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With the emergence of several new services such as driverless vehicles and virtual reality, mobile communication networks face
problems such as heavy load and insu�cient computing resources. �e development of cloud, edge, and mobile edge network
computing provides a good solution to this problem.�is paper proposes the development of a user energy e�ciency fairness task
unloading algorithm for cloud-side networks. First, a cloud-side network cooperation model is constructed. �e model ensures
the e�cient use of user energy and addresses the task o�oading decision and resource allocation optimization problem jointly.
Using the generalized fraction theory, the optimization problem is transformed into an equivalent convex problem by introducing
relaxation as well as auxiliary variables. Next, the centralized energy e�ciency fairness (CEEF) and alternating directionmethod of
multiplier (ADMM)-based energy e�ciency fairness algorithms are implemented to obtain an optimal solution for the opti-
mization problem. Finally, through experimental simulation, the convergence of the CEEF- and ADMM-based energy e�ciency
fairness algorithms is veri�ed. Compared with noncooperative algorithms, the performance of our proposed method increased by
30.76%. �e proposed algorithm has been veri�ed to ensure the fairness of user energy e�ciency.

1. Introduction

With the rapid advances in mobile communication, several
new applications such as virtual/augmented reality, face
recognition, and automated driving have been developed.
�ese applications demand ultra-low delay and high reli-
ability of mobile networks [1–3]. Although these new
applications enhance the convenience of performing tasks,
the amount of data and energy consumed to transmit data
has increased at an astronomical rate. �is has led to a
heavy processing burden on the network communication
equipment. Cloud-side networks can help realize com-
prehensive applications regarding communication com-
puting and resource collaboration to e�ciently mitigate
the burden on the communication equipment [4–10].
�erefore, research on cloud-side networks is of great

signi�cance. An incredible amount of research has been
conducted in recent years.

�e combination of cloud-side networks and mobile
edge computing (MEC) [11–15] technology is able to
ful�ll the networking requirements of communication,
computing, and business processing. It can realize an
e¢ective support system for the network providing novel
applications. By applying MEC technology, users on the
cloud-side network can upload computing tasks with high
computing requirements and energy consumption to edge
nodes. Edge computing nodes are very close to users.
�erefore, data transmission pressure and link congestion
can be e¢ectively alleviated. Simultaneously, the network
bandwidth demand and transmission delay in data
computing and storage process can be signi�cantly re-
duced [16–18].
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At present, considerable advancements have been made
in the field of mobile edge computing for cloud network-
edge network applications. Previous research used edge
nodes andmobile devices to form an edge computing system
wherein mobile devices have computing tasks [19]. Con-
sidering the frequency adjustment and nonadjustment of
edge access points, different methods were used to obtain the
unloading decision. A user cooperative cloud network-edge
mobile edge computing model was also proposed, whose
primary objective is minimizing the task processing delay to
make the optimal task offloading decision [20]. Stochastic
optimization theory was also used to make the optimal
unloading decision for the computational unloading
problem [21]. +e data cache in the mobile edge computing
model was considered to obtain the unloading decision by
considering the average minimum task processing delay
[22].+ese studies only focused on the optimization analysis
of the task unloading decision-making and did not study the
resource allocation problem.

In the cloud-side network, the intensive deployment of
edge servers consumes considerable resources. Many
studies have previously been conducted in this field. A
resource allocation method was proposed to minimize the
energy consumption of wireless power supply system in a
cloud-edge computing scenario [23]. A computational
resource allocation algorithm was proposed to minimize
terminal energy consumption with delay as a constraint
[24]. A fair aware communication and computing re-
source allocation scheme was proposed that aimed at
minimizing the maximum loss between users as the ob-
jective function for optimization [25]. For the single-cell
scenario, reference [23]proposed a task unloading and
resource allocation scheme to minimize the energy con-
sumption of the system with wireless power supply ca-
pability. Considering the user delay constraint, reference
[24] proposed an access control and computing resource
allocation algorithm to minimize terminal energy con-
sumption. In the multicell scenario, considering that the
user can unload tasks to multiple edge nodes, task allo-
cation of the terminal was optimized to minimize the
weighted sum of delay as well as terminal energy con-
sumption [26]. +e unloading decision, communication
resource allocation (uplink bandwidth and downlink
bandwidth), and computing resource allocation of each
user were optimized to minimize the energy consumption
and delay weight loss for all users under user delay
constraints [27]. An optimization problem aimed at
minimizing the maximum loss between users was con-
structed, and a fair and perceptual unloading decision was
proposed for the communication and computing resource
allocation scheme [25]. +e joint scheduling problem of
tasks and resources for multiple edge servers in the cloud
network was also analyzed [28]. Here, although the re-
source management under the cloud network-edge end
fusion network and load balancing between edge nodes
are considered, the correlation between the user
unloading decision and resource allocation is ignored.
Accordingly, a comprehensive consideration of the user
unloading decision and resource allocation is lacking.

On the cloud-side network, the interaction between
computing and communication makes the resource opti-
mization problem very complex and difficult to solve. In
addition, there are multiple edge nodes in the network with
vast differences in their communication computing power
and load. In a cloud network-edge integration network, it is
important that the nodes cooperate with each other in order
to improve network efficiency and performance and realize
efficient utilization and resource sharing. +erefore, this
study aims to develop a cooperative cloud network-edge
fusion network taking maximum and minimum user energy
efficiency as the objective function and comprehensively
considering user unloading decisions and resource
allocation.

+e primary contributions of this paper are summarized
as follows:

(i) An edge network model is built for the collaborative
cloud network, and the fairness of user energy ef-
ficiency is analyzed based on the maximum and
minimum criteria.

(ii) +e optimization of user energy efficiency fairness
proposed in the cloud network edge-end fusion
network model is a mixed-integer nonconvex
fractional programming problem which is tough to
solve. Using the generalized fraction theory, re-
laxation variables, and equivalent replacement of
the optimization problem, we convert the optimi-
zation problem into a convex optimization problem.
CEEF- and ADMM-based energy efficiency fairness
algorithms are proposed to dispose of the problem.

(iii) +rough simulation, the performance of the pro-
posed CEEF and ADMM energy efficiency fairness
algorithms is observed. +e efficiency of the pro-
posed algorithm to guarantee user energy efficiency
fairness is verified.

2. System Model

In this section, a system model for cloud-side network
systems, including network, communication, and compu-
tation models, is presented.

2.1. Network Model. As shown in Figure 1, the cloud-side
network model consists of I user terminals, M base sta-
tions, and a remote cloud server. Each base station in
this network is equipped with a MEC server. +e MEC
server and user terminal sets can be represented as
M � 1, 2, . . . , m, . . . , M{ }, and I � 1, 2, . . . , i, . . . , I{ },
respectively.

+e user terminal has a computing task for processing.
Qi � (Li, Ki) describes the computing task, where Li rep-
resents the data size of the task, and Ki represents the
number of CPU cycles required to accomplish the terminal
task. +e user terminal is able to choose to deal with the task
locally or unload it to the MEC or cloud server. When the
user terminal sends the task to the MEC server, the MEC
server can process the task by itself, forward it to other MEC
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servers with richer computing resources, or further unload
the task to the cloud server for processing. Table 1 sum-
marizes the used notations and the corresponding de�nition
in this paper.

Binary variables xi, yi,m, zi ∈ 0, 1{ } are de�ned, where
xi � 1 shows that the task of the user terminal i is processed
locally and xi � 0 means that the task is not processed lo-
cally. Similarly, yi,m � 1 indicates that the task of user ter-
minal i is processed by a MEC server m and yi,m � 0
indicates that the task is not processed on the MEC serverm.
Additionally, zi � 1 indicates that the task of user terminal i
is processed by a cloud server and zi � 0 indicates that the
task of user terminal i is not processed by the cloud server.
�e unloading decision to be made by the user terminal for
computing tasks needs to meet the following constraints:

xi + ∑
M

m�1
yi,m + zi � 1, i ∈ I. (1)

�is constraint means that the computing task of each
user terminal can only be processed by one of three means:
local processing, MEC server processing, and cloud server
processing. �is implies that, for a user terminal i, only one
binary variable can be equal to 1.

2.2. Communication Model. In the cloud-edge networks
model, when the user terminal i sends a task to the MEC
server m, the channel gain is expressed as

Gi,m � gi,md
−α
i,m, (2)

where gi,m is the channel power gain coe�cient when the
user terminal i sends tasks to the MEC server m, di,m is the
distance between user terminal i and MEC serverm, and α is
the path loss factor.

Assuming that the user movement rate is minimal
during unloading calculations, gi,m can be considered to be a
constant. �e uplink transmission rate between i and m is

Ri,m � B log2 1 +
Gi,mpi

∑j∈I\ i{ }Gj,mpj + σ2
 , (3)

where B is the available spectrum bandwidth, pi is the uplink
transmission power of user terminal i, and σ2 is the noise
power.

2.3.ComputationModel. �e local computing capacity of i is
represented by fLi , and the power consumed during local
computing is represented by PLi . �erefore, when i processes
the task Qi locally, the calculation delay can be expressed as

TLi �
Ki

fLi
. (4)

�e energy consumed can be expressed as

ELi � P
L
i T

L
i � P

L
i

Ki

fLi
. (5)

When i sends the task to m for processing, the com-
puting power of m is represented by Fm and the computing
resources allocated to i are represented by fi,m. When the
user terminal i sends a task, the transmission delay can be
expressed as

Tcommi,m �
Li
Ri,m

. (6)

�e energy consumed during transmission by i can be
expressed as

Ecommi,m � piT
comm
i,m � pi

Li
Ri,m

. (7)

Accordingly, the calculation delay of m for task pro-
cessing can be expressed as

Tcompi,m �
Ki

fi,m
. (8)

When i unloads the task on m, m can choose to process
the task itself or send it to other MEC servers with richer
computing resources. �e order Tm,k indicates the average
round-trip time of task forwarding between the MEC server
m and another MEC server k. When m � k, Tm,k � 0.
�erefore, when i transmits a task to m for processing, the
total delay is divided into three parts: the transmission delay

Table 1: Notation and corresponding description.

Qi Computation task of user i
Li Data size of task
Ki CPU cycles required to accomplish the task
xi, yi,m, zi Task o�oad decision

Ri,m
Uplink transmission rate between user i and MEC

server m
pi Uplink transmission power of user i
fLi Local computing capacity of user i
TLi Local calculation delay
ELi Locally calculated energy consumption
Ecomm
i,m Transmission energy consumption
Tcomp
i,m MEC calculation delay
Tfci Cloud computing delay
Ti Total delay
Ei Total energy consumption

Cloud server

MEC server

User

Figure 1: Cloud edge networks model.

Mobile Information Systems 3



between i and m, the forwarding delay between m and k, and
the calculation delay after k receives the task. +e total delay
can therefore be expressed as

Ti,k � T
comm
i,m + Tm,k + T

comp

i,k . (9)

When i unloads a task to the cloud server for processing,
the cloud computing capacity allocated for it is represented
by fc

i , the average round-trip time of task transmission
between m and the cloud server is represented by Tc, and the
processing delay of the task in the cloud server can be
expressed as

T
fc

i �
Ki

f
c
i

. (10)

+e size of the returned data after processing is con-
siderably smaller than that before processing. Hence, the
transmission delay of the result is negligible. When the cloud
server processes the task of i, the total delay of the entire
process can be expressed as

T
C
i � T

comm
i,m + Tc + T

fc

i . (11)

To sum up, the total delay of user terminal i in task
processing can be expressed as

Ti � xiT
L
i + 􏽘

M

m�1
yi,mTi,m + ziT

C
i . (12)

+e total energy consumption can be expressed as

Ei � xiE
L
i + 􏽘

M

m�1
yi,mE

comm
i,m + ziE

comm
i,m . (13)

3. User Energy Efficiency Fairness Resource
Allocation Algorithm

First, this section formulates the resource allocation and task
unloading optimization problems based on the maximum-
minimum criterion and then solves them using the CEEF
and ADMM algorithms, respectively.

3.1. Problem Reformulation. +e maximum-minimum cri-
terion is an effective means to ensure fairness for all users.
Hence, it was used to construct the joint resource allocation
and task unloading optimization problem. +e unloading
decision vector for i is expressed as ψi � xi, yi,1,􏽮

yi,2 . . . , yi,M, zi}, and the joint optimization problem is
expressed as follows:

maxψi ,fi,m
min

􏽐
M
m�1 yi,mRi,m + ziRi,m

xiE
L
i + 􏽐

M
m�1 yi,mE

comm
i,m + ziE

comm
i,m

, (14)

s.t. xiT
L
i + 􏽘

M

m�1
yi,mTi,m + ziT

C
i ≤T

max
i , (15)

􏽘

I

i�1
fi,m ≤Fm, (16)

xi + 􏽘
M

m�1
yi,m + zi � 1, (17)

xi, yi,m, zi ∈ 0, 1{ }. (18)

Equation (14) represents the objective function of joint
resource allocation and task unloading, equation (15) rep-
resents the user terminal requirements for the delay in the
task unloading process, equation (16) shows that the
computing resources of the base station cannot exceed the
maximum computing capacity, and equations (17) and (18)
indicate that only one node can be selected for computing
the required tasks.

3.2. Solutions Using the CEEF Algorithm. +e user energy
efficiency fairness optimization problem based on the
maximum and minimum criteria is a mixed-integer non-
convex fractional programming problem. First, the problem
is transformed into an equivalent mixed-integer nonconvex
subtraction optimization problem using the generalized
fractional theory. Let the variable Q represent the value of
the optimization problem, that is, the maximum and
minimum energy efficiency. Using the generalized fraction
theory and introducing a relaxation variable θ, the problem
can be transformed into the following:

maxψi ,fi,m
θ, (19)

s.t. xiT
L
i + 􏽘

M

m�1
yi,mTi,m + ziT

C
i ≤T

max
i , (20)

􏽘

I

i�1
fi,m ≤Fm, (21)

xi + 􏽘
M

m�1
yi,m + zi � 1, (22)

xi, yi,m, zi ∈ 0, 1{ }, (23)

􏽘

M

m�1
yi,mRi,m + ziRi,m − QE

total
i ≥ θ, (24)

where

E
total
i � xiE

L
i + 􏽘

M

m�1
yi,mE

comm
i,m + ziE

comm
i,m . (25)

As xi, yi,m, zi are binary variables, it can be relaxed to
xi, yi,m, zi ∈ [0, 1]. +e optimization problem is further
modified as follows:
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maxψi ,fi,m
θ, (26)

s.t. xiT
L
i + 􏽘

M

m�1
yi,mTi,m + ziT

C
i ≤T

max
i , (27)

􏽘

I

i�1
fi,m ≤Fm, (28)

xi + 􏽘
M

m�1
yi,m + zi � 1, (29)

xi, yi,m, zi ∈ [0, 1], (30)

􏽘

M

m�1
yi,mRi,m + ziRi,m − QE

total
i ≥ θ. (31)

+e objective function equation (26) is a linear function,
and equations (28)–(31) are linear constraints. +e total
delay of the user terminal using equation (27) is expressed as

xiT
L
i + 􏽘

M

m�1
yi,mTi,m + ziT

C
i

� xiT
L
i + 􏽘

M

m�1
yi,m

Li

Ri,m

+ 􏽘
M

m�1
yi,m

Ki

fi,m

+ 􏽘
M

m�1
yi,mTk,m + ziT

C
i .

(32)

+e product term yi,m/fi,m couples the variables yi,m and
fi,m. Additional variables ci,m � 1/fi,m and Vi,m � yi,mci,m

are introduced to solve the aforementioned equation.
+erefore, the problem is described as follows:

maxψi ,ci,m,Vi,m
θ, (33)

s.t. xiT
L
i + 􏽘

M

m�1
yi,mTi,m + ziT

C
i ≤T

max
i , (34)

􏽘

I

i�1

1
ci,m

≤Fm, (35)

xi + 􏽘
M

m�1
yi,m + zi � 1, (36)

xi, yi,m, zi ∈ [0, 1], (37)

􏽘

M

m�1
yi,mRi,m + ziRi,m − QE

total
i ≥ θ, (38)

Vi,m ≥
yi,m

Fm

, (39)

Vi,m ≤
yi,m

Fmin
, (40)

where Fmin is a normal number close to 0. In order to solve
the aforementioned problem, the CEEF algorithm is pro-
posed. Its steps are shown in Algorithm 1.

As the unloading decision variable is substituted into a
continuous variable, xi, yi,m, zi need to be mapped to a
binary variable after the optimal solution is obtained. +e
recovery scheme is as follows:

xi �
1, if i � argmaxi∈Ixi

0, else
􏼨 (41)

All the other variables were also recovered similarly.

3.3. Solutions Using the ADMM Algorithm. +e ADMM
algorithm is a standard method to solve large-scale opti-
mization problems. Combined with CEEF, it can effectively
achieve user energy efficiency fairness.

First, the optimization variables xi, yi,m, and zi are
copied and redefined as 􏽢xi, 􏽢yi,m, and 􏽢zi to form the following
equation:

xi � 􏽢xi

yi,m � 􏽢yi,m

zi � 􏽢zi

⎧⎪⎪⎨

⎪⎪⎩
(42)

Equation (33) can be equivalently modified as follows:

max􏽢xi,􏽢yi,m,􏽢zi,ci,m,Vi,m
θ, (43)

s.t. 􏽢xiT
L
i + 􏽘

M

m�1
􏽢yi,mTi,m + 􏽢ziT

C
i ≤T

max
i , (44)

􏽘

I

i�1

1
ci,m

≤Fm, (45)

􏽢xi + 􏽘
M

m�1
􏽢yi,m + 􏽢zi � 1, (46)

􏽢xi, 􏽢yi,m, 􏽢zi ∈ [0, 1], (47)

􏽘

M

m�1
􏽢yi,mRi,m + 􏽢ziRi,m − Q􏽢E

total
i ≥ θ, (48)

Vi,m ≥
􏽢yi,m

Fm

, (49)

Vi,m ≤
􏽢yi,m

Fmin
. (50)

+erefore, the augmented Lagrangian function from
equation (43) can be expressed as
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Lρ 􏽢xi, 􏽢yi,m, 􏽢zi, λi, μi,m, ci􏼐 􏼑 � θ + λi 􏽢xi − xi( 􏼁

+ 􏽘
M

m�1
μi,m 􏽢yi,m − yi,m􏼐 􏼑

+ ci 􏽢zi − zi( 􏼁 +
ρ
2

􏽢xi − xi( 􏼁
2

+
ρ
2

􏽘

M

m�1
􏽢yi,m − yi,m􏼐 􏼑

2

+
ρ
2

􏽢zi − zi( 􏼁
2
,

(51)

where λi, μi,m, and ci represent the Lagrange multipliers and
ρ> 0 represents the augmented Lagrange parameter, which
is a constant. +is constant controls the convergence of the
ADMM algorithm iteration. To facilitate the solution of the
target variable, the Lagrange multiplier coefficients are
simplified. Hence, the augmented Lagrange function can be
equivalently transformed into the following:

Lρ 􏽢xi, 􏽢yi,m, 􏽢zi, λi, μi,m, ci􏼐 􏼑

� θ +
ρ
2

􏽢xi − xi +
λi

ρ
􏼠 􏼡

2

+
ρ
2

􏽘

M

m�1
􏽢yi,m − yi,m +

μi,m

ρ
􏼠 􏼡

2

+
ρ
2

􏽢zi − zi +
ci

ρ
􏼠 􏼡

2

.

(52)

When using ADMM to solve the problem, the variables
need to be updated through multiple iterations. Let

e
(t)

� 􏽢x
(t)
i , 􏽢y

(t)
i,m, 􏽢z

(t)
i􏼐 􏼑, (53)

s
(t)

� x
(t)
i , y

(t)
i,m, z

(t)
i􏼐 􏼑, (54)

d
(t)

� λ(t)
i , μ(t)

i,m, c
(t)
i􏼐 􏼑. (55)

represent the value of the tth iteration of the variables. +e
first step to solve the equations is to update the local variable,
which is expressed as follows:

e
t+1

� arge maxLρ e, s
(t)

, d
(t)

􏼐 􏼑. (56)

+is problem can be decomposed into m parallel sub-
problems, where each subproblem is solved separately using
convex optimization.

+e second step is updating the global variable s using
the following formula:

x
(t+1)
i � argmaxxi

ρ
2

􏽢x
(t+1)
i − xi +

λ(t)
i

ρ
􏼠 􏼡

2

, (57)

y
(t+1)
i,m � argmaxyi,m

ρ
2

􏽘

M

m�1
􏽢y

(t+1)
i,m − yi,m +

μ(t)
i,m

ρ
⎛⎝ ⎞⎠

2

, (58)

z
(t+1)
i � argmaxzi

ρ
2

􏽢z
(t+1)
i − zi +

c
(t)
i

ρ
􏼠 􏼡

2

. (59)

+e aforementioned problem is an unconstrained qua-
dratic convex problem. After deriving the variable, the
following equation is obtained:

ρ 􏽢x
(t+1)
i − xi + λ(t)

i􏼐 􏼑 � 0, (60)

ρ 􏽘
M

m�1
􏽢y

(t)
i,m − yi,m + μ(t)

i,m􏼐 􏼑 � 0, (61)

ρ 􏽢z
(t+1)
i − zi + c

(t)
i􏼐 􏼑 � 0. (62)

+eglobal variable optimal solution is obtained as follows:

x
(t+1)
i � 􏽢x

(t+1)
i + λ(t)

i , (63)

y
(t+1)
i,m �

1
M

􏽘

M

m�1
􏽢y

(t+1)
i,m + μ(t)

i,m􏼐 􏼑, (64)

z
(t+1)
i � 􏽢z

(t+1)
i + c

(t)
i . (65)

+e third step is updating the Lagrangemultiplier as follows:

λ(t+1)
i � λ(t)

i + 􏽢x
(t+1)
i − x

(t+1)
i , (66)

μ(t+1)
i,m � μ(t)

i,m + 􏽢y
(t+1)
i,m − y

(t+1)
i,m , (67)

c
(t+1)
i � c

(t)
i + 􏽢z

(t+1)
i − z

(t+1)
i . (68)

Initialization:
Set t � 1, Q(0) � 0, ε � 0.01, tmax � 25.
Substitute Q(0) � 0 into the problem equation (33) to obtain an initial feasible solution 􏽑

(0).
Iteration:
whileQ(t) − Q(t− 1) > ε and t≤ tmaxdo

(1) Substitute Q(t− 1) into the problem equation (31) and update feasible solution 􏽑
(t);

(2) Solve the problem equation (15) by substituting the feasible solution 􏽑
(t) and update Q(t);

t � t + 1.
end while

ALGORITHM 1: CEEF algorithm.
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+e fourth step verifies the iteration termination con-
dition, expressed as follows:

􏽢x
(t+1)
i − x

(t+1)
i

�����

�����2
≤ εpri, (69)

􏽢y
(t+1)
i,m − y

(t+1)
i,m

�����

�����2
≤ εpri, (70)

􏽢z
(t+1)
i − z

(t+1)
i

�����

�����2
≤ εpri, (71)

x
(t+1)
i − x

(t)
i

�����

�����2
≤ εdual, (72)

y
(t+1)
i,m − y

(t)
i,m

�����

�����2
≤ εdual, (73)

z
(t+1)
i − z

(t)
i

�����

�����2
≤ εdual, (74)

where εpri > 0 and εdual > 0 represent the iteration stop
threshold under feasible conditions.

+e energy efficiency fairness algorithm based on the
ADMM algorithm described here is shown in Algorithm 2.

As the unloading decision variable is modified into a
continuous variable, xi, yi,m, zi need to be mapped to a
binary variable after the optimal solution is obtained. +e
recovery scheme is as follows:

xi �
1, if i � argmaxi∈Ixi

0, else
􏼨 (75)

All the other variables were recovered in the same way.
Complexity Analysis: when using CEFF algorithm to solve

the problem, the algorithm complexity is O(I2(M + 1)). For
the proposed ADMM-based distributed algorithm, in the
local variable update, the computational complexity is O(I3).
In the global variable update, the corresponding calculation
complexity is O(I(M + 1)). In addition, the complexity of
updating Lagrange multiplier is O(I). +erefore, the com-
putational complexity of each iteration of algorithm is
O(I3) + O(I(M + 1)) + O(I) ≈ O(I3).

4. Simulation Results

In this section, the proposed algorithms are compared by
simulation experiments. +e simulation is composed of 3
base stations and 27 random users. +e radius covered by

each base station is 500m, and the users are randomly
distributed in the overlapping area covered by the base
station. +e transmission link bandwidth in the system is
15MHz, noise power is σ2 � −143 dBW, path loss model is
h � 128.1 + 37.6 log10(d), and d represents the distance
between the MEC server and user terminal. +e local
computing capacity of the user terminal, base station, and
cloud server is 0.6 Gcycles/s, 5 Gcycles/s, and 10 Gcycles/s,
respectively. To achieve a performance comparison, a
noncooperative scheme is simulated in addition to the CEEF
and ADMM [29]. In the noncooperative scheme, computing
tasks could be processed by the user terminal, MEC server,
or cloud server, but the cooperation between MEC servers is
not considered. Computing tasks cannot be forwarded to
other MEC servers, and the maximum-minimum user en-
ergy efficiency cannot be achieved by optimizing resource
allocation.

Figure 2 shows the convergence process of the CEEF
algorithm, ADMM algorithm, and noncooperative algo-
rithm. +e abscissa represents the number of iterations, and
the ordinate represents the energy efficiency. It can be seen
from the simulation graph that with an increase in the
number of iterations, the three schemes stabilize at their
unique value, thereby verifying the convergence of the al-
gorithms.+e performance of CEEF and ADMM algorithms
is 30.76% higher than that of the noncooperative scheme.
+is is because the computing tasks in the noncooperative
scheme cannot be forwarded among MEC servers, thereby
increasing energy consumption and decreasing energy
efficiency.

Figure 3 shows the impact of different task calculations
on user energy efficiency performed by the CEEF, ADMM,
and noncooperative algorithms when the transmission
power of the user terminal is 0.2W and 0.5W. +e abscissa
represents computations required for the task, and the or-
dinate represents energy efficiency. +e energy efficiency of
the three schemes gradually decreases with an increase in
computations. As the number of calculations increases, the
energy consumption increases, thereby decreasing energy
efficiency. +e figure also shows that the energy efficiency
trend of the CEEF and ADMM algorithms is consistent and
greater than that of the noncooperative scheme. We can
hence conclude that the performance of the cooperative
schemes is better than that of noncooperative scheme under
varied computational loads.

Initialization:
Initialize the feasible set x

(t)
i , y

(t)
i,m, z

(t)
i ,

set the stopping criteria values εpri and εdual,
scaling Lagrange multipliers vectors λ(t)

i , μ(t)
i,m, c

(t)
i , set t � 0;

while ‖x
(t+1)
i − x

(t)
i ‖2 ≥ εdual, ‖y

(t+1)
i,m − y

(t)
i,m‖2 ≥ εdual, ‖z

(t+1)
i − z

(t)
i ‖2 ≥ εdualdo

(1) Update local variables 􏽢x
(t+1)
i , 􏽢y

(t+1)
i,m , 􏽢z

(t+1)
i by solving problem equation (56);

(2) Update global variables x
(t+1)
i , y

(t+1)
i,m , z

(t+1)
i by equations (63)–(65);

(3) Update multipliers λ(t+1)
i , μ(t+1)

i,m , c
(t+1)
i by equations (66)–(68);

t � t + 1.
end while

ALGORITHM 2: ADMM algorithm.
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Figure 4 shows the impact of di¢erent data sizes of a
task on user energy e�ciency under the CEEF, ADMM,
and noncooperative algorithms when the transmission
power of the user terminal is 0.2W and 0.5W. �e
abscissa in the �gure represents the data size of the task,
and the ordinate represents the energy e�ciency. An
increase in the data size of the task gradually decreases the
e�ciency of the three algorithms. When the data size of a
task increases, the energy consumed by the system for
calculations increases, thereby decreasing energy e�-
ciency. �e �gure also shows that the energy e�ciency

trend of the CEEF and ADMM algorithms is consistent
and greater than that of the noncooperative scheme. We
can hence conclude that the performance of the CEEF and
ADMM algorithms is better than that of the noncoop-
erative scheme for varied data sizes.

Figure 5 shows the impact of transmission power of the
user terminal on user energy e�ciency of the CEEF, ADMM,
and noncooperative algorithms when the task data size is
0.2Mb and 0.5Mb. �e abscissa represents the transmission
power, and ordinate represents the energy e�ciency. With an
increase in transmission power, the energy e�ciency of the
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three schemes gradually decreases. When the transmission
power gradually increases, the energy consumed by the
system for transmission calculation increases more than the
transmission rate, resulting in reduced energy e�ciency. �e
�gure also shows that the energy e�ciency trend of the CEEF
and ADMM algorithms is consistent and greater than that of
the noncooperative scheme. We can conclude that the CEEF
and ADMM algorithms perform better than the noncoop-
erative algorithm when the user transmission power is varied.

Figure 6 shows a comparison between considering and
not considering fairness. �e di¢erence between the two is
that the objective function of optimization is di¢erent. �e
objective function without considering fairness is that the
maximum total energy e�ciency, that is, the ratio of the total
user rate to the total user energy consumption should be the
largest. �e �gure shows that when fairness is not considered,
the energy e�ciency gap between the best users and the worst
users is relatively large. We can conclude that the maximum
and minimum user energy e�ciency considered in this paper
can better ensure the fair access of resources for all users.

5. Conclusion

�is paper develops a cloud network-edge network model
and analyzes the fairness of user energy e�ciency based on
the maximum-minimum criterion. �e user energy e�-
ciency fairness optimization problem proposed in the cloud
network-edge network model is a mixed-integer nonconvex
fractional programming problem, which is di�cult to deal
with. �rough the generalized fraction theory, relaxation
variables, and equivalent replacement of the optimization
problem, the problem was modi�ed into a convex optimi-
zation problem. Accordingly, CEEF- and ADMM-based
energy e�ciency fairness algorithms are proposed to dispose
of the problem. Simulations are performed to test the
proposed algorithm and verify that the proposed algorithm
can guarantee user energy e�ciency fairness.
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