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�e data distribution of the multidimensional array sensor is unbalanced in data sample collection. To improve the clustering
ability of data samples, a data density clustering method of sparse scattered points and multisensor array sensor samples based on
the analysis of unbalanced data distribution characteristics is proposed. �e sparse scattered multisensor array network’s sample
data collection structure is created using the Voronoi polygon topology. By analyzing the unbalanced parameters between data
classes and reconstructing the characteristic space of data sample sequence, the time series of sample data collected by sparse
scattered multisensor array is reorganized, and the statistical characteristic quantity and high-order cumulant of sample data
collected by sparsely scattered multisensor array are extracted. Combined with the learning algorithm of unbalanced data
distribution sample feature fusion, the fuzzy clustering of sample data information �ow collected by sparse scattered multisensor
array elements is realized. According to the feature clustering and convergence analysis, the sparse scattered feature detection
method is adopted to realize the data density clustering and data structure optimization con�guration of sparse scattered
multisensor array elements. �e test results show that the method in this paper has good convergence, strong spectrum expansion
ability, and low error rate of data clustering when collecting samples with sparse scattered points and multisensor arrays.

1. Introduction

�e stability of sample data collection and transmission in a
multisensor array network is proposed. �e accuracy of
signal transmission is the key to ensuring the stable oper-
ation of multisensor data sampling. �e load of sample data
collecting and transmission in multi-sensor array networks
is too high, and the balance of data clustering and scheduling
is constrained and limited due to the load and interference of
the transmission channel in sensor networks [1]. Conse-
quently, it is essential to create a powerful clustering model
using multisensor array sample data density and sparse
scattered points. Based on the resource optimization allo-
cation model of multisensor array network, combined with
the big data analysis and statistical characteristics analysis of
sample data collected by sparse scattered multisensor array,
the self-adaptive distribution and reliability scheduling of
sample data collected by sparse scattered multisensor array
are carried out [2]. It is of great signi�cance to study the

density clustering method of sample data collected by sparse
scattered points and multisensor array elements to improve
the stability of data detection and transmission.

�e data density clustering of sparse scattered multi-
sensor array elements is based on the analysis and recon-
struction of unbalanced parameters of data distribution. �e
key components of the data reconstruction technique are
feature selection and resampling methods, including
undersampling, oversampling, and mixed sampling
methods that combine undersampling and oversampling.
Oversampling method balances data distribution by in-
creasing a few kinds of samples in unbalanced data, while
undersampling balances data distribution by reducing most
kinds of samples in unbalanced data. In large-scale data, the
undersampling method can signi�cantly reduce the number
of training data and thus improve the training speed. �e
Random Under Sampling (RUS) method is one of the
simplest undersampling methods, as the information carried
by the majority of samples is obviously ignored by the RUS
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technique, and it is extremely possible that some valuable
samples will be eliminated during the subsequent classifi-
cation procedure.

'e improvement of classification idea is also an im-
portant strategy to improve the performance of unbalanced
data classification. Representative methods include ensem-
ble learning L and cost-sensitive learning [3]. In the existing
research, the classification effect of the method combining
resampling with the classification idea improvement strategy
may be better than that of a single strategy. In reference [4],
combining random undersampling and ensemble learning
methods, EasyEnsemble and BalanceCascade methods are
proposed. EasyEnsemblemethod randomly selects a number
of independent subsets equal to the number of minority
samples from the majority of samples, and combines them
with minority samples to form a new training set, which
independently trains a number of Adaptive Boosting
(AdaBoost) classifiers and finally outputs the integrated
classifier. 'e difference between BalanceCascade and
EasyEnsemble is that each iteration uses the classification
threshold to remove the correctly classified samples from the
training set. Compared with RUS, the above two methods
reduce the information loss of most kinds of samples but
significantly increase the training time. Some researchers
proposed RandomUnderSampling Boosting (RUSBoost)
method which is based on AdaBoost. In this method, most
classes were randomly undersampled in the iterative process,
and a few classes formed a temporary training set. 'en the
weak classifier was trained by using the temporary training
set and weights. RUS still uses random undersampling to
balance the data distribution [5]. When the imbalance ratio
is very high, it may take a lot of iterations. 'e configuration
of sample data collected by multisensor array elements in
sparse scattered points is based on the analysis of resourced
parameter characteristics and clustering fusion processing.
'e channel transmission model of a multisensor array
network is built by optimizing the distribution of virtual
channels and transmission data packets. 'e channel
equalization control is used to achieve the density clustering
of sample data collected by multisensor array elements in
sparse scattered points. In the traditional methods, the data
density clustering methods of sparse scattered multisensor
array elements mainly include the data density clustering
method of multisensor array network based on neural
network, the data density clustering method of sparse
scattered multisensor array elements based on PCA, and the
dynamic distribution method of data of sparse scattered
multisensor array elements based on K-means fusion
clustering [4, 6]. In reference [7], a SAC reinforcement
learning-based sample data distribution method for sparse
scattered point multisensor array is proposed, and a link
spectrum data clustering model is established which makes
the V2V link to optimize the sample data distribution for
sparse scattered point multisensor array after continuous
learning. However, the dynamic learning ability of this
method for clustering sample data for sparse scattered point
multisensor array is not good.

In order to solve the above-given problems, this paper
proposes a data density clustering method based on the

analysis of unbalanced data distribution sample character-
istics. First, the sample data collecting topology of the sparse
scattered multisensor array network is established using the
Voronoi polygon topology. 'e sparse scattered feature
detection approach is then used in accordance with the
feature clustering and convergence analysis. It is done to
optimize the data structure and density clustering of the
sample data obtained from the sparse scattered multisensor
array. Finally, the simulation test analysis shows that this
method has superior performance in improving the clus-
tering ability of data density of samples collected by mul-
tisensor array elements with sparse scattered points.

2. Topology Model and Data Structure
Analysis of Multisensor Network

2.1. Multisensor Element Network Topology Model. Firstly,
themodel of the topological structure of themultisensor array
network is created, and the Voronoi polygon topology is used
to produce the topological structure of the sample data col-
lectionof the sparselydistributedmultisensor arraynetwork. It
is assumed that the multisensor array network consists of N
main networks, and U � u1, u2, . . . , un  is used to represent
the communication data clustering set of secondary users to be
connected, and C � a1, a2, . . . , am  represents the channel
structure parameters of sample data collection of sparse
scattered multisensor array. 'e network topology of multi-
sensor elements is established by gathering the spectrum
parameters of samples collected by sparse scattered points and
multisensor elements. 'ese sparse scattered points and
multisensor elements are combinedwith spectrumbandwidth
analysis, also the method of dynamic judgment and channel
fusibility is adopted to optimize the clustering of samples
collected by sparse scattered points andmultisensor elements.
When the clustering center parameter curve of samples col-
lectedby sparse scatteredpoints andmultisensor elements is 0/
1, the output spectrum bandwidth of samples collected by
sparse scattered points and multisensor elements meets the
clustering convergence in N-dimensional space, 0≤wkj ≤ 1.
According to the service, it should be switched to the reserved
spectrum characteristic quantity under the condition that the
communication in the sparse scatteredpointmultisensor array
acquisition systemmeets the service quality requirements.'e
maximum membership j�1...Dwkj � 1(1≤ k≤K) of the
sparse scattered point multisensor array acquisition, sample
data are obtained by taking the blocking rate as the constraint
parameter. 'e distribution link model of the sparse scattered
point multisensor array acquisition sample data are estab-
lished, as shown in Figure 1.

According to the distribution chain of sample data
collected by sparse scattered multisensor array elements
shown in Figure 1, let Cen � [Cenk]K represent the statistical
characteristic quantity of the number of primary users and
the number of secondary users in the multi-sensor array
element network. In the process of data clustering, incre-
mental scheduling is adopted to obtain the segmented set at
the H layer where the requested link sends the synchroni-
zation request time series:
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Cenk � Cenk1,Cenk2, · · · ,CenkD . (1)

'e beacon code is used to record the beacon in each
period, and the hierarchical center of kth dispersion of the
master node is obtained. Let U � [uki]K×N represent the
membership matrix of sample data collected by sparse
scattered multisensor array elements, where uki represents
the time stamp of sample data collected by sparse scattered
multisensor array elements, and xi(1≤ i≤N) belongs to the
beacon code of kth. 0≤ uki ≤ 1 at the end of a complete
synchronization period. It obtains the offset time series Q �

q1, q2, . . . , qi, . . . , qm  and P � p1, p2, . . . , pj, . . . , pn  of
sample data collected by sparse scattered multisensor array
elements through the forwarding response link,
W � [wkj]K×D is used to represent the joint distribution
subspace weight matrix of the sample data collected by
sparse scattered multisensor array elements. 'erefore, the
time series reorganization of the sample data collected by
sparse scattered multisensor array elements is realized by
analyzing the unbalanced parameters between data classes
and reconstructing the characteristic space of the data
sample sequence.

2.2. Analysis of Data Structure of Sensor Array Sampling.
In the cluster of sample data collected by multisensor ele-
ments in sparse scattered points, the interactive parameter
synchronization package is constructed first. S � (U, A, V, f)

is the statistical distribution set of reference node identifi-
cation (ID), where U represents the period number, which is
collectively referred to as the domain of sample data distri-
bution of sparse scattered points andmultisensor elements.A
means sending timestamp (ST). 'e model parameters of a
sample data configuration of sparse scattered multisensor
array elements are obtained asV � ∪ a∈AVa, where Va is
reference node ID and reference node period number in-
formation, and the output loss time distribution set is a ∈ A.
In the rangeoff: U × A⟶ V, the frequencydrift andphase
offset of sample data collected by sparse scatteredmultisensor
array elements are adaptively estimated. 'e data clustering

sets ∀u ∈ U, ∀a ∈ A, in the same period of the same reference
node are obtained by the method of model parameter esti-
mation, and the output frequency offset is f(u, a) ∈ Va. 'e
sample data acquisition topology of a sparse scattered mul-
tisensor array network is established using the Voronoi
polygon topology, and the data structure model is examined.
According to the sample data structure analysis of sparse
scattered multisensor array, the data distribution imbalance
control algorithm is used for optimization control [9] as
shown in Figure 2.

According to the data structure distribution in Figure 2,
the statistical feature quantity and high order cumulant of the
sample data flow collected by sparse scattered points and
multisensor array elements are extracted. In the process of
resource allocation, the self-sparse structure is constantly
adjusted according to the accumulated historical data, and the
fuzzy clustering processing of the sample data information
flowcollectedby sparse scatteredpoints andmultisensor array
elements is realized by combining the learning algorithm of
unbalanced data distribution and sample feature fusion [10].

3. Sample Density Clustering Optimization

3.1. Data Clustering Feature Extraction Considering Data
Imbalance. Bowyer–Watson algorithm is used to construct
the sample data configuration model of sparse scattered point
multisensor array.Combiningwith the topological structureof
sparse scattered point multisensor array sampling data clus-
tering, in a limited universe, the obtained channel gain is
described as S � (U, A, V, f) in sequence, if A � C∪D,
D � d{ }, and C∩D � Φ, the transmitting power of the
transmitter PT of sparse scattered point multisensor array
sampling data are C and D in sequence, assuming that the
distributed metadata feature quantity of the i-th channel of
network M is S � (U, C∪D). 'e statistical features of the
sample data stream collected by sparse scattered multisensor
array elements are extracted by low-frequency wireless spec-
trum data clustering, and the allocation decision table is ob-
tained.When a ∈ A is satisfied, the disturbance component of
the sample data collected by sparse scatteredmultisensor array
elements in themain link is IND(A − a{ }) � IND(A), the sum
of SU disturbances of any network is added, and the frequency
division multiplexing method is adopted [11]. Get the linear
eigenvalues of the clustering characteristic distribution attri-
bute a of the sparse scattered point multisensor array
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Figure 2: Analysis of data structure model.
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Figure 1: Schematic diagram of sample data distribution link for
multisensor array acquisition.
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acquisition sample data in the closed intervalA.'e clustering
hierarchical function of the sparse scattered point multisensor
array acquisition sample data in the backhaul base station is
S � (U, A). ForP⊆A, there is IND(P) � IND(A). Distribute
thesuperimposeddataof theaccess subframe to theusersof the
base station and get the statistical characteristic quantity of the
sparse scattered point multisensor array acquisition sample
data fusion as follows:

min 

pj ∈ Nk pi( )

pj − p .tcomm(X)ni − g uj, vj  
2
,

(2)

where tcomm(X) is the resource size of the three-level
backhaul layer base station of the multisensor array network
sample data collection and transmission channel, pj is the
frequency band information of the access subframe, ni is the
interference component of the sparse scattered point mul-
tisensor array acquisition sample data output channel, and
g(uj, vj) is the frequency component of the access sparse
scattered point multisensor array acquisition sample set of
subset D. Each sample with correct classification is removed
as follows:

πq � C
q
1, C

q
2, . . . , C

q
K , (3)

where the statistical feature of the nearest neighbor sample
points is G � 〈V, Wc〉, where K is the reliability clustering
parameter of searching the nearest neighbor parameters.
Based on the nearest neighbor parameter method and the
sequential decision mechanism, the remaining transmissible
load πbs

of the V link K is obtained which satisfies bs ≠ bt, and
then the joint featurepointof theunbalanceddatadistribution
sample is the shared neighbor of C

bt

kq
, C

bs

ki
and C

bs

kj
. 'erefore,

the fuzzy statistical characteristic quantity S � (U, C∪D) of
agent K of sparse scattered point multisensor array element
collection sample is obtained. For U � u1, u2, . . . , un  as the
universe, thedensity peak clustering algorithm is adopted, and
the variation attribute of sparse scattered point multisensor
arrayelement collection sample isC � a1, a2, . . . , am .Under
the multiobjective evolutionary constraint, the fuzzy decision
attribute of sparse scattered point multisensor array element
collection sample is obtained and the control instruction set of
data clustering satisfies C∩D � Φ. Combining with the data
distribution imbalance sample feature fusion number, the
neural network is trained back to obtain the best data clus-
tering. 'e information entropy of the sample data collected
by sparse scattered multisensor array elements are ξd2

c1
� 3/5,

ξd2
c2

� 2/5,ξd2
c3

� 2/5, maxgc1
(d2) � 6/5, maxgc2

(d2) � 3/8,
and maxgc3

(d2) � 1/10. 'erefore, the method based on
multiobjective evolution is adopted to obtain the clustering
feature extraction results of sample data collected by sparse
scattered points andmultisensor array elements.'e adaptive
configuration of sample data collected by sparse scattered
points and multisensor array elements is realized [12].

3.2. Adaptive Adjustment and Output of Data Clustering
Center. Feature clustering and convergence analysis suggest
that the approach of sparse scattered feature detection be
used to modify the dynamic resource allocation [13]. By
analyzing the unbalanced parameters between data classes
and reconstructing the feature space of data sample se-
quence, the time series of sample data collected by sparse
scattered multisensor array elements is reorganized, and the
statistical feature quantity and high-order cumulant of
sample data stream collected by sparse scattered multisensor
array elements are extracted. 'e distribution set of sparse
points is taken as SDF. 'e output sample data collected by
sparse scattered multisensor array elements is fixed for
channel switching mode, and through idle communication
spectrum conversion, the optimized model parameter of
output sample data are collected by sparse scattered mul-
tisensor array elements area ξd3

c1
� 1, ξd3

c2
� 1,ξd3

c3
� 1,

maxgc1
(d3) � 7/4, maxgc2

(d2) � 3/8, maxgc3
(d2) � 7/4.

Combined with the evaluation results of sample data return
efficiency collected by sparse scattered multisensor array
elements, the dynamic spectrum allocation strategy is
adopted. Considering that the correlation between sample
points is not only unbalanced with the data distribution of
neighboring points, the frequency division multiplexing
mechanism is introduced, and the calculation formula of the
cross matrix of neighboring parameter clustering is obtained
as follows:
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, (4)

where dijis the Euclidean distance of each sample point, and
wij is the information entropy of the sample data collected
by the i-th sampling node. Considering that there may be
outliers in the data set, these outliers will affect the selection
of parameter K. 'e balanced control parameters of sparse
scattered points andmultisensor array elements are obtained
by using the unbalanced scheduling between classes. At the
node I, the characteristic sequence of data collection and
clustering is denoted as (w1,j, w2,j, . . . , wtj), where t is the
statistical characteristic quantity of detection time. 'e
neighborhood of each sample point is obtained by the pa-
rameter K search algorithm, which is denoted asΠ �

π1, π2, . . . , πB , and a resource optimization allocation
model is constructed. 'e sparse scattered feature detection
method is used to realize the data density clustering and data
structure optimization configuration of the sample data
collected by sparse dispersed points and multisensor array
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elements based on the clustering and convergence analysis of
those samples. 'e optimized clustering function is as
follows:

JESSC(U, V, W, X) � 
K

k�1


N

i�1
u

m
ki 

D

j�1
wkj Cenkj − xij 

2
+ c 

K

k�1


D

j�1
wkjlogw

kj−η
K

k�1


N

i�1

um
ki

 
D

j�1

wkj Cenkj − Cenj 
,

s.t. 0≤ uki ≤ 1, 
K

k�1
uki � 1, 1≤ i≤N; 0≤wkj ≤ 1, 

D

j�1
wkj � 1, 1≤ k≤K,

(5)
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Figure 3: Implementation process of algorithm.
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where Cen is the average value of adjacent order of cluster
center of sample data collected by multisensor array ele-
ments of each sparse scattered point; E is sample data which
collected for sparse scattered multisensor array elements; c

represents the boundary area of most kinds of sample
clusters; 

N
i�1 um

ki represents the dispersion degree of regional
markers; wkj represents the wrong area; N represents the
size of resource allocation; K represents the fuzzy weighting
coefficient of sample data clusters collected by sparse scat-
tered multisensor array elements. To sum up, according to
feature clustering and convergence analysis, sparse scattered
feature detection method is adopted [14].'e process of data
density clustering and data structure optimization of sparse
scattered point multisensor array acquisition samples is
realized. 'e process of data density clustering of sparse
scattered point multisensor array acquisition samples is
improved as shown in Figure 3.

4. Simulation and Result Analysis

Matlab simulation experiment is used to verify the appli-
cation performance of this method in data density clus-
tering of sparse scattered multisensor array [15] 'e
parameter are set accordingly. 'e multisensor array
network’s K channel number is set to 200, its bandwidth to
40 kHz, its iteration count to 500, and its network benefit to
0.56. According to the above-given parameter settings, the
data density clustering simulation of sparse scattered
multisensor array is carried out, and the original time series
of sparse scattered multisensor array data are given as
shown in Figure 4.

Taking the time series of sample data collected by sparse
scattered points and multisensor array elements in Figure 4
as the research object, this method is used to realize the
density clustering of sample data collected by sparse scattered
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Figure 5: Output result of data clustering. (a) K-means method. (b) FCM method. (c) Methods of this paper.
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points and multisensor array elements, and the data clus-
tering results of each frequency band are shown in Figure 5.

It is clear from the analysis of Figure 5 that the distri-
bution convergence of various approaches is evaluated when
sparse scattered multisensor array samples are data density
clustered by using this method, which has great spectrum
adaptability and good interclass equilibrium classification.
Taking the bit error rate of data clustering as the test index,
the comparison results are shown in Table 1 and Figure 6.
From the analysis of Figure 6, it can be seen that the bit error
rate by a distance of sparse scattered multisensor array
samples in this method is low and the convergence is good.

In order to test the clustering effect of the algorithm in
this paper, brest cancer, iris, and adult in the UCI database
are selected as the test data sets. 'e experimental data sets

are shown in Table 2. In this experiment, the parameters are
set as follows: the fuzzy index is 2, the maximum number of
iterations is 50, and the initial value of iterations is 1.

'e breast cancer, iris, and adult datasets in Table 2 were
tested for 30 times using the k-means algorithm, FCM al-
gorithm, and the algorithm in this paper, respectively, and

Table 2: Experimental data set.

Dataset name Number of attributes Number of samples
Brest cancer 9 285
Iris 4 150
Adult 15 356

Table 3: Comparison of different clustering algorithms.

Data set Clustering algorithm Convergence time/s

Brest cancer
K-means algorithm 40
FCM algorithm 35

Algorithm in this paper 23

Iris
K-means algorithm 70
FCM algorithm 68

Algorithm in this paper 45

Adult
K-means algorithm 123
FCM algorithm 114

Algorithm in this paper 66
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Figure 7: Comparison of the stability of the two algorithms on iris
data set.
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Figure 8: Comparison of the stability of the two algorithms on
adult data set.
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Table 1: Error comparison of data clustering.

Iterations K-means FCM 'is method
10 0.284 0.441 0.199
20 0.277 0.474 0.197
30 0.285 0.416 0.194
40 0.279 0.480 0.183
50 0.258 0.462 0.181
60 0.285 0.473 0.167
70 0.289 0.440 0.116
80 0.274 0.435 0.109
90 0.283 0.412 0.102
100 0.299 0.448 0.096
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the mean value of convergence time obtained from each
experiment was statistically compared. 'e comparison data
are shown in Table 3.

By analyzing the data in Table 3, the k-means algorithm
and FCM algorithm have a long convergence time during
the experiment, while the convergence time of this algorithm
is significantly reduced. 'erefore, this algorithm shows a
good clustering effect in the experiment. 'e k-means al-
gorithm is compared with the clustering algorithm in this
paper in terms of convergence speed. Iris and adult data sets
in the UCI database are used during the experiment. 'e
algorithm in this paper is executed by changing input pa-
rameters and 50 experiments are conducted. 'e results are
shown in Figures 7 and 8.

Figures 7 and 8 show that, for two different types of
data sets, when using this algorithm and the k-means
algorithm to test the stability of the algorithm, the
convergence speed of this algorithm is significantly faster
than that of the k-means algorithm although the ob-
jective function values of this algorithm and k-means
algorithm are very close at the end and the number of
iterations is less with good stability. 'erefore, this al-
gorithm is better than the k-means algorithm in con-
vergence and stability.

5. Conclusions

In this paper, an effective clustering model of sample data
density collected by sparse scattered points and multi-
sensor elements is established. 'e self-adaptive distri-
bution and reliability scheduling of sample data collected
by sparse scattered points and multisensor elements are
carried out by optimizing the resource allocation model of
the multisensor elements network. A data density clus-
tering method based on the characteristic analysis of
unbalanced data distribution samples with sparse scattered
points and multisensor array elements is proposed. 'e
convergence control of resource allocation is carried out
by using the data distribution imbalance sample feature
fusion score and the resource optimal allocation model is
constructed. According to the feature clustering and
convergence analysis, the sparse scattered feature detec-
tion method is adopted to realize the data density clus-
tering and data structure optimal allocation of samples
collected by sparse scattered multisensor array elements.
'e simulation results show that this method has good
interclass equilibrium classification and high convergence
accuracy improving the optimal allocation and scheduling
ability of sparse scattered sample data of multisensor array
network.
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