏼑

c
2
w

+
ρ2 h, h

gt
􏼐 􏼑

c
2
h

,

(15)

where cw and ch are the length and width of the minimum
bounding rectangle covering the prediction box and the
ground truth, respectively. *e EIOU loss also consists of
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three parts, the overlapping area loss LIOU, the center points
distance loss Ldis, and the length and width difference loss
Laps. Among them, Laps can directly minimise the length-
width gap between the prediction box and the ground truth
so that the convergence speed and the location performance
of the network are excellent.

3. Results and Discussion

3.1. Experimental Environment and Parameters’ Setting.
Based on the Ubuntu 18.04 operating system, this study
employs the PyTorch deep learning framework and Python
compiler language to carry out all the experiments. *e
specific experimental environment and training parameter
settings of the improved algorithm are shown in Table 1.

3.2. Algorithm Evaluation Index. In order to verify the ef-
fectiveness of the innovative improved method in this study,
the Average Precision (AP), the mean Average Precision
(mAP), the Frames Per Second (FPS), and the Model Size
(MS) are selected to evaluate model performance according
to the positioning accuracy of the prediction boxes and the
missed and false detection of the targets. *e AP measures
the precision and recall of a certain class, and its value is the
area of the P-R curve. *e larger the value is, the better the
detection performance of the network for this kind of target.
*e mAP is the mean value of the AP of various categories,
which is used to evaluate the overall detection accuracy of
the model. *e FPS reflects the detection speed; the greater

the value is, the better the real time of the algorithm is. *e
MS refers to the amount of memory occupied by the al-
gorithm, which represents the requirement for storage space.

3.3. Experimental Results and Comparative Analysis

3.3.1. Experimental Result of the PWR-YOLOV5. *e self-
made dataset of corrosion components is divided into a
training set, a validation set, and a test set in a ratio of 8 :1 :1.
In order to avoid the influence of video frame extraction on
the distribution of the dataset, all images are shuffled before
partitioning to advance the generalization of the model. In
this study, the improved algorithm is trained and tested
based on the above partitioning method. Figure 6 shows the
P-R curve of the PWR-YOLOV5 network during testing,
which is drawn from the precision and recall values under all
confidence levels of various targets. *e area below the curve
indicates the average precision of each class, so the AP of
FangRust, Fang_NoRust, Jue_Rust, and Jue_NoRust, re-
spectively, reaches up to 96.88%, 95.02%, 95.61%, and
93.96%.

3.3.2. Comparison with YOLOV5. In this study, the
YOLOV5 and the modified PWR-YOLOV5 are compared in
the following four aspects: average precision, mean average
accuracy, frames per second, and model size. *e com-
parative results are recorded in Table 2.

Compared with YOLOV5, the AP of the proposed al-
gorithm on FangRust, Fang_NoRust, Jue_Rust, and
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Figure 5: *e feature enhancement network module structure.
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Jue_NoRust is improved by 2.52%, 5.3%, 2.11%, and 10.93%,
respectively, and the mAP is increased by 5.22%. *e ex-
perimental data given above show that the improvedmethod
presented in this study can effectively advance the detection
accuracy of various targets. However, the introduced PSA
modules and RFENet in the PWR-YOLOV5 all increase the

number of parameters, resulting in the model being inferior
to the YOLOV5 in terms of detection speed and memory
overhead.

*e detection effect of the algorithm in real complex
scenes is shown in Figure 7, in which the original images are
on the left, and the YOLOV5 detection results are in the
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Figure 6: *e P-R curve for four classes of the PWR-YOLOV5 algorithm.

Table 1: Experimental environment and parameter settings.

Experimental environment Model parameter
Parameters Configuration Parameters Value
CPU Intel(R) xeon(R) E5-2680 v4 Optimizer SGD
GPU NVIDIA GeForce GTX 3080 Initial learning rate 0.001
CUDA 11.0 Size of images 640× 640
Python 3.8 Batch size 16
PyTorch 1.9.0 Epoch 350
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middle. Meanwhile, the PWR-YOLOV5 detection outcomes
are on the right. In the figure, the rectangular label boxes in
blue, orange, green, and red, respectively, indicate FangRust,
Fang_NoRust, JueRust, and Jue_NoRust, and the purple
ellipse boxes denote missed detection, and the yellow ellipse
boxes represent false detection. *e YOLOV5 has missed
detections of small objects in (a) and false detections in (a)
and (d). In the case of serious background interference in
(b), (c), and (d), some background items are mistakenly
identified as targets. In contrast, the optimized PWR-

YOLOV5 algorithm can significantly improve missed de-
tections, false detections, and object identifications in
complicated background.

3.3.3. Comparison with Other Classical Algorithms. For the
purpose of validating the performance of the PWR-
YOLOV5 algorithm, we chose representative one-stage al-
gorithms SSD [23], RetinaNet [24], YOLOV3 [25], YOLOV4
[26], and two-stage algorithms Faster R-CNN [27], and on

Table 2: Performance comparison between the YOLOV5 and the improved PWR-YOLOV5.

Models
AP (%)

mAP (%) FPS MS (MB)
FangRust Fang_NoRust JueRust Jue_NoRust

YOLOV5 94.36 89.72 93.50 83.03 90.15 109.9 14.40
Ours 96.88 95.02 95.61 93.96 95.37 64.9 26.65

(a)

(b)

(c)

(d)

Original YOLOV 5 PWR-YOLOV5

Figure 7: Detection results of the YOLOV5 and the PWR-YOLOV5 in real scenes.
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the basis of anchor-free algorithms CenterNet [28] and
YOLOX [29], we developed contrast experiments. *e test
results of each model are shown in Table 3.

It can be seen from Table 3 that the detection accuracy of
the proposed algorithm is optimal for the other three types
of targets, except that the AP of Fang_NoRust is lower than
YOLOV4 and YOLOX. Compared with the one-stage al-
gorithm YOLOV4 with better detection performance, the
AP of PWR-YOLOV5 on Fang_Rust, Jue_Rust, and Jue_-
NoRust is improved by 7.03%, 4.67%, and 26.45%, respec-
tively. In comparison with the two-stage algorithm Faster R-
CNN, the average precision of the improved algorithm for
four classes was increased by 13.34%, 2.85%, 29.07%, and
46.74%, respectively. In contrast to YOLOX based on the
anchor-free algorithm, the detection AP of the optimized
YOLOV5 for Fang_Rust, Jue_Rust, and Jue_NoRust is en-
hanced by 6.55%, 3.01%, and 22.75%, respectively. Con-
trasted with the mAP, which measures the overall detection
accuracy of the model, the PWR-YOLOV5 algorithm is the
best, reaching 95.37%. In terms of detection speed and
memory occupancy, the proposed algorithm is inferior to
the YOLOV5, but better than other common detection
models.

3.3.4. Ablation Experiment. In order to prove the influence
of the four improved methods on the detection results, an
ablation experiment is designed in this study, which chooses
the YOLOV5 algorithm as the base.*e experimental results
are shown in Table 4.

All of the four proposed methods can improve the de-
tection accuracy of various targets to a certain extent
according to Table 4.*eWA-PANet feature fusion network
constructed by deepening the feature fusion process and
introducing skip layer connections and adaptive feature

fusion factors can not only ensure the integrity of fusion
information but also take into account the influence of
features from different stages on the fusion results. Com-
pared with the YOLOV5 algorithm, the mAP advances by
2.55%.*e PSAmechanism introduces channel attention on
the feature maps of different receptive fields and adaptively
associates spatial information and channel weights with
Softmax to produce pixel-level attention on objects, and the
mAP is increased from 92.70% to 93.96%. *e RFENet
adopts bottleneck layers and dilated convolutions of dif-
ferent scales to strengthen the feature extraction for the

Table 3: Performance comparison of different algorithms.

Models
AP (%)

mAP (%) FPS MS (MB)
FangRust Fang_NoRust JueRust Jue_NoRust

SSD 83.35 91.84 78.45 51.78 76.36 44.7 96.61
RetinaNet 79.29 65.35 74.71 56.18 68.89 16.5 145.92
YOLOV3 75.43 93.83 72.50 45.12 71.72 31.4 93.83
YOLOV4 89.85 98.42 90.94 67.51 86.68 21.2 256.34
Faster R-CNN 83.54 92.17 66.54 47.22 72.37 22.4 547.02
YOLOX 90.33 96.38 92.60 71.21 87.63 25.5 36.03
CerterNet 85.94 94.41 85.45 63.76 82.39 37.8 131.01
YOLOV5 94.36 89.72 93.50 83.03 90.15 109.9 14.40
Ours 96.88 95.02 95.61 93.96 95.37 64.9 26.65

Table 4: Results of the ablation experiment.

Base WA-PANet PSA RFEnet EIoU loss
AP (%)

mAP/% FPS MS (MB)
FangRust Fang_NoRust JueRust Jue_NoRust

✓ 94.36 89.72 93.50 83.03 90.15 109.9 14.40
✓ ✓ 94.52 93.77 94.64 87.89 92.70 83.3 17.52
✓ ✓ ✓ 94.80 93.80 97.90 89.33 93.96 68.5 22.09
✓ ✓ ✓ ✓ 95.79 93.93 97.30 93.83 95.21 64.9 26.65
✓ ✓ ✓ ✓ ✓ 96.88 95.02 95.61 93.96 95.37 64.9 26.65
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Figure 8: *e training loss curves of CIOU Loss and EIOU Loss.
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fusion output of the WA-PANet, which can make full use of
features of different receptive fields and enhance the feature
expression ability of various scale targets. *e mAP of the
algorithm advances to 95.21%. *e three improvements
referred to above to the model structure increase the number
of parameters to different degrees, so the detection speed
decreases somewhat, but it can still meet the requirement of
real-time detection. In addition, the training loss curves of
the improved algorithm under the CIOU Loss and the EIOU
Loss are respectively drawn in Figure 8. By comparing the
convergence of the two curves, it can be seen that the op-
timization method of the loss function proposed in this
study makes the convergence rate faster and the positioning
accuracy more superior.

4. Conclusions

Aiming at the problems of poor detection accuracy, serious
missed detection, and false detection of corrosion compo-
nents in distant view inspection by UAV, we propose a
PWR-YOLOV5 detection method for corrosion compo-
nents based on the YOLOV5 algorithm. *is method firstly
constructs a new feature fusion network, WA-PANet, which
makes full use of the features at different stages and improves
the detection accuracy of the corroded targets in remote
view. Secondly, the PSA mechanism is led into the deep
layers of the network to effectively suppress the background
information and highlight the feature expression of the
pixel-level targets. And then, the bottleneck structures and
dilated convolutions of different scales are used to establish
the feature enhancement network RFENet to alleviate the
problem of feature expression ability weakening caused by
feature fusion at different semantic levels. Finally, we apply
the EIoU Loss to optimize the loss function of bounding box
regression, so as to improve the positioning accuracy for the
rusted targets.

*e experimental results show that the proposed algorithm
has more accurate location performance and higher detection
accuracy. Compared with the original network, the average
precision on FangRust, Fang_NoRust, JueRust, and Jue_NoRust
are heightened by 2.52%, 5.3%, 2.11%, and 10.93%, respectively.
*e mAP can reach up to 95.37%, and the detection speed is
64.9FPS. Considering the accuracy and speed comprehensively,
the proposed algorithm has higher application value, which
provides a new idea for the corrosion component inspection of
the overhead transmission line by UAV in the mining area.
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