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With environmental noise in the exhibition hall, speakers tend to change their speech production to preserve intelligible
communication. While great evolution has been prepared in Automatic Speech Recognition (ASR), important performance
deprivation occurs in a noisy environment. The assessment of the degree of speech impairment and the efficacy of computer
recognition of impaired speech are distinctly and independently executed. Convolutional Neural Networks (CNN) have been
effectively employed in speech recognition and computer vision tasks. Hence, this study uses the Deep Convolutional Neural
Network-based Automatic Speech Recognition Model (DCNN-ASRM) for effective speech recognition in the noisy exhibition
hall. This study configures the filter sizes, poolings, and input feature map. The filter size and pooling are decreased, and the
dimension of the input feature is comprehensive to permit increasing convolution layers. Furthermore, an in-depth analysis of the
proposed DCNN-ASRM model discloses critical features, like fast convergence speed, compact model scales, and noise robustness
in speech recognition. The simulation analysis shows that the suggested DCNN-ASRM model enhances the recognition accuracy
ratio of 98.1%, performance ratio of 97.2%, and noise reduction ratio of 96.5% and reduces the word error rate by 9.2% and signal-
to-noise ratio by 10.3% compared to other existing models.

1. Introduction of Speech Recognition in
Exhibition Hall

Describing the acoustic environment of performance spaces
like concert halls, theatres, exhibition halls, and auditoria has
been one of the key topics in room acoustics and speech
recognition studies during the past decades [1]. For spaces
where the major function is sound-associated (e.g., spaces
for performing or listening), clear criteria connected to
measurable variables must be in place to evaluate acoustic
performance and quality [2]. The general deliberation on
inclusion ensures that the case fits the suitable building type
for crowd transit (e.g., exhibition/museum spaces, shopping
malls, and transportation stations/hubs) [3]. Numerous
visitors, conversations, and product presentations cause
noise levels in trade fairs and exhibitions to rise quickly
[4, 5]. Many of the most advanced speech recognition
systems use the Mel-Frequency Cepstral Coeflicient (MFCC)
and the Perceptual Linear Prediction (PLP) cepstral

coeflicient (like MFCCs) based on human auditory models,
two types of cepstral coeflicients that are computed utilizing
discrete cosine transform on smoothed power spectra [6].
However, these systems still execute poorly in a noisy en-
vironment (e.g., in situations with additive noise), and
magnified performance deprivation has been perceived
under the detached (far-fields) talking state [7]. To attain
robust automatic speech recognition, it is more significant to
cooperatively optimize the acoustic and beam-forming
model to maximize the ASR performance [8]. In noise,
speakers modify their vocal efforts. For an extensive noise
level range, the dependency among voice Sound Pressure
Level (SPL) and noise sound pressure level is almost linear,
with diverse slopes when reading text or communicating
with others [9]. Vowels tend to get more attention than
consonants in increasing vocal effort, which is not universal
among phones [10]. The pitch rises with an increase in
subglottal pressure and tension in the laryngeal musculature
due to the adjustment in a vocal effort [11]. When
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represented in semitones and SPL, the pitch varies roughly
linearly with speech intensity [12].

Speech recognition is an artificial intelligence-enhanced
technology that converts a person’s speech from an analog
form to a digital one. An improved computer program then
uses digital speech for additional processing [13]. Speech
recognition is the ability to speak to a computer and have it
comprehend and interpret what people speak. Spoken lan-
guage is decoded and translated into machine form. A natural
language such as English is used to communicate between
people and computers in Natural Language Processing (NLP)
[14]. Although extraordinary performance has been realized
in ASR with the introduction of Convolutional Neural
Networks (CNNs), the performance still reduces dramatically
in far-field and noisy situations [15]. To attain robust speech
recognition, multiple microphones can improve speech sig-
nals, reduce noises and reverberation, and enhance Automatic
Speech Recognition performance [16]. The low signal-to-
noise ratio (SNR) in these noisy situations creates CNN more
susceptible to the mismatch issue [17]. CNNs have numerous
benefits: firstly, speech spectrograms have local associations in
both frequency and time, and CNNs are well-matched to
model those connections overtly via local connectivity,
whereas Deep Neural Networks (DNN) have a comparatively
more complex encoding of this data [18]. Secondly, trans-
lational invariance, like frequency shift because of speaking
style or speaker variation, can be more effortlessly seized by
CNNs than DNNs [19, 20]. Thus, in CNNs, a more affluent set
of features can be demoralized than traditional low-dimen-
sional feature vectors, like PLP coefficients and MFCCs.

The major contribution of the research is

(i) Designing the Deep Convolutional Neural Net-
work-based Automatic Speech Recognition Model
(DCNN-ASRM) for speech recognition in the noisy
exhibition hall.

(ii) Evaluating the DCNN shows noise robustness
greater than other models in noisy situations.

(iii) The simulation outcomes have been executed, and
the recommended DCNN-ASRM model enhances
the accuracy and performance compared to other
existing models.

The rest of the study is systematized: Sections 1 and 2
discuss the introduction and existing speech recognition
methods. In Section 3, DCNN-ASRM has been proposed. In
Section 4, experimental results have been executed. Finally,
Section 5 concludes the research paper.

2. Literature Survey

Song et al. [21] proposed the Learning-to-Rescore (L2RS)
mechanism for ASR. L2RS uses a wide variety of textual data
from state-of-the-art NLP models and spontaneously decides
their weights to restore the N-best lists for ASR systems. These
characteristics included Bidirectional Encoder Representation
for Transformer (BERT) sentence topic vector, embedding,
perplexity score generated by n-gram Language Model (LM),
topic modeling BERT LM, LM, and RNNLM to train an
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algorithm for scoring. According to their research, L2RS
surpasses standard rescoring techniques and its Deep Neural
Network equivalents by a significant enhancement of 20.67%
in terms of the NDCG@10 in terms of L2RS. L2RS enables the
development of a more accurate rescoring model for ASR.

Han et al. [22] suggested the ContextNet for ASR with
Global Context. New CNN-RNN-transducer architecture,
termed ContextNet, focuses on a new study in this paper.
ContextNet has a fully convolutional encoder that adds
global context data into the convolution layer by including
squeeze-and-excitation modules. In addition, they presented
a simple scaling mechanism for ContextNet’s widths which
offers a fair trade-off between computation and accuracy.
CNN models previously released have had a hard time
competing with this model on the LibriSpeech test. Small
Automatic Speech Recognition (ASR) models may be found
using the suggested design, limiting the network’s breadth to
a minimum. A preliminary analysis of a bigger and more
difficult data set supports their findings.

Isobe et al. [23] recommended the Deep Canonical
Correlation Analysis (DCCA) for speech recognition in
noisy environments. DCCA provides projections from two
modalities into a single space to increase the correlation of
projected vectors. Automatic Speech Recognition (ASR)
may be more robust by employing DCCA approaches with
audio and visual modalities, recovering noisy audio char-
acteristics, and training an ASR model using the additional
data. Our technique was tested using an audio-visual corpus
CENSREC-1-AV and a noise database DEMAND. Our
DCCA-based speech recognizers outperformed traditional
ASR and featured fusion-based audio-visual speech recog-
nition systems in terms of accuracy.

Hidayat and Winursito [24] discussed the Mel-Frequency
Cepstral Coefficients for Improved Wavelet-Based Denoising
(MFCC-IWBD) on Robust Speech Recognition. The Fast
Fourier Transform (FFT) step of the MFCC was used. The
denoising procedure utilizing Wavelet was only applied to data
with noise, as determined by the FFT analysis findings. A total
of eleven isolated English words were used in the research,
along with various kinds of background noise. According to the
research, this approach was more accurate than standard
wavelet denoising methods for SNRs of 10 dB, 15 dB, and 20 dB
when utilizing a Fejer Korovkin 6 wavelet type.

Based on the survey, there are several challenges to
existing approaches such as Learning-to-Rescore (L2RS),
ContextNet, Deep Canonical Correlation Analysis (DCCA),
and Mel-Frequency Cepstral Coeflicients for Improved
Wavelet-Based Denoising (MFCC-IWBD) in achieving high
accuracy, performance, signal-to-noise ratio, noise reduc-
tion, and word error rate (WER). The following section
discusses the proposed DCNN-ASRM briefly.

3. Deep Convolutional Neural Network-Based
Automatic Speech Recognition
Model (DCNN-ASRM)

The most important component of the Human-Computer
Interface (HCI) system is speech recognition, which
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translates the human auditory function. Automatic Speech
Recognition (ASR) is making its way into our everyday lives
at the same time as advances in computer technology are
being made, and its applications are becoming more
prevalent. There are two main causes for the present dif-
ficulties with speech recognition: extended range and noisy
environments in the exhibition hall. This emphasizes the
need for even higher accuracy systems capable of handling
complex ASR tasks. The interruption of the channel and the
unwanted background noise will always have a negative
impact on the performance of the ASR system’s recognition
capabilities. Strategies for reducing noise may be applied
differently to the ASR system. For instance, these tech-
niques are speech enhancement upon the signal levels,
extraction of the robust feature vector, and adjustment of
the back-end acoustic model. In the real world, the problem
of ambient noise cannot be considered in the preliminary
phase, and it is not easy to anticipate how it will play out.
The strategies for reducing noise will not depend on any
suppositions about noisy settings or training variables, and
they should function well across various noise circum-
stances. The basic objective of a feature extractor designed
to be sound is to make as few assumptions as possible or
none at all regarding the noise information. This is one of
the difficult challenges that has recently been favoring
research fields that are still being conducted. The capacity
of different speech classes is appropriate and relevant with
the interference of background noise and the variable
nature of speaker characteristics. Hence, this paper pro-
poses the DCNN-ASRM model for speech recognition in
exhibition halls.

Figure 1 shows the proposed DCNN-ASRM model. The
functionality of an ASR system can be described as the
extraction of several speech variables from acoustic speech
signals for every word or subword unit. The cascaded model
contains two steps. The initial step is the denoising step, in
which the denoised spectrogram is produced by eliminating
the noise from the noisy speech signal. An Audio-Visual
Speech Recognition (AVSR) model utilizes visual speech
data, and the acoustic data are utilized by a normal ASR
model. Audio and video data can be incorporated by feature
or decision fusion. Mel-Frequency Cepstral Coefficient
(MFCC) is one of the most accurate feature extraction
methods used in Automatic Speech Recognition. The feature
vector is extracted from the frequency spectrum of the
windowed speech frame. The output is a speech signal or
vocal sound accepted in all languages on a computer.

3.1. Problem Formulation. Let us preassume that a micro-
phone input signal y(t) is modeled as

y(®) =w(t)* gt) + m(t). (1)

As shown in equation (1), w(t) denotes the non-
reverberant speech signal, g(t) indicates exhibition Room
Impulse Response (RIR) among the speaker and the mi-
crophone, * represents the convolution operator, and m (¢)
signifies additive noise signal.

In the short-time Fourier transform (STFT) domain, the
convolution is estimated as a multiplication operation, and
equation (1) can be modified as

y(k f)=J(k) w(k f)-g(k f)+m(k, f). (2)
As inferred from equation (2), k € {0,...,K — 1} and

f €{0,...,F — 1} are frame and frequency index. The term
J (k) denotes the activity of w (k, f) with,
F-1
0, Y w(k f)<Th,
k I
Jlo=1 1 3)
L Y w(k f)>Th
f=0

As shown in equation (4), Th denotes a predefined
threshold applied on the clean signals.

The automatic speech detection goal is to accurately
detect frames in which the speaker is active given a noisy
reverberant signal,

U(k) = q(J (k) = 1]y). (4)

3.2. Convolutional Neural Network in Speech Recognition.
A convolution layer does the convolution on the prior layer’s
feature maps utilizing filters and then augments bias scalars
to the respective feature maps, trailed by nonlinear opera-
tions. Convolutions can be observed as operations employed
to feature maps utilizing filters, where both feature maps and
filters can be signified as a matrix. During this process, the
enclosed region of feature maps is termed receptive fields,
and the size is equal to the size of filters. At every stage,
receptive fields execute dot products with filters and give one
output, and every output collected during the progression
will form fresh feature maps. The whole progression of a
convolution layer is articulated as an expression given as
follows:

g% = p(s® 4 g* D 4 a®), (5)

As discussed in equation (5), g*» and g® denote
feature map in two successive layers. * represents the
convolutional operator is achieved within filters S® and the
feature maps g~ V. The bias a® is auxiliary, and lastly,
activation functions p (-), usually ReLU or sigmoid, can be
employed to produce the output of the convolution layer.
Expression equation (5) shows the modest setting where
only one feature map occurs in prior layers. When numerous
feature maps are contemporary in prior layers, the outcomes
of convolution operation are initially added before accu-
mulating biases.

Figure 2 shows the convolution and pooling operation.
Pooling layers execute down-sampling on the feature map of
prior layers and produce novel ones by decreased resolu-
tions. Presently, the most famous configuration for con-
volutional neural networks is utilized in speech recognition,
which has 2 convolution layers with 256 feature maps, 9 x 9
filters with 1 x 3 poolings in the initial convolution layer and
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Figure 2: Convolution and pooling operation.

3 x 4 filters in the additional convolution layer and without
poolings. This structure is utilized as the reference Con-
volutional Neural Network in this study. The number of
convolution layer variables is comparatively minor since the
filters are collective between every receptive field in one
feature map. The variable number of one convolution layer
can be computed as

® xn®xn®. (6)

parameters(k) = filtersize

As shown in equation (6), n® denotes the feature map in
kth layers. Pooling layers achieve down-sampling on prior
layers’ feature maps and produce novel ones with a con-
densed resolution. In this research, max-pooling is utilized
in the Convolutional Neural Network model.

Figure 3 shows the mismatches between testing and
training conditions. The mismatch between testing and
training conditions because of reverberation can be dis-
tinctly viewed in signals, features, and model spaces. Typical
features are the Mel-Frequency Cepstral Coefficients, the
formants, the pitch, the intensity of the speech signal, the
vocal tract cross-sectional areas, and the speech ratio.
Feature compensation and model adaptation are approaches
that correspondingly work in the feature and model spaces.
The notion is to decrease the mismatch between the per-
ceived utterance and the actual speech models during ut-
terance recognition. In feature compensation, this study
maps the distorted features to evaluate the actual features so

that the actual acoustic model can be utilized. This study
maps the actual acoustic models to a converted model that
better matches the detected utterance in model adaptation.

3.3. Aware Factor Training (AFT). Aware factor training
normally integrates a vector representing acoustic state data
into the network training progression to standardize the
nonspeech unpredictability. An LSTM mechanism has
concatenated the assisting factor depictions with the acoustic
feature, the energy for noise, j-vector for the speaker, and
room reverberations. This study uses an auxiliary feature in a
combined framework to evaluate a speaker-dependent bias
rather than concatenate them with the acoustic feature. The
speaker-dependent bias can be integrated into any position
in a NN, e.g., convolution layers or fully connected layers.
The construction of the suggested united aware factor
training is

a“k = U%p (U’fxw + qlf), (7)

pwk =p (Skpk—l + lek + ak). (8)

As inferred from equations (7) and (8), p“’k denotes the
speaker that altered the hidden output of layers k. a** in-
dicates speaker-dependent biases. This work uses shallow
adaptations neural network with one hidden layer. U%, U¥,
and ¢ are the weight matrix and biases for the adaptation
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neural network. x¥ represents an auxiliary feature. S sig-
nifies the weight matrices employed to the output from the
prior layer. a* denotes independent speaker biases.

In this work, three positions have been compared, in-
cluding (i) the acoustic feature input layers, (ii) the output of
the first convolution layers, and (iii) the output of the initial
fully linked layers, which trails the entire Convolutional
Neural Network blocks. When biases are auxiliary to a
convolution layer, they must be redesigned to 3-dim tensors.
The speaker-dependent dimension bias a“* that adapted
output feature maps are provided by

a"* = Usp (Ulx" +4),

k
' = reshape (awk),

M
wk k k-1 k wk
p; =P<Zsj,i®pi ®a; +71; >
=1

As shown in equation (9), p¥~! denotes jth feature maps
of the speaker-adapted hidden output of layers k. r** de-
notes reshaped tensor. r%* is the jth element in the tensor.

Figure 4 shows the frequency masking. In a naturalistic
environment, simultaneous masking is a common occur-
rence. Using the Minimum Masking Threshold (MMT) to
obscure watermarks, audio watermarking attempts to
achieve this goal. This study offers an improved MFCC by
merging it with the masking effect to extract strong acoustic
information from loud utterances based on this consider-
ation. This research can use masking models in feature
extraction to evaluate which frequency components are
more susceptible and how much noise influence may mix
into the signal without being predicted. Furthermore, it can
calculate the loudness of speech.

(9)

3.4. Adaptive Cluster Training (ACT). Figure 5 shows the
adaptive cluster training. Different from making adaptations
with the auxiliary feature as in the preceding subdivision,
numerous factorized adaptation approaches have been sug-
gested to straightly adapt the NN in the model domain in the
past few years. Speaker-dependent matrices are utilized to form

Masker
_ Partially \
g Masked
= Sound Masking Threshold
g
: \
o
A~
= Absolute_~7 ‘ ‘
32 hearing / Masked
“ | threshold ~ Sound
05 1 4 Frequency (kHz)

FIGURE 4: Frequency masking.

speaker-dependent hidden layers. The variance among those
approaches is the model utilized to evaluate speaker-dependent
matrices. Weight matrices bases have been computed as

Nk},{sl,...,sL}}. (10)

As inferred from the equation (10), N* = [S’f,...S’é]
denotes weight matrix basis of layer k and Q indicates the
clusters. K represents the overall ACT layer. N signifies the
weight matrices of non-ACT layer /, and L illustrates the
overall non-ACT layer.

The transformation function of the speaker-dependent
interpolation vectors is A“*.

Ak = ek e (11)

N ={{N',...

As discussed in equation (11), /Vc“k denotes interpolation
weights for cth clusters. The last adapted weight matrices for
an assumed speaker w and the output are provided by

Q

$UF = Y AESE, (12)
c=1

Pwk =p (kapk—l + ak). (13)

The weight matrices are first decomposed by singular
value decomposition (SVD), S,., =V,xqUqgm then
speaker-dependent square linear layers were employed for
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bottlenecks. A speaker-adapted weight matrices can be
found as

Sru:lxn = meQngQUan' (14)

As inferred from the equation (14), W§,, indicates
speaker-dependent square matrices. The speaker-dependent
square matrices are decomposed into diagonal matrices plus
low-rank matrices.

WSXQ = ZZXQ + ngc :;Q' (15)

As shown in equation (15), Z{),, represents diagonal
matrix and Qp),, and O, are two low-rank matrices. The
formulation of the diagonal part can be rewritten as follows

Q
T
Voo ZoxqUasn = D 2 Vel - (16)
c=1

As found in equation (16), v, denotes cth column of V
and u, indicates the cth column of U™ This structure can be
understood as incorporating manifold rank-1 matrices
based on speaker-dependent vectors. Motivated by these
effective factorization-based adaptation models for CNNs,
this study intends further to discover its potential capability
for robust noise and speech recognition.

Direct training of the integrated neural network quickly
falls into a local optimum as the gradients for the DCNN and
acoustic model have different dynamic ranges. The training
should be performed in sequence for a robust estimation of
the model variables as shown in Algorithm 1. The calculation
of improved speech presence probability is a recursive
process, which concurrently possesses a strong track/adapt
capability and a precise estimation ability for connected
statistics by integrating the strong prior data of the speech
and noise signal from the exhibition hall. The proposed
DCNN-ASRM model enhances the recognition accuracy,

performance, signal-to-noise ratio, and noise reduction ratio
and decreases the word error rate compared to other existing
models.

4. Simulation Results and Discussion

This paper presents the DCNN-ASRM model for accurate
speech recognition in the exhibition hall. This study utilizes
the speech signal from the CHiME-3 challenge data set [25].
The CHIiME-3 environment is Automatic Speech Recogni-
tion for multimicrophone tablet devices utilized in an ev-
eryday, noisy environment. It signifies an important step
forward in terms of realism concerning the previous CHiME
challenges. Speech is seized by six microphones embedded in
the frame and recorded 24 bits at a multitrack field recorder.
The audio was consequently down-sampled to 16 bit 16 kHz
for dissemination. This study discusses the recognition ac-
curacy, performance, signal-to-noise ratio, noise reduction
ratio, and word error rate compared to other popular
models.
The challenge features are as follows:

(i) 6-channel microphone array information,

(ii) Actual acoustic mixing, i.e., talkers speaking in a
challenging noisy environment,

(iii) There are five varied noise settings: cafe, exhibition,
street junction, public transports, and pedestrian
zone.

4.1. Recognition Accuracy Ratio. An audio-visual feature
extraction technique based on the DCNN model presented
in this research takes feature concatenation a step further by
learning to automatically align the two media, resulting in
more accurate visual and auditory representations. After the
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Input: One noisy speech utterance

for every time frame kdo
for every frequency Ido
Compute the priori SNR

end for
end for

Output: improved speech presence probability estimation
Initialize the statistics at the initial frame for every frequency

Compute the mask estimation using equations (12) and (13)
Compute the posterior SNR using the noise estimation in equation (15)

Compute the gain function or improved speech presence probability based on CNN input, hidden and output layer

ALGORITHM 1: Deep Convolutional Neural Network Algorithm.

convolutional layer, an additional layer called a pooling layer
is added, to be more specific, after a nonlinearity (such as
ReLU) is added to the feature maps generated by a con-
volutional layer. The adoption of the wavelet denoising
strategy in the MFCC significantly surpassed the identifi-
cation accuracy, notably at low SNRs, although at high SNR
values, the recognition accuracy remained almost unaltered.
SNR levels were averaged to obtain the average identification
accuracy in various noise environments. All models received
validation using noise-free utterances between every train-
ing epoch, and training was terminated when recognition
accuracy on the data set declined from the prior epoch or
achieved 100%. Two to six epochs of training were sufficient
for all models. The recognition accuracy has been computed
from equation (10). The suggested DCNN-ASRM model
achieves high recognition accuracy ratio of 98.1% compared
to other existing models. Figure 6 signifies the recognition
accuracy ratio.

4.2. Performance Ratio. Despite considerable success in
speech recognition, MFCCs’ performance is still unsat-
isfactory for many real-world applications, despite their
widespread use in speech recognition systems. Ambient
noise is one of the most common problems with popular
spectral characteristics. There is a lot of background noise
in many places where automated speech recognition
applications would be perfect, making voice-activated
devices unfeasible in many cases. Mean values of the
proposed method’s performance are presented here for
noise sources to analyze and verify its performance at all
input SNRs. To improve the performance of DCNN, the
dropout method is used. There are 100 audio signals
chosen for analyzing the performance of the proposed
DCNN-ASRM model in speech recognition at the exhi-
bition hall. A Deep Convolutional Neural Network
(DCNN) has been employed for training and testing the
database because of its superior performance. Training the
system thoroughly through weight connectivity, local
connectivity, and polling achieves excellent testing per-
formance. This study introduces acoustic features based
on higher-order indicators of the speech signal. When
paired with MFCCs, these features have been proven to
generate greater recognition accuracies in a noisy

environment. The performance ratio has been computed
from equations (12) and (13). The suggested DCNN-
ASRM model achieves a high performance ratio of 97.2%
compared to other systems. Figure 7 illustrates the per-
formance ratio.

4.3. Signal-to-Noise Ratio. The first metric for evaluating the
effectiveness of speech enhancement and speech recognition
algorithms is one based on the signal-to-noise ratio (SNR).
However, the typical SNR measure does not correspond with
the quality of the speech since the average across the entire
signal duration may remove key information. As a result, the
SNR is estimated in short segments and then averaged to
address this issue. The term “segmental SNR” refers to the
method used to calculate SNR. SegSNR is a step up from
traditional SNR. When SNR is computed, an upper and
lower threshold is specified to replace any frames with an
abnormally high or low signal-to-noise ratio. Quality esti-
mates are based on the average SNR of all frames in a se-
quence. The SNR ratio has been computed from equation
(14). The suggested DCNN-ASRM model achieves less SNR
ratio of 10.3% than other models. Figure 8 indicates the
signal-to-noise ratio.

4.4. Word Error Rate. Word error rate (WER) is a typical
statistic used to measure the accuracy of speech conversion
performed by Automatic Speech Recognition (ASR) sys-
tems. A 5-10% WER is considered good quality and is ready
to use. The WER is the number of errors divided by the total
amount of words. To obtain the WER, add the substitutions,
insertions, and deletions in a series of recognized words.
Gaussian white noise may cause word error rates to rise from
less than 5% to more than 20% when applied to Large
Standard Vocabulary Continuous Speech Recognition
(LVCSR) tasks such as recognizing the 5,000 words in the
Wall Street Journal corpus, even using compensatory
strategies. Even for continuous digit identification, the word
error rate often exceeds 10% in the presence of high noise
levels. The word error rate has been computed from equation
(15). The suggested DCNN-ASRM model achieves a lower
WER rate of 9.2% than other models. Figure 9 demonstrates
the word error rate.
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Figure 10: Noise reduction ratio.

4.5. Noise Reduction Ratio. For low SNRs and noise types
that are not steady, many of the mentioned deep learning
models aim for high noise attenuation and, as a result, may
still impair voice quality. To solve this issue, it is proposed
that noise reduction be used initially, followed by the res-
toration of natural-sounding speech. Even when the model
was evaluated with data and noise not included in the
training set, the findings show that the recommended CNN
structure gives higher denoising capabilities than filtering in
noise reduction. The suggested system with a single skip
connection, on the other hand, has far greater noise-re-
ducing capabilities. The noise reduction ratio has been
computed from equation (16). The suggested DCNN-ASRM
model attains a high noise reduction ratio of 96.5% com-
pared to other existing models. Figure 10 shows the noise
reduction ratio.

The proposed DCNN-ASRM model enhances the rec-
ognition accuracy, performance, signal-to-noise ratio, and
noise reduction ratio and decreases the word error rate
compared to other existing Learning-to-Rescore (L2RS),
ContextNet, Deep Canonical Correlation Analysis (DCCA),
and Mel-Frequency Cepstral Coeflicients for Improved
Wavelet-Based Denoising (MFCC-IWBD) methods.

5. Conclusion

This paper presents the DCNN-ASRM model for speech
recognition in an exhibition hall. The objective of ASR re-
search is to address the different issues relating to speech

recognition. This paper offered a new auditory filter mod-
eling-based feature extraction technique for noisy speech
recognition. Based on higher-order sub-band filter speech
signal indicators, a new acoustic feature extraction technique
was proposed. Preliminary tests demonstrate that combin-
ing these features with MFCCs can enhance the robustness
of the speech recognition model in exhibition hall noise
conditions. The baseline CNN gained a high overall accu-
racy. Paralleled to the conventional Convolutional Neural
Network structure in Automatic Speech Recognition, filter
and pooling are small, and the more extensive input feature
map. This modification permits us to improve the number of
convolution layers to ten. A comprehensive analysis of
padding, pooling, and input feature map assortment is
executed. The simulation analysis validates that the sug-
gested DCNN-ASRM model enhances the recognition ac-
curacy ratio of 98.1%, performance ratio of 97.2%, and noise
reduction ratio of 96.5% and reduces the word error rate by
9.2% and signal-to-noise ratio by 10.3% compared to other
existing models.
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