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Accurate segmentation of cervical nuclei is an essential step in the early diagnosis of cervical cancer. Still, there are few studies on
the segmentation of clustered nuclei in clusters of cells. Because of the complexities of high cell overlap, blurred nuclei boundaries,
and clustered cells, the accurate segmentation of clustered nuclei remains a pressing challenge. In this paper, we purposefully
propose a GCP-Net deep learning network to handle the challenging cervical cluster cell images. The proposed U-Net-based
GCP-Net consists of a pretrained ResNet-34 model as encoder, a Gating Context-aware Pooling (GCP) module, and a
modified decoder. The GCP module is the primary building block of the network to improve the quality of feature learning. It
allows the GCP-Net to refine details of feature maps leveraging multiscale context gating and Global Context Attention for the
spatial and texture dependencies. The decoder block including Global Context Attention- (GCA-) Residual Block helps build
long-range dependencies and global context interaction in the decoder to refine the predicted masks. We conducted extensive
comparative experiments with seven existing models on our ClusteredCell dataset and three typical medical image datasets,
respectively. The experimental results showed that the GCP-Net obtained promising results on three evaluation metrics AJI,
Dice, and PQ, demonstrating the superiorities and generalizability of our GCP-Net for automatic medical image segmentation
in comparison with some SOAT baselines.

1. Introduction

Cervical cancer is the fourth most common cancer among
women worldwide [1]. According to data from the Global
Cancer Observatory (GCO) in 2018, there were an estimated
570,000 new cases and 311,000 deaths due to cervical cancer
[2]. According to the latest data from GCO, it estimates that
there will be 604,127 new cases of cervical cancer in 2020.
Therefore, early detection of cervical lesions is of great signif-
icance in reducing cervical cancer mortality. Cervical routine
Pap smear or liquid-based cytology (LBC) [3] is the most
popular screening method for preventing and early detection
of cervical cancer. It has been widely used and has dramati-
cally reduced its incidence and deaths [4]. However, most
countries’ existing leading smear screening technology still

uses manual reading, which is very troublesome and prone
to human error [5]. Therefore, in the past few decades, much
research has been devoted to creating a computer-aided read-
ing system based on automatic image analysis [6]. This sys-
tem automatically selects potential abnormal cells in a given
cervical cytology specimen, and finally, the cytopathologist
completes the classification. This task includes three steps:
cell (cytoplasm and nucleus) segmentation, feature extrac-
tion/selection, and cell classification. Precise cell nucleus seg-
mentation is a prerequisite and indispensable part of the
computer-assisted analysis of cervical cells and diagnostic
decisions.

Some previous conventional methods [7–10] focused on
segmenting overlapping nuclei, but they generally used some
indirect processing methods. In addition, some ways [11, 12]
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use shape priors to segment cells in overlapping clumps, but
due to the various complex and challenging situations in
overlapping clusters (as shown in Figure 1), the shape priors
and standard set of boundary patterns imposed in the liter-
ature do not provide sufficient shape details for segmenta-
tion of overlapping parts. Therefore, these traditional
methods cannot solve the challenging overlapping cluster
segmentation problem.

When using deep learning to deal with possible abnor-
malities in cervical cells, any deep learning model established
will be limited by the number and quality of the cell samples
in the dataset used. However, the primary publicly accessible
datasets currently used in many studies of cervical cytology
have been oversimplified and contain a lot of artificially pre-
processed data. For example, the nuclei of those datasets are
almost separate, their shapes are mostly uniform and have
precise contours, and the color difference between the
nucleus and the cytoplasm is noticeable [13]. Based on the
above datasets, segmenting the nucleus is relatively easy.
Most of the papers [14–18] dedicates to the segmentation
of overlapping cytoplasm, and there is a small part of work
[19–21] also focused on the segmentation of cell nuclei.
However, the actual clinical data is much more complicated
than the above dataset, as shown in Figures 1(b)–1(g). There
are often overlapping or deformed nuclei in smears. The
color of some nuclei is similar to the color of the overlapping
cytoplasm, etc. These characteristics all lead to the difficulty
of cell nucleus segmentation in cervical cell images.

We obtained a set of cervical cell images based on an LBC
test from a hospital and a biomedical testing company for this
paper. We randomly selected 265 origin images of size 2048
× 2048 from different slides, as shown in Figure 1(a). The
presence of cell clusters and the intercellular overlapping and
self-folding, diverse shapes and sizes of nuclei, nuclei with
blurred contours, and similar colors of nucleus and cytoplasm
remains a significant obstacle to the accurate segmentation of
single seats. We crop the clustering units of different sizes
from the original images to form the dataset we deal with in
this paper. Each image in the dataset has a segmentation
ground truth marked by professional pathologists. As shown
in Figures 1(b)–1(g), several cases are challenging to handle.
Therefore, we propose a GCP-Net deep-learning network to
process cervical clustered cell images of challenging issues.
The U-Net-based Network proposed in GCP-Net strategically
incorporates multiscale context gating information and
context-aware attention features and decoder features into
the final feature map to correctly classify each pixel into the
background and nucleus pixels.

The main innovations of this work are summarized as
follows:

(1) A Gating Context-aware Pooling (GCP) Module
enables to refine details of feature map leveraging
multiscale context gating and Global Context Atten-
tion for the spatial and texture dependencies,
improving the quality of feature learning

(2) A decoder block including Global Context Atten-
tion- (GCA-) Residual Block helps build long-range

dependencies and global context interaction in the
decoder to refine the predicted masks

(3) Extensive experimental results on our complex Clus-
teredCell dataset and three typical medical image
datasets demonstrate the superiorities and generaliz-
ability of our GCP-Net for automatic medical image
segmentation in comparison with some state-of-the-
art baselines

2. Related Work

Cell nucleus segmentation is researched in academia because
its results help judge pathology and medical diagnosis. This
section will review the segmentation methods for cervical
cell nuclei and other typical medical image nuclei.

In the past few decades, many cervical cell nuclei seg-
mentation methods have been proposed, most of which are
based on traditional algorithms, such as watershed algo-
rithm [22], edge enhancement [23, 24], level set [25], cluster-
ing [26, 27], and thresholding [28]. For example, [23] uses a
segmentation method based on a series of edge enhance-
ment techniques, which performed poorly in blurred
nucleus contours. [27] uses a contrast-based adaptive ver-
sion of the mean-shift and SLIC algorithm and uses an
intensity-weighted adaptive threshold to segment cell nuclei
in the Pap smear images. In many cases, the above tradi-
tional method cannot handle well when images of cervical
cells with irregular shapes and sizes appear. With the preva-
lence of machine learning, the performance of deep learning
networks has also improved. In the most challenging cervical
cell nuclei segmentation problem, the performance of deep
learning networks is better than traditional algorithms
[19–21, 29]. [19] used the Herlev dataset, combined Mask-
RCNN for rough segmentation, and LFCCRF to refine the
nuclei boundary. In [20], both the cytoplasm and the
nucleus were segmented, using the combined segmentation
method of superpixel and CNN-based network. In this
paper, they used a private dataset. The author [21] developed
a deep learning method through a multiscale CNN for fea-
ture extraction and graph division of cell nucleus segmenta-
tion. In this experiment, they privately collect the dataset.
The author [29] uses the CNN Bi-path Architecture to seg-
ment Pap smear images and classify cervical cancer. The first
path is segmentation based on CNN architecture. The sec-
ond path is a classification process to test the segmentation
results by applying the KNN and ANN methods. This
method integrates segmentation and classification process-
ing, but it is not suitable for high overlap cervical cell images.

To detect nuclei in multiorgan nuclei segmentation data-
sets (MoNuSeg [30], CoNSeP [31], and CPM-17 [32]), sev-
eral methods have been used, such as U-Net [33], CE-Net
[34], Triple U-Net [35], CIA-Net [36], SRPN [37], and
Hover-Net [31]. U-Net [33] has an encoder-decoder design
with skip connections to incorporate low-level information,
applied to many segmentation tasks in medical image analy-
sis. The recently proposed CE-Net method [34] extends U-
Net by using an enhanced network structure with DAC
and RMP Block for medical image segmentation. Triple U-
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Net [35] leveraged the optical characteristics of hematoxylin
and eosin (H&E) staining and proposed a hematoxylin-
aware Triplet U-Net, which makes predictions concerning
the extracted hematoxylin component in the image. By sub-
tracting instance boundaries from the segmentation maps,
overlapped nuclei can be separated; the downside is that
such a subtraction operation may lose segmentation accu-
racy [38]. CIA-Net [36] is a contour-aware CNN model for
predicting more precise nucleus boundaries. Hover-Net
[31] represents nucleus instances using pixel-to-centroid
distance maps in horizontal and vertical directions. SRPN
[37] uses the similarity region proposal network to detect
nuclei and cells in histological images. The embedding layer

proposed here can help the network learn discriminating
characteristics based on learning similarity. The perfor-
mance of these approaches is affected by the empirically
designed postprocessing strategies.

Although the methods described above have helped
make significant progress in cytology nucleus segmentation,
there is still a need to develop more practical and effective
strategies.

3. Methods

In this section, we demonstrate the architecture of our GCP-
Net and the details of comprising modules.

(a) Origin image (b) Clustered nuclei

(c) Nuclei with blurred contours (d) Intercellular overlap and self-folding

(e) Diverse shapes and sizes of nuclei (f) Similar color of nucleus and cytoplasm

(g) Granular cluster nuclei

Figure 1: Examples of the challenges in accurate cervical cell nuclei segmentation from the clustered cell dataset.
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3.1. Overall Architecture. We design GCP-Net based on the
overall architecture from CE-Net [34], which is a modified
version of U-Net [33]. As shown in Figure 2, we use the
ResNet-34 Block pretrained from ImageNet to replace the
encoder block in the original U-Net network. We only retain
the first four feature extraction module blocks of ResNet-34.
The GCP module proposed in this paper generates more
high-lever semantic feature maps, introducing its essential
components in Section 3.2. In addition, this paper presents
a feature decoder block consisting of GCA-Residual Block,
concatenate operation, and transpose convolution. We will
give the details of the decoder block in Section 3.3.

3.2. GCP Module. The GCP module is a newly proposed
module, as shown in Figure 3(c). This module extractor
semantic information generates more high-level feature
maps.

3.2.1. Multiscale CG Residual (MCGR) Block. Context Gating
(CG) [39] module is an efficient nonlinear unit for modeling
interdependencies among network activations. Its structure
is shown in Figure 3(a). The formula of CG is as follows:

X ′ = σ W ∗ X + bð Þ · X, ð1Þ

where X ∈ Rn is the input feature vector, σ is the
element-wise Sigmoid activation, and ⨀ is the element-
wise multiplication. W ∈ Rn×n and b ∈ Rn are trainable
parameters. The vector of weights σðW ∗ X + bÞ ∈ ½0, 1� rep-
resents a set of learned gates applied to the individual
dimensions of the input feature X. Through the element-
wise multiplication and training between the weight vector
and X, the input feature representation X is transformed
into a new representation X ′ which has the more powerful
discriminant capability.

To mitigate the limited receptive field of invariably local
operators of the Context Gating module, we propose a Mul-
tiscale CG Residual (MCGR) Block, as shown in Figure 3(b).
MCGR Block consists of three parallel branches with depth-
wise separable convolution [40] and a residual limb. Each
branch with depth-wise separable convolution has a differ-
ent convolutional kernel size to provide various fields. Here,
we set the convolutional kernel of sizes 3, 5, and 7 for each
branch. Then, each branch with depth-wise separable con-
volution produces attention weights on a specific scale. After
that, attention weights are element-wise multiplied to feature
maps to obtain weighted feature maps in different resolu-
tions. Finally, MCGR Block fuses the weighted feature maps
and input feature map of the residual branch by element-
wise addition for integrating multiscale information.

In MCGR Block, we use depth-wise separable convo-
lution to replace standard convolution. With the depth-
wise separable convolution, MCGR Block can avoid
extracting redundant features, reuse the input feature
maps of cell images, and reduce the number of training
parameters. Compared with regular use convolution,
MCGR Block is more lightweight, and its training param-
eters decrease significantly. The formula of MCGR Block

is described as follows:

X1′ = X1 +〠
m

σ Wp ∗ Wd
m
°
X1 + bdm

� �
+ bp

� �
· X1, ð2Þ

where X1′ is the output feature and ∗ and ∘ represent
the point-wise convolution and depth-wise convolution,
respectively. Wp and bp are the point-wise convolution
parameters. Wd

m and bdm are the depth-wise convolution
parameters. m ∈ f3, 5, 7g represents three different sizes
of the convolutional kernel.

3.2.2. Global Context Attention (GCA) Block. Recent works
have shown that contextual information is helpful for
models to predict high-quality segmentation results. Mod-
ules that could enlarge the receptive field, such as ASPP
[41], DenseASPP [42], and CRFasRNN [43], have been pro-
posed in the past years. Furthermore, the attention mecha-
nism has been widely used for increasing model capability.
Therefore, we add a GCA Block [44] after the convolutional
operation of the multiscale fusion information. It reweights
every feature accordingly to create a more accurate feature
map. In this way, the network becomes more sensitive to
essential elements that significantly improve network
performance.

Figure 3(d) shows the detail of the GCA Block. Given an
input feature map X2 ∈ RC×H×W , the calculation details are
summarized as follows:

① The first branch applies 1 × 1 convolution to X2 to
generate a feature map with the size of R1×H×W , then reshape
it to RHW×1×1, and softmax function is used after that. The
second branch reshapes X2 to RC×HW . To this end, two
branches’ results are multiplied to obtain the feature Xt ∈
RC×1×1. Fð∙Þ denotes convolution operation, αð∙Þ denotes
softmax function, f rð∙Þ denotes reshape, and ⊗ denotes
matrix multiplication.

Xt = f r X2ð Þ ⊗ α f r F X2ð Þð Þð : ð3Þ

② To reduce the number of parameters after the 1 × 1
convolution, feature Xt turns into the size of RC/r×1×1, where
r is the bottleneck ratio usually be set to 16. Then, layer nor-
malization (LN) and activation function ReLU are applied to
improve the network’s generalization ability. After that, the
feature to the size of RC×1×1 is restored and added to X2, get-
ting the final output X2′ = RC×H×W . ⊕ in red denotes the
channel-wise summation operation, and f ln&reluð∙Þ denotes
LN as well as ReLU.

X2′ = X2 ⊕ F f ln&relu F Xtð Þð Þð : ð4Þ

3.2.3. Multikernel Maxpooling Residual (MMR) Block. The
MMR Block structure is illustrated in Figure 3(e). Generally,
maxpooling operation just employs a single pooling kernel,
such as 3 × 3. As we know that the size of the receptive field
roughly determines how much context information we can
use, so in this paper, we use MMR block with four different
kernel sizes: 2 × 2, 3 × 3, 5 × 5, and 7 × 7. Each branch with a
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different kernel outputs the feature maps with various recep-
tive fields. To reduce the weight and computational cost, we
use 1 × 1 convolution after each pooling layer. In this way, if
the number of channels of the original feature map is N , the
dimension of the new feature map is reduced to 1/N . Then,
we upsample the new feature map through bilinear interpo-
lation and finally get the feature with the same size as the
original feature map. Finally, we concatenate the original
feature X3 and the map obtained by upsampling to output
X3′.

3.3. Feature Decoder Module. We use the feature decoder
module to recover the high-lever semantic features extracted
from the feature encoder and context extractor modules. As
illustrated in Figure 2, it mainly includes four decoder
blocks, a 4 × 4 transposed convolution, two 3 × 3 convolu-
tions with batch normalization (BN), and a sigmoid consec-
utively. In addition, the feature decoder module outputs a

mask with the same size as the original input based on the
skip connection and the decoder block. Next, we will intro-
duce the composition of the feature decoder module.

3.3.1. Decoder Block. Similar to [45], we adopt an efficient
block to enhance the decoding performance. Figure 4(a)
shows that the input feature map is first fed into two consec-
utive GCA-Residual Block and then concatenated with the
skip connection. The skip connection brings detailed infor-
mation from the encoder to the decoder to compensate for
the feature loss due to continuous pooling and stride convo-
lution operations. After the concatenate operation, the out-
put feature map is fed to a 4 × 4 transpose convolution,
and its spatial dimensions will double.

3.3.2. GCA-Residual Block. A deeper network can signifi-
cantly improve the model’s performance, but the increase
in network depth will cause gradient disappearance or
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Figure 2: The architecture of proposed Gating Context-aware Pooling Network (GCP-Net).
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Figure 3: The details of GCP module.
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gradient explosion [46]. We use the shortcut connection
between layers in the residual learning paradigm to deal with
this problem. The GCA-Residual Block (see Figure 3(b))
consists of two 3 × 3 convolutions, a GCA Block and an
identity mapping, where each convolution layer follows a
batch normalization (BN) and a rectified linear unit (ReLU)
activation function. The GCA Block (see Figure 3(d)) acts as
a context attention mechanism instructing the network to
select critical feature units in each feature map and ignore
the unrelated units. We use identity mapping to connect
the input and output of the GCA Block.

3.4. Evaluation Metrics. To evaluate the proposed GCP-Net
and SOTA deep learning methods, we used standard evalu-
ation metrics, including Aggregated Jaccard Index (AJI)
[30], dice coefficient [47], and panoptic quality (PQ) [48].
The definition of AJI is as follows:

AJI =
∑n

i=1Gi
T

Pj

∑n
i=1Gi

S
Pj +∑k∈NPk

, ð5Þ

where J = argmaxkðGi
T

Pk/Gi ∪ PkÞ, G = fG1,G2,⋯,Gng,
and P = fP1, P2,⋯, Pmg denote the ground truth and the
prediction results, respectively. N is the set of indices of pre-
diction results without any corresponding ground truth.

Dice coefficient measures the overlapping degree
between the two regions and is given by

Dice =
2 × G ∩ Pj j
Gj j + Pj j : ð6Þ

Since the AJI score has a problem, it may overpenalize
the overlapping region. To avoid this problem, PQ [48]
introduces to evaluate nuclei segmentation performance,

which has been widely adopted in panoptic segmentation
tasks and was raised into nucleus segmentation in [31]. It
is defined as follows:

PQ =
∑ p,gð Þ∈TPIoU p, gð Þ

TPj j ×
TPj j

TPj j + 1/2ð Þ FPj j + 1/2 FNj j , ð7Þ

where p and g denote the prediction segment and the
ground truth, respectively, in instance level. IoU represents
the intersection over the union. When the IoU > 0:5 of each
ðp, gÞ pair, the result can be regarded as unique. True Posi-
tives (TP), False Positives (FP), and False Negatives (FN)
represent matched pairs of segments, unmatched predicted
segments, and unmatched ground truth segments,
respectively.

4. Experiments

4.1. Dataset. In this work, we obtained a group of clinical cer-
vical cell images based on the LBC test from the 2nd affiliated
hospital of HarbinMedical University and Harbin precise yuan
test company. We use an automatic pathology scanner to
acquire images, as shown in Figure 5. Themaster control center
is a computer equipped with 8G memory, i5-4590 CPU, and
3.3GHz, and the image acquisition module is shown in
Figure 5(b). The industrial camera is a CMOS camera with
an image acquisition resolution of 2048 × 2048 pixels, an
acquisition frame rate of 50 frames per second, and a grayscale
of 256. The objective lens magnification of the microscope is 20
times. The electric platform can be set to automatic andmanual
control modes. The automatic control mode can control the
electric platform tomove, focus, and control the camera to cap-
ture images. The image capture begins in the center of the slide
and moves automatically as a snake. The pixel overlaps are 30,
and each slide can take over 400 images. In manual control

Conv 1×1

GCA-Residual Block

Batch Norm.

Conv 3×3
Batch Norm.

Relu

Batch Norm.

Relu

GCA Block

GCA-Residual Block

GCA-Residual Block

Concatenate

4×4 Transpose 
convolution

Input

Output

Skip Connection

(a) Decoder Block (b) GCA-Residual Block

Conv 3×3

Figure 4: The details of feature decoder block and GCA-Residual Block.

6 Mobile Information Systems



mode, manually operating the manual control bar, positioning,
and grabbing images are realized.

In this paper, we randomly selected 265 clinical cervical
cell images from different slides and coarsely segmented the
region of the cell clusters, yielding 2363 clustered cell images
with different sizes ranging from 150 to 500 pixels. Then, we
randomly selected 568 of them as the test set. Finally, we
named this dataset ClusteredCell.

Since this dataset comprises cell cluster images, many
cases are challenging to handle, as shown in Figure 1. There-
fore, we employ curriculum learning [49] to utilize the dif-
ference in the difficulty of training between the image
cases. Curriculum learning is a method of learning data
effectively considering the difficulty of the exercise, in which
a model learns progressively from easy- to difficult-to-train
data. So, in this paper, we divided the training set images

into three categories, respectively, simple, normal, and diffi-
cult; the classification criteria are presented as follows, and
the grouping results are shown in Figure 6:

(1) Simple. Nucleus had high contrast with cytoplasm,
apparent nucleus, and greater distance between each
nucleus

(2) Normal. Nucleus had low contrast with cytoplasm,
the nucleus is faintly visible and pale-colored, multi-
nuclear, or neutrophil impurities; nucleoli or nuclear
groove is prominent; cytoplasm is dark; cytoplasm is
vacuolar

(3) Difficult. There is a significant overlap between the
nuclei of most of the cells, with the peripheral nuclei
faintly visible and the interiors dark in color

(a) Master control center

Industrial camera

Microscope

Manual control bar
Control box

Electric platform

(b) Image acquisition module

Figure 5: Equipment used to acquire images.

(a) Simple (b) Normal

(c) Difficult

Figure 6: Example of images with different difficulty.
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The details of our dataset are shown in Table 1.
To prove the efficacy of the proposed algorithm, we

selected three nuclei segmentation datasets for comparison.
The three datasets used in this paper are described as
follows:

(1) MoNuSeg [30]. This dataset contains 30 images of
size 1000 × 1000 cropped from whole slide images
of seven different organs. We use the same image
split with the existing methods [46] (16 for training
and 14 for testing, each image is 224 × 224 pixels)

(2) CoNSeP [31]. This dataset contains 41 H&E stained
images with 1000 × 1000 pixels at 40x magnification
extracted from 16 CRA WSIs. CoNSeP dataset is
split into train set (n = 27) and test set (n = 14) as
employed in the original work [31], and each image
is cropped into 256 × 256 pixels in the experiment

(3) CPM-17 [32]. This dataset contains 40 pathological
images with pixel-level annotations, of which 32
are in the training set, and eight are in the test set.
Each image, scanned at 40x magnification, has 500
× 500 pixels. In addition, all images in the train set
and test set are also cropped into the size 256 × 256

4.2. Implementation Details. The GCP-Net prepares on an
NVIDIA GeForce RTX 2080Ti GPU and Intel Core i7-
7700 3.60GHz CPU using the PyTorch 1.8 framework. We
trained this model for 100 epochs using the Adam optimizer,
and the learning rate for all experiments was 2e-4. The loss
function uses a combination of binary cross-entropy [50]
and dice loss [51]. All the images fed into networks were
resized to 448 × 448. The data augmentation strategies used
in the training and testing phases are the same as the refer-
ence [34]. In the training phase, each image in the original
dataset augments eight images, including horizontal, verti-
cal, diagonal flip, and random shifting image, expanding
the image from 90% to 110% or in HSV color space color
dithering. In the testing phase, like that in the reference
[34, 52, 53], the test augmentation strategy is also adopted.
That means each test image has to be predicted eight times,
and then, we average the predictions to get the final predic-
tion mask. All baseline methods use the same strategy dur-
ing the training and testing phase.

4.3. Ablation Study

(1) U-Net. Basic network

(2) Backbone. In the proposed method, we replace the
encoder block of U-Net with a pretrained ResNet-
34, as shown in Figure 2. We define this modified
U-Net with pretrained ResNet-34 as the backbone

(3) Backbone +Decoder Block. We replace the original
decoder layer with the proposed decoder block

(4) Backbone + GCP. We integrate the GCP module in
the backbone

(5) Backbone + Decoder Block +GCP. This is the final
GCP-Net architecture, with the GCP module and
the decoder block are used in combination

Table 2 lists the ablation results of these five configura-
tions performed on our ClusteredCell and two public data-
sets. Below, we conduct a detailed analysis of different
model architectural settings and verify them through the five
network configurations.

4.3.1. Effectiveness of Pretrained ResNet-34. Fine-tuning from
the pretrained ResNet-34 backbone network makes our net-
work in a good initial state to quickly adapt to new modali-
ties of medical images using a relatively small number of
training data. Table 2 shows the performance of the modi-
fied U-Net with pretrained ResNet-34 as a backbone. We
find that although pretrained ResNet-34 introduces almost
no additional parameters and calculations, the gain of seg-
mentation performance is still very noticeable. In the Clus-
teredCell dataset, there have been 2.8%, 5.4%, and 4.8%
increases in AJI, Dice, and PQ, respectively. In the MoNuSeg
dataset, there has been 11.6%, 4.7%, and 10% increases in
AJI, Dice, and PQ, respectively. In the CoNSeP dataset,
despite a 2.4% decline in AJI, the Dice and PQ have
increased by 5.6% and 4%, respectively.

4.3.2. Decoder Block’s Effectiveness. By replacing the original
decoder layers with decoder block in the backbone, decoder
block can quickly build long-range dependencies and global
context connections in the decoder. As shown in Table 2, we
can see that decoder block already achieves better perfor-
mance than the backbone on three compared datasets with
improvements of 0.7%, 0.5%, and 2.7% in terms of AJI score
and 0.6%, 0.4%, and 1.9% in terms of PQ score, respectively.
The result means that decoder block has better learning and
generalization ability than previous methods. Therefore, the
decoder block design based on GCA-Residual can effectively
improve the segmentation performance.

4.3.3. Effectiveness of GCP Module. The multiscale CG Resid-
ual Block in the GCP module adds three multiscale context
gating branches and fuses the multiscale feature information
through a residual operation. The Global Context Attention
block reweights feature information accordingly to create a
more accurate feature map. The Multikernel Maxpooling
Residual Block could encode the global information and
change the combination way of the feature. It can be
observed in Table 2 that the results of Backbone +GCP
achieve AJI improvements of 1.3%, 0.4%, and 2.6% and PQ
improvements of 0.9%, 0.3%, and 0.4% on ClusteredCell,

Table 1: The details of the Clustered Cell dataset.

Category
Original image

number
Clustered cell

image
Group Number

The
training set 265

1795

Simple 200

Normal 1500

Difficult 95

The test set 568 568
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MoNuSeg, and CoNSeP compared to Backbone, showing a
0.4% improvement on MoNuSeg in terms of Dice. That
means the GCP module brings more effective feature repre-
sentations fusion of multiscale branches and helps achieve
better segmentation performance.

4.3.4. Effectiveness of Decoder Block and GCP Module
Combination. The proposed GCP-Net architecture com-
bines decoder block and GCP module. As a result, we can
observe the performance improvement of GCP-Net in AJI,
Dice, and PQ in Table 2. It has obtained higher results than
Backbone and Backbone + Decoder Block and Backbone +
GCP.

4.4. Attention Module Comparison and Selection. In this
paper, both the GCP module and decoder block use the
attention module for giving feature maps with different
weight values. In the process of selecting attention modules,
we experimented with five state-of-the-art attention modules
(Shuffle Attention [54], ECA Attention [55], CBAM Atten-
tion [56], SE Attention [57], and Global Context Attention
[44]) in GCP-Net, respectively. The performance of the
selected different attention modules is presented in Table 3.
The experimental results show that using varying attention
modules leads to different implementations results. Still,
the differences are insignificant. From comparing the three
metrics on the two datasets, it can be seen that Global Con-
text Attention has the most outstanding performance.

4.5. Experiment Results. To evaluate the performance of the
proposed models, we compared our proposed model to
recent segmentation approaches. Those approaches have
used in computer vision (U-Net [33], UNet++ [58], Atten-
tion U-Net [59]), medical imaging (CE-Net [34]), and also
to methods specifically tuned for the task of nuclear segmen-
tation (Hover-Net [31], CIA-Net [36], Triple U-Net [35]).

Below, we present quantitative comparison results on four
different biomedical imaging datasets.

4.5.1. Results on ClusteredCell Dataset. ClusteredCell is a pri-
vate cervical cell nuclear segmentation dataset described in
detail in Section 4.1. Comparing seven widely accepted seg-
mentation methods with different backboned (see Table 4)
shows that proposed method has improved performance
than the SOTA methods (on the same train-test split).

We also show three sample results in Figure 7 to visually
compare our method with the other methods. The sample
given in Figure 7 contains simple, normal, and difficult task.
According to the results, the simple picture of the first row,
each method obtained the segmentation results similar to
ground truth. From the results of the second and third rows,
we can see the difference in the processing results of each
method, which shows that our method achieved the best seg-
mentation results.

4.5.2. Results on MoNuSeg, CoNSeP, and CPM-17 Datasets.
We evaluated our method by employing a completely inde-
pendent comparison across the three most enormous known
exhaustively labeled nucleus segmentation datasets, MoNu-
Seg, CoNSeP, and CPM-17, and utilized the metrics
described in Section 4.1. The results are reported in
Table 4, and we find that proposed method can successfully
deal with unprocessed data in three public datasets. But it
turns out that some methods perform poorly on unseen
data, especially U-Net’s performance on all three datasets
is worse than other competing methods. Triple U-Net and
Hover-Net achieved competitive performance in all three
generalization tests. In particular, Triple U-Net has proven
to detect nuclear pixels successfully. It scores better than
GCP-Net’s Dice on the MoNuSeg dataset and better than
GCP-Net’s PQ score on the CoNSeP dataset. However, the
overall segmentation result for GCP-Net is superior (as
shown in Figure 8) because it can better analyze the image

Table 2: Detailed ablation study of the GCP-Net architecture.

Model
ClusteredCell (ours) MoNuSeg CoNSeP

AJI Dice PQ AJI Dice PQ AJI Dice PQ

U-Net 0.639 0.827 0.624 0.526 0.780 0.494 0.485 0.741 0.408

Backbone 0.667 0.881 0.672 0.642 0.827 0.594 0.461 0.797 0.448

Backbone + Decoder Block 0.674 0.880 0.680 0.647 0.828 0.598 0.488 0.777 0.467

Backbone +GCP 0.680 0.881 0.681 0.646 0.831 0.597 0.487 0.790 0.452

Backbone + Decoder Block +GCP (proposed) 0.683 0.880 0.687 0.651 0.830 0.601 0.586 0.835 0.563

Table 3: The results of using different attention module.

Attention model
ClusteredCell (ours) MoNuSeg

AJI Dice PQ AJI Dice PQ

Shuffle Attention [54] 0.664 0.877 0.669 0.648 0.828 0.603

ECA Attention [55] 0.667 0.877 0.672 0.635 0.827 0.597

CBAM Attention [56] 0.671 0.879 0.677 0.638 0.825 0.599

SE Attention [57] 0.681 0.878 0.684 0.640 0.824 0.598

Global Context Attention [44] 0.684 0.880 0.688 0.651 0.830 0.601
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context information by introducing context-aware modules
in the network’s feature extractor and decoder parts. Thus,
it is better separating the cell nuclei.

In Figure 9 there is a box plot [60]. The box plot is a way to
observe the overall shape of a data set. The central box shows
the data between the rough quartiles, and a black line represents
the average. “Whiskers” extends to the extremes of the data.

Box plot displays the variation of segmentation results in
a statistical distribution. Figure 9 shows the performance of
segmentation results of every image in the test set in differ-
ent models on ClusteredCell, MoNuSeg, CoNSeP, and
CPM-17 datasets, respectively. A large variation in perfor-
mance between methods within each dataset is observed,
especially in CoNSeP datasets, where there exists a large

Image Ground
Truth U-Net Unet++

Attention
 U-Net CE-Net CIA-Net Triple

U-Net
Hover-Net GCP-Net

(Proposed)

Normal
sample

Simple
sample

Difficult
sample

Figure 7: Qualitative results on three different difficulty levels test image sample from ClusteredCell dataset (for aesthetic purposes,
examples of various sizes are adjusted to the same size). The red box highlights regions where GCP-Net performs better than the other
methods.

Table 4: Quantitative comparison with existing SOTA methods.

Model
ClusteredCell (ours) MoNuSeg CoNSeP CPM-17
AJI Dice PQ AJI Dice PQ AJI Dice PQ AJI Dice PQ

U-Net [33] 0.638 0.827 0.624 0.526 0.781 0.494 0.485 0.741 0.408 0.556 0.804 0.506

UNet++ [58] 0.654 0.858 0.646 0.620 0.814 0.568 0.556 0.828 0.536 0.649 0.852 0.608

Attention U-Net [59] 0.639 0.847 0.634 0.553 0.800 0.507 0.546 0.827 0.540 0.634 0.846 0.607

CE-Net [34] 0.669 0.878 0.671 0.538 0.801 0.503 0.489 0.754 0.439 0.647 0.871 0.619

CIA-Net [36] 0.672 0.869 0.653 0.623 0.815 0.578 — — — — — —

Triple U-Net [35] 0.678 0.837 0.608 0.622 0.834 0.601 0.574 0.839 0.566 0.711 0.856 0.659

Hover-Net [31] 0.670 0.831 0.675 0.619 0.825 0.599 0.574 0.848 0.538 0.705 0.856 0.661

GCP-Net (proposed) 0.684 0.88 0.688 0.651 0.830 0.601 0.586 0.835 0.563 0.719 0.892 0.671

MoNuSeg

ConSeP

CPM-17

Image Ground
Truth

U-Net Unet++ Attention
 U-Net

CE-Net Triple
U-Net

Hover-Net GCP-Net
(Proposed)

Figure 8: Qualitative results on sample test images from MoNuSeg, CoNSeP, and CPM-17 dataset. The red box highlights regions where
GCP-Net performs better than the other methods.
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number of overlapping nuclei. It can be seen that proposed
method outperforms the other methods, which validates
the feasibility of applying our GCP-Net on different datasets.

5. Conclusions

Accurate segmentation of cell nuclei is an essential step in
diagnosis and analysis. Segmentation of cluster cell nuclei
in LBC testing has become a challenge in biology and med-
icine. In this paper, we purposefully propose a GCP-Net
deep learning network to handle the challenging cervical
cluster cell images. The proposed U-Net-based GCP-Net
consists of a pretrained ResNet-34 model as encoder, a
GCP module, and a modified decoder. The GCP module is
the primary building block of the network to improve the
quality of feature learning. It allows the GCP-Net to refine
details of feature maps leveraging multiscale context gating
and Global Context Attention for the spatial and texture
dependencies. The decoder block includes that GCA-
Residual Block helps build long-range dependencies and
global context interaction in the decoder to refine the pre-
dicted masks. We used ablation experiments to discuss the

effectiveness of the GCP module and the decoder block.
We conducted extensive comparative experiments with
seven existing models on our ClusteredCell dataset and three
typical medical image datasets, respectively. The experimen-
tal results showed that the GCP-Net obtained promising
results on three evaluation metrics AJI, Dice, and PQ, dem-
onstrating the superiorities and generalizability of our GCP-
Net for automatic medical image segmentation in compari-
son with some SOAT baselines. Although we obtained con-
siderable accuracy in our experiments, this task can only be
used as AI-assisted cytological screening during actual clini-
cal diagnosis. The method helps with primary cytological
screening or triage, and for challenging cases, physician con-
firmation is also required. Further research is necessary and
significant. In the future, we will use contrastive learning
methods to improve the performance of GCP-Net on more
challenging biomedical images.

Data Availability

The dataset is being compiled for publication.
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Figure 9: Box plots highlight competing methods’ performance on the ClusteredCell, MoNuSeg, CoNSeP, and CPM-17 datasets.
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