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In optimizing the propagation paths of automotive product design changes, we applied the complex network theory to automotive
product structure modeling and established a directed weighted auto part network model. In this model, we de�ned the parts as
the nodes, the physical connections between the parts as the edges, and the impacts of change propagation as the weights of the
edges. According to the characteristics of change propagation, we constructed a multiobjective optimization model that si-
multaneously considered the development time, development cost, and change risk. Using a multiobjective particle swarm
optimization (MOPSO) algorithm, we solved the model and obtained the Pareto set of optimal solutions, which provided a basis
for designers to choose the optimal design change plan. We conducted the multiobjective optimization of the air-conditioning
system design change propagation path in a car model to verify the feasibility and e�ectiveness of the method.

1. Introduction

Product design is a dynamic change process. From capturing
user needs and corporate preferences to obtaining product
concepts, product development progress and expected costs are
a�ected by design changes [1]. e phenomenon of design
changes is particularly signi�cant in the design process of
automotive products. e parts of automotive products have
the characteristics of high complexity, long research and de-
velopment cycles, and high levels of design coupling and
customization [2]. e design change in a single part directly
a�ects the change in adjacent parts. e propagation of design
changes a�ects the comprehensive development results of the
product and poses risks that are di�cult to estimate [3]. Re-
search on the propagation path of design changes for auto-
motive products can e�ectively reduce the change risks,
development time, and costs [4]. Di�erent change propagation
paths yield di�erent change ful�llment costs with development
expenditures, lead times, quality losses, and so on.

For one thing, Gan et al. constructed an expanded Petri
net model to describe the propagation relationship of

product attribute design change [5]. Wang et al. presented
an optimization method of mechanical product change
propagation path based on a dimension parameter-associ-
ated network model [6]. Yin et al. proposed an optimal
change propagation path based on complex theories, and by
using this approach, the cost of development expenditures,
lead times, and quality losses change can be minimized [7].

For another thing, Tohidi and AlGeddawy presented two
mathematical models to optimize the use of a passivemodular
assembly �xture plan in an automated assembly system by
considering di�erent production scenarios and constraints
[8]. Wei et al. developed a multiobjective reallocation model
with a feasible assumption that the task executing time is
controllable, where a compressing executing time strategy is
proposed in the product design process [9]. Li et al. proposed
a data-driven mechanism to construct the design change
model with an improved dendritic neural networks [10]. Li
et al. developed a general model to depict the dynamic design
change propagation based on complex networks [11]. Delaney
et al. reviewed the fundamental factors in which product
design has the ability to in§uence and improve the overall
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environmental sustainability of a product [12]. )e part
design changes can propagate along various paths. By
changing different parts to meet the initial change require-
ments, designers can select the corresponding propagation
path and make decisions [12, 13]. )erefore, for the non-
uniqueness characteristic of a change propagation path, it is of
practical significance to study the propagation paths of
complex product design changes while considering the
product development time, cost, and risk factors.

In this research, based on complex networks [13, 14], we
performed multiobjective optimization on design change
propagation paths. We first built the physical connection
relationship network of complex product parts. Next, we
introduced the optimization objectives of development time,
development cost, and change risk, and we established a
multiobjective optimization model based on the charac-
teristics of design change propagation. )en, we solved the
model and obtained the Pareto solution set through iteration
using a multiobjective particle swarm optimization
(MOPSO) algorithm [14]. We achieved the effective control
of the propagation of automotive product design changes,
which could quickly provide designers with design change
plans to improve design agility.

2. Model Construction

2.1.Construction ofPartNetwork. )e complex networks can
well describe the complex interrelation models [15, 16] in the
fields of natural science, social science, management science,
engineering technology, etc. In recent years, four types of
complex network models (undirected and unweighted net-
work, undirected and weighted network, directed and un-
weighted network, and directed and weighted network) have
been proposed [16]. A complex network can be expressed as
G � (V, E), where V � (v1, v2, . . . , vn) represents the set of
the nodes and E � eij  (1≦i≤ n, 1≦j≤ n) represents the set of
edges. A complex product consists of a large number of parts.
In the network, each part is abstracted as a node and the
structural connection relationship between two parts is ab-
stracted as an edge. According to research subjects in this area,
some researchers have used part design parameters [17],
design tasks [18], and parts [19] as the nodes in a network.
Because we studied the optimization of the development
process of change propagation with parts as the development
units, we used a directed, weighted network model to model
the product on the part level. During the propagation of
design changes, changes in the upstream parts had an impact
on the downstream parts. Mapped to the network, a design
change propagated along the direction of an edge and the part
connection network could be represented by the adjacency
matrix A (composed of elements aij).

A �
aij, if node i and node j are connected,

0, otherwise,
 (1)

where element aij≥ 0 is the weight of an edge in the directed
weighted network, represented by the thickness of the edge
in Figure 1, which shows the conversion of the adjacency
matrix to the directed weighted network.

2.2. Design Change Propagation. Because the part network
model established in this study was of low granularity and
the research object was automobile products, the model
assumption included design iterations; that is, each part
might undergo multiple changes during the propagation
process. )ere were two modes of part design change
propagation: serial propagation and parallel propagation. In
the serial propagation mode, the change in one part could
only propagate to one connected part at a time. In the
parallel propagation mode, the change in one part could
simultaneously propagate to two or more connected parts.
)e parallel propagation path was composed of multiple
serial propagation paths.We only studied serial propagation,
that is, only one part could be selected at a time along the
search paths.

In order to establish the propagation process model, we
introduced the propagation likelihood and the propagation
impact.)e propagation likelihood lijwas the likelihood that
the upstream part i affected the downstream part j in the
likelihood interval (lijl, liju). lijl was the minimum propa-
gation likelihood. liju was the maximum propagation like-
lihood. )e propagation impact iij was the redesign ratio of
the upstream part i in relation to the downstream part j with
the propagation likelihood lij. Both the propagation likeli-
hood and the propagation impact were in the range of 0 to 1.
)e propagation likelihood and the propagation impact
matrices were determined by experienced design and
manufacturing engineers using design change databases.
Additionally, the weights of the opinions of design and
manufacturing engineers in their respective professional
fields were considered in order to obtain more reasonable
propagation likelihood and propagation impact matrices. iij0
represented the maximum redesign ratio caused by the
propagation of the upstream part i to the downstream part j
with the maximum propagation likelihood, and i0i repre-
sented the initial change impact of the initial change node i.
)e propagation impact of the kth iteration was calculated
according to the following:

iij(k) �
lij(k) − lijl

liju − lijl

× i
k
ij0. (2)

In the process of change propagation, the smaller the
propagation likelihood was, the less the downstream parts
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Figure 1: Schematic of the weighted and directed complex
networks.
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were affected. We had the following hypotheses. In the kth
design iteration process, the propagation likelihood and the
propagation impact were linearly related. In the equation,
ikij0 represents the designer’s familiarity with or learning
outcome for the part design. Because iij0 was less than one,
ikij0 represented the decrease in the propagation impact in
subsequent design iterations. )is was because as designers
became more familiar with the design unit, the impact of the
design change on the design unit diminished. lij(k) repre-
sents the propagation likelihood of the kth iteration of the
upstream part i to the downstream part j. In the process of
change propagation, when a part was less affected by the
propagation of the upstream parts, it was less likely for the
part to affect its downstream parts. )erefore, assuming that
the propagation likelihood during the kth design iteration
was proportional to the propagation impact, the propagation
likelihood of the kth iteration was as follows:

lij(k) � liju × ii−1,i(k), (3)

where ii− 1, i(k) represents the impact of the kth propagation
to part i in the design of an upstream part of part i. In this
study, it was assumed that when the impact of the initial
change propagated down to less than 0.001, the propagation
of the change stopped.

2.3. Multiobjective Optimization. Due to fierce market
competition, companies need to develop high-quality and
low-cost products, and at the same time, companies need to
shorten the product development cycle and improve design
agility. Design change propagations extend product lead
time and increase development costs. Change processing
consumes a large amount of manpower and material re-
sources. Determining how to balance the development time
and development cost and how to reduce the change risk are
the key issues that many companies face in change control.
)e propagation of design changes has a profound impact on
the design phase and manufacturing phase of a product.
)erefore, we considered the development time, develop-
ment cost, and change risk as the optimization objectives.
Reference [13] proposed a method of analyzing the impact of
changes based on the impact of likelihood. )e change risks
defined in this study were direct change risks, excluding
indirect change risks. )e change risk rij was the product of
the change propagation likelihood and the change propa-
gation impact, as shown in equation (4). )e propagation
process is shown in Figure 2.

rij � lij × iij. (4)

It was assumed that each part had a fixed development
time and development cost. For different propagation
impacts, the redevelopment cost and time were different
for each part: the greater the propagation impact was, the
greater the resultant development cost and the develop-
ment time were. )erefore, the development time, de-
velopment cost, change risk of each change propagation
path, and the objective function of the model could be
defined as follows:

minF(x) �
⎧⎨

⎩T � 
n

i�1
ii−1,i × Ti, C � 

n

i�1
ii−1,i × Ci, R

� 

n

i�1
ii−1,i × Ri

⎫⎬

⎭,

(5)

s.t. C≤Cm, T≤Tm, (6)

where T represents the total development time of all
parts on the change propagation paths, C represents the
total development cost, and R represents the total change
risk. Ti and Ci are the development time and the devel-
opment cost of part i, respectively. li − 1,i represents
the propagation likelihood of the design change in an
upstream part of part i propagating to part i. ii − 1,i rep-
resents the impact of the design changes in an upstream
part of part i propagating to part i. n is the sum of the
number of changes in all parts on the change propagation
paths. Because the design changes in actual engineering
consume a large amount of manpower and material re-
sources, the optimization model of complex product
design change propagation also needs to meet the con-
straint defined in equation (6), where Cm and Tm represent
the maximum development cost and the longest product
lead time, respectively, that the product design change can
accept.

2.4.Model-SolvingProcessBasedonMOPSO. It is difficult for
traditional mathematical programming methods to solve the
above multiobjective combination problem within a rea-
sonable time.)eMOPSO proposed in [17, 20] is effective at
solving such problems. )e algorithm includes two fixed-
size solution sets. One set was used to achieve the global
nondominated solutions, and the other set was used to
achieve the historical record of each particle reaching the
best solution, which also represented the elitism of the
evolutionary algorithms. In the iterative process, the density-
based fitness calculation method was used to update the
velocities and positions of the particles and to select the
global optimal solution. Only when the former dominated
the latter was the local solution set replaced. Accordingly, we
used the algorithm to solve the multiobjective model of the
design change propagation path. )e algorithm flowchart is
shown in Figure 3.
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Figure 2: Flow of propagation risk.
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)e detailed steps are as follows:

Step 1. (Initialization): First, N particles, Xi(0), i �

1, . . . , n}, were randomly generated in the feasible solution
space with an initial velocity of Vi(0), i � 1, . . . , n . )e
particles of the initial population were evaluated according
to the objective function. )e local best positions were set to
the particles themselves, X∗i (0) � Xi(0), i � 1, . . . , n .
)en, the local nondominated solution set S∗(0) was con-
structed, from which the nondominated solutions were

sought. Next, the global nondominated solution set S∗∗(0)

was constructed, and the particles with the closest distances
to the local optimal solution were selected as the global
optimal solution. Finally, the number of iterations was set to
t � 0, and the maximum number of iterations was set to T.

Step 2. (Velocity and position updates): )e velocity vij(t)

and the position xij(t) of the i-th particle in the t-th iteration
in the j-dimensional space were updated according to the
following equation.

vij(t + 1) � w(t)vij(t) + c1r1j(t) x
∗
ij(t − 1) − xij(t)  + c2r2j(t) x

∗∗
ij (t − 1) − xij(t) 

xij(t + 1) � xij(t) + vij(t + 1)

⎧⎨

⎩ , (7)

where w(t) is the weight coefficient, c1 and c2 represent the
individual learning coefficient and the global learning co-
efficient, respectively, and r1j and r2j are the random
numbers in [0, 1].

Step 3. (Nondominated solution set updates): )e updated
position of the ith particle was added to the nondominated
local solution set S∗i (t). )e dominated solution set in S∗i (t)

was truncated. )en, all the nondominated local solution
sets were merged and the nondominated solution sets except
for those in the local solution sets were added to the global

nondominated solution set S∗ ∗i (t). If the size of S∗ ∗i (t)

exceeded the predetermined range, the excess part of the
solution set would be eliminated. S∗ ∗i (t) was copied to the
external Pareto solution set, and all the dominated solutions
are searched and removed. Similarly, if the number of
nondominated individuals achieved in the external Pareto
solution set exceeded a predetermined range, the set was
truncated by a clustering algorithm.

Step 4. (Local optimal solution and global optimal solution
updates): If X∗i (t) and X∗ ∗i (t) were the minimum distances
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Figure 3: )e calculation flowchart of MOPSO.
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in S∗i (t) and S∗ ∗i (t), respectively, they were selected as the
local optimal solution and the global optimal solution of the
ith particle.

Step 5. (End of iteration): If the current number of iterations
exceeded the maximum number of iterations, the iteration
was stopped. Otherwise, Step 2 was returned and the next
iteration was performed.

3. Case Analysis

3.1. Model Construction and Solution. In order to verify the
effectiveness of the proposed model and algorithm, an air-
conditioning system of a car model was used in the case
analysis. )e air-conditioning system contained 32 parts. In
order to reduce the design cost, save the design time, and
shorten the delivery time, the optimization of the propa-
gation path of air-conditioning in automotive product de-
sign change needs to be performed. )rough the structural
model of the air-conditioning system and the historical data,
and by talking with a number of research and development
and manufacturing engineers of an air-conditioning
manufacturing company, we obtained the adjacency matrix,
development time, and cost of each part. )e development
cost included the cost required for the design process and the
manufacturing process, and it mainly included the costs of
materials, energy, equipment, manpower, and other related
factors. )e development time included the time required
for redesign and manufacturing. )e development time was
similar to the evaluation process of the development cost.
)e part list, development time, and cost of the air condi-
tioner are shown in Table 1.

According to the research and development and
manufacturing engineers, and the design change database,
we obtained the change propagation likelihood interval of
each connected edge, and through the maximum likelihood
of the change propagation impact through each edge, we
obtained the change risk matrix, as shown in Table 2. An
edge weight represented the impact of the change propa-
gation with the greatest likelihood of passing through each
edge. )e value of an edge weight corresponded to the value
of the cross data. )e larger the value of an edge weight was,
the larger the value of the corresponding cross data in the
table was.

A compressor is the power source of an air conditioner
and its design changes for the diversification of customer
needs often. )e compressor with node number 18 was used
as the initial change node in this case for verification. )e
initial change impact was set to 0.6. )e maximum ac-
ceptable cost of the solution was 1600 (yuan). )e longest
product lead time was 10 (days).)eNSGA-II algorithmwas
used to solve the model. )e algorithm parameters were set
as follows. )e population size was 100. )e solution set size
was 100. )e maximum iteration was 100. )e individual
learning coefficient and the global learning coefficient were
set to 1. )e weight for the maximum transfer velocity was
0.8. MATLAB was used to solve the model. )e Pareto
optimal solution set is shown in Figure 4, where each point
represents a design change propagation path.

)e obtained Pareto solution set contained 15 optimal
solutions.)e change paths and the values for three optimized
objectives are shown in Table 3. )e following three change
propagation schemes might be recommended according to
different design preferences (as shown in Table 4). )e three
schemes had their own advantages and disadvantages. For
example, the development time of scheme A1 was 5.09 (days),
shorter than the development time of scheme A6, 5.5 (days).
)e change risk ofA1 was 0.65, smaller than the change risk of

Table 1: )e development times and costs of the parts of an au-
tomobile air conditioner.

No. Part Cost
(yuan)

Time
(day)

1 Controller 1000 4
2 Evaporator core 100 0.5
3 Warm-air core 100 0.5
4 Air conditioner box assembly 400 1
5 Air conditioner duct 500 2
6 Piping 200 2
7 Connection wires 500 3
8 Switch button 500 3
9 Fan blades 300 1
10 Water tank 700 6
11 Condenser 600 4
12 Expansion valve 1000 6
13 Low-pressure service valve 200 1
14 High-pressure service valve 100 1
15 High-voltage switch 160 1
16 Damper 1200 8
17 Liquid storage and dryer tank 400 1
18 Compressor 600 2
19 Radiator fan motor 600 2
20 Condenser fan motor 500 4
21 Air volume adjustment starter 700 4.5
22 Heater controller 300 2
23 Filter 400 5

24 Internal and external gas conversion
starter 400 6

25 Compressor belt 1000 7
26 Condenser deck 800 3
27 Compressor deck 600 4
28 Evaporator deck 800 5
29 Water tank deck 400 4
30 Mounting parts 600 4
31 Compressed intake pipe 1 200 3
32 Compressed outlet pipe 2 600 5

Table 2: )e change risk matrix of an air conditioner.

No. 1 2 3 4 5 . . . 29 30 31 32
1 0 0.3 0 0 0 . . . 0.6 0 0 0.4
2 0 0 0.7 0 0 . . . 0 0 0 0
3 0 0 0 0.6 0 . . . 0 0.5 0 0.8
4 0 0 0 0 0.2 . . . 0.3 0 0.9 0
5 0.4 0 0 0 0 . . . 0 0 0 0
. . . 0 0 0.4 0 0.5 . . . 0.7 0 0.6 0
29 0 0 0 0 0 . . . 0 0 0 0.5
30 0.2 0 0 0.3 0.9 . . . 0 0 0 0
31 0 0.4 0 0 0 . . . 0 0 0 0.7
32 0.8 0 0 0.4 0 . . . 0 0.9 0 0
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A6, 0.8. However, the development cost of A1, 839.5 (yuan),
was higher than the development cost of A6, 810.4 (yuan).
Because the model in this study optimized three objectives at
the same time, including the development time, development
cost, and change risk, similar situations occurred in com-
parison with the other schemes. )e conflict between these
three objectives prevented simultaneous optimization.
)erefore, the obtained optimal design change propagation
schemes were a set of schemes instead of a single scheme.

3.2. Method Comparison. To show the feasibility and su-
perior performance of the proposed method, we compared
our method with the improved BFS (breadth-first search,

BFS) algorithm proposed by Li et al. [19]. First, the BFS
algorithm was applied to the case in the study. Because the
algorithm could only solve single-objective problems, we set
the development time to be the optimization objective and
we obtained the optimal change scheme, which was the same
as A1 in Table 3: the propagation path of the change was
18–19–5–6, the development time was 5.2 (days), the de-
velopment cost was 850.5 (yuan), and the change risk was
0.68. )e optimization model proposed in this study used
the MOPSO algorithm to optimize multiple objectives at the
same time and to obtain multiple optimal change propa-
gation schemes for designers to choose from according to
different design requirements and preferences. At the same
time, the space complexity defined by the improved BFS
algorithm was O(BD), where B is the maximum branching
factor and D is the maximum path length. Due to the re-
quirement for large space, the BFS algorithm was not
suitable for solving the problem of optimizing the propa-
gation paths of complex product design changes with large
network scales. In a traditional traversal method used to
solve the problem, as the number of initial change nodes
continues to increase, the number of feasible solutions for
change propagation increases exponentially. When there are
too many feasible solutions, the time required to solve the
problem is too high. )e time complexity defined by
MOPSO is O(M∗N∧2), whereM is the number of objective
functions and N is the number of individuals in the pop-
ulation. )erefore, the MOPSO algorithm is more efficient
than the existing methods, it is especially suitable for solving
the design change problem of complex products, and it
allows the designers to choose their own preference scheme
in the Pareto solution set to improve the design agility.

4. Concluding Remarks

To tackle the problem of multiple preference objectives not
being considered in the research of the propagation path
optimization of automotive product design changes, we
proposed a multiobjective optimization model that simul-
taneously considered development time, development cost,
and change risk. According to the physical connection
structure between car parts, we established a directed,
weighted network. We introduced the optimization objec-
tives of development time, development cost, and change
risk, and we established a multiobjective optimization model
for the design change propagation path. We used a MOPSO
algorithm to solve the model, and we obtained a set of Pareto
solution schemes for design changes. We used the appli-
cation and the method comparison of an air-conditioning
system model to verify the feasibility of our method. Our
method considered multiple optimization objectives in ac-
tual engineering. We learned from interviews with auto-
motive air-conditioning research and development
engineers that many optimization solutions could be ob-
tained through this method, and this method could also
provide companies with different preferences. However,
problems such as uncertainty, dynamics, and excessive
constraints exist in actual engineering practice, and thus,
some solutions did not conform to actual engineering

Table 4: )e three recommended change propagation schemes.

No. Change path Cost (yuan) Risk Time (days)
A1 18–20–5–6 839.5 0.65 5.09
A6 18–16–17–16–17 810.4 0.68 5.5
A12 18–31–32–15–18 910.6 0.64 6.3

CostRisk

6.4
6.2
6.0
5.8
5.6
5.4
5.2

0.71
0.70

0.69
0.68

0.67
0.66
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900

880
860

840
820

800
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e

Figure 4: )e optimal Pareto solution.

Table 3: )e optimal schemes and objective values.

No. Change path Cost (yuan) Risk Time (days)
A1 18–20–5–6 839.5 0.65 5.09
A2 18–19–17–16–17 840.8 0.69 5.4
A3 18–19–32–15–18–19 890.2 0.66 5.7
A4 18–31–32–15–18–19–17 900.7 0.67 6.3
A5 18–19–32–15–18–31 880.1 0.66 5.7
A6 18–16–17–16–17 810.4 0.68 5.5
A7 18–31–32–15–18–19–15 920.5 0.66 6.3
A8 18–19–32–15–18–19 860.3 0.73 5.5
A9 18–19–31–32–16–17 850.7 0.66 5.4
A10 18–31–32–16–17 870.1 0.69 6.4
A11 18–17–16–17 800.6 0.71 5.4
A12 18–31–32–15–18 910.6 0.64 6.3
A13 18–31–32–15–18–19 909.5 0.65 6.6
A14 18–31–32–15–18–19–5 930.2 0.65 6.5
A15 18–19–32–15–18–19 880.3 0.69 5.4
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constraints. In future research, other constraints should be
included to remove invalid solutions and to better obtain
different preferred solutions to improve design agility. For
example, the relationship between the parts can be defined
only by the number of relation types between the parts. More
uncertainties of these relationships including fuzzy uncer-
tainties will be investigated in our future work.
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