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With the rapid development of intelligent applications, the development of the Internet of Things changes with each passing day. The
Internet of Things, as an essential component of the new information technology, has already become another revolutionary
information industry after computers and modern communications. Although the Internet of Things has developed and grown, at
the application level, the applications of Internet of Things devices of different architectures are relatively independent of their data
information. This paper is based on the research of 5G urban component sensor information processing method and LOT cloud
platform, and proposes a data fusion algorithm based on the data sequence of the same time. It analyzes the system process and
architecture diagram of the LOT cloud platform, examines the performance of the Hadoop platform on different scale data sets,
and uses the stand-alone system as a reference. The experimental results show that the time increase of the cluster decreases with
the increase of the amount of data, which shows that the system exerts the advantages of parallel computing under the massive
amount of data, and as the data source file increases, the accuracy rate decreases. When the data source size is 2000MB, the
Hadoop cluster system with 3 and 4 cluster nodes has the highest accuracy, 79.21% and 76.28%, respectively.

1. Introduction

As LOT technology evolves, users can deploy their own needs
on the Internet of Things cloud platform, remotely manage
applications, perform real-time data analysis, and integrate tra-
ditional enterprises including the Internet of Things. Research
on the cost of industrial products and development methods
to achieve the successful transformation of traditional industries
and the promotion of manufacturing capabilities. But in the
Internet of Things, there are many types of Internet of Things
device applications. Access system protocols are also diverse,
such as WiFi, LoRa, ZigBee, GPRS, NB-IOT, and so on.
Numerical value collection tools, image capture applications,
local location monitoring applications and other applications
use various protocols to connect to the LOT cloud platform
before the applications can be configured and controlled.

The research trend of the Internet of Things technology
has been carried out in many countries, and the Internet of
Things has great research significance and practical signifi-
cance from both academic and practical perspectives. The
Internet of Things has a wide range of applications in many

industries such as manufacturing, transportation, chemical
engineering, and medicine, and has promoted huge applica-
tion prospects. The rapid development of many platforms
on the Internet announces that the widespread application
of the Internet of Things platform has become an irrevers-
ible trend. With the further development of the Internet of
Things technology, it is very important for platform compa-
nies to capture massive amounts of data and achieve power-
ful object analysis. However, the development problems
encountered by certain LOT platforms with relatively single
processing objects are not simple application problems, and
the most important thing is to keep pace with the times.

Recently, research on cloud integrated of Things (LOT),
which integrates the Internet of Things (LOT) and the cloud
environment, is actively being carried out. Kim H W found
that LOT should provide highly reliable services correspond-
ing to various kinds of political factors in daily life. To ensure
that LOT services are highly available with high degree of sta-
bility, optimal modeling, simulation and resource manage-
ment techniques that integrate physical and computational
elements are required. For these reasons, many systems are
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under development, in which autonomous computing tech-
nology is applied, and part of human work is replaced by exist-
ing computer technology. So that the computer system can be
self-tuned, self-configured, self-protected, and self-repairing,
and the efficiency of the computer system can be improved
by technical management techniques to reduce management
costs, and it can sense any internal errors or changes in the
external environment that occur during the operation of the
system, and the system can self-adjust or evolve. Autonomic
computing requires high levels of efficiency in an LOT envi-
ronment comprising large-scale nodes, but it has not yet been
realized in real life [1]. Currently, the 21st century is in a
period of information explosion. But for the fast-developing
information age, the research progress of sensor-based infor-
mation processing devices is relatively slow. Y Motohashi pro-
vides an apparatus for processing messages that prioritizes
inference results deduced from contextual information. The
message processing apparatus comprises an reasoning cell that
gets reasoning outcomes derived by the application of the rea-
soning regs to pieces of contextual messages; a calculation cell
for index values of reasoning outcomes that calculates an
index value based on the reading user’s level of knowledge of
each reasoning rule used in the reasoning process, giving an
overall view of the reading user’s depth of knowledge of the
outcomes. The inference result display unit, which displays
the inference results based on the index value; and the knowl-
edge depth update unit, which updates the reading user’s
knowledge level for each inference rule used in the inference
process based on the evaluation information obtained. The
unit modules are set up in detail, but the exact effect is not
yet clear[2]. Lu J investigates the state-estimation problem
for the best convergence of multistage asynchronous multi-
scale transducers having both uncertain measurements and
correlated noise. Noise from different agents is correlated
and combined with a priori flow and corresponding system
noise at the same time step. The problem is characterized by
the maximum possible summary rate, where different sensors
observe a target independently at more than one rate. He pro-
poses an optimal state estimation method based on iterative
estimation with a white noise estimator, the special feature of
this algorithm is that it provides a simple, efficient and reliable
uniformity measurement method, which can avoid including
blocks with structural information into the measurement pro-
cess, and improves the accuracy and robustness of the system
state estimation. Numerical examples show the effectiveness of
the algorithm, but its practicality is not strong[3]. Xing Z pro-
posed three nonlinear centralized scale unscented Kalman fil-
ter (SUKF) algorithms for multi-sensor data fusion, which are
enhanced measurement, measurement weighting, and
sequential filter fusion. First, he studied in detail the accuracy
analysis of Extended Kalman Filter (EKF) and SUKF. Sec-
ondly, by comparing the error covariance trajectory of the cen-
tralized SUKF of the multi-sensor data fusion algorithm and
the centralized EKF of the multi-sensor data fusion algorithm
and the absolute average estimation error in the X and Y direc-
tions. It can be seen that among the six algorithms, the central-
ized augmented measurement SUKF multi-sensor data fusion
algorithm has the best performance. In other words, the algo-
rithm (Iu) performs best in terms of accuracy. Finally, the run-

ning time of the six algorithms is combined and
comprehensively analyzed, which shows that among the six
algorithms, the algorithm (Iu) is the best in terms of synthesis,
but it is a bit cumbersome in terms of experimental operation
[4]. Among the greatest remaining operational surprises for
LOTplatforms is the calibration of sensors in uncontrolled
environments, which measures cross-sensitivity to compen-
sate for interfering contaminants and environmental condi-
tions. Ferrer-Cid P studied how data fusion collected by
sensor arrays can improve the calibration process. In particu-
lar, he compared sensor array calibration, weighted average
multi-sensor data fusion calibration and machine learning
model multi-sensor data fusion calibration. He evaluated the
calibration by combining data from various sensors with lin-
ear and non-linear regression models, but there were too few
subjects [5]. The basic principle of multi-sensor data fusion
technology is like the process of comprehensive processing
of information by the human brain. Malakar B proposed an
adaptive multi-sensor data fusion technology based on bilin-
ear recursive least squares, which is used to accurately locate
railway vehicles and detect accidental separation of trains,
and is used in the Indian Railway Train Collision Avoidance
System (TCAS). Robust resolution of one of the task is to aug-
ment GPS with an airborne multi-sensor system. Dual Linear
recursive least squares adaptive filters are used to estimate and
offset the location errors of the on-board multi-sensor system.
The capability of the method is compared with that of the
observation error-based method, the bounded offset-based
method, and the technique of pseudo-measurement state
bounding. Simulation results show that the superiority of the
proposed method in terms of accuracy of positioning and
detected unexpected train separation at least separation dis-
tance has not yet been applied in practice[6].

The innovations of this article: (1) The number of search
cluster nodes is increased on the Hadoop platform, which pro-
vides flexibility for maintenance and control under complex
control situations that require multiple devices, and applica-
tions are connected to the platform through networks and sys-
tems. (2) Connecting the device to the LOTplatform, and the
application devices can communicate directly. It uses Internet
+ thinking to build a cloud platform for the Internet of Things,
which is more convenient and flexible than the detection and
display of the upper computer in the stand-alone mode, and
the processing speed is faster without affecting the detection
accuracy of the data source file.

2. Information Processing Method and Cloud
Platform Research Method

2.1. The LOT Cloud Platform of 5G Urban Component
Sensors. In the Internet of Things, data is a fundamental part
of the Internet of Things. Cloud platform data mainly
includes collected data transmitted by application programs
and data generated by users working on the cloud platform.
Cloud platform functions are analyzed, designed, and devel-
oped around data types. The data on the LOT cloud plat-
form mainly has the following characteristics: There are
many types of data structures:
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(1) In real industrial manufacturing, the format and
meaning of data collected by different devices in
the Internet of Things, and the amount of data col-
lected by sensors are also different. For example, a
monitoring application captures the temperature,
humidity, and real-time location of mobile devices
in the workshop, and collects four-dimensional data.
Magnetic card readers can capture five-dimensional
or more multi-dimensional data in the card informa-
tion, and output the data, and the data structure
uploaded by the device is not the same [7].

(2) Data compatibility: The data contained in the enter-
prise Internet of Things database is very important.
For example, user data is associated with user device
data including device configuration data or com-
mand data. In the cloud platform, the data that is
not uploaded is not independent, but is related to
each other or between multiple and multiple [8].

Data is temporal and spatial. The data collected by sen-
sors on devices in the private Internet of Things represents
the state of the device at a certain time or the state of the
environment around the device.

For enterprises, in daily production, a piece of equip-
ment cannot support normal production and operation
requirements. Companies need different 5G urban compo-
nent sensor components, such as LoRa sensors, NB-LOT-
sensors, WiFi sensors, ModBus central management
application equipment, and communication networks used

by different platforms. LoRa equipment uses LPWAN, NB-
IOT uses the 5G network provided by the operator, and
WiFi and ModBus industrial equipment uses the local area
network to transmit data[9]. The system process of the
LOT cloud platform is shown in Figure 1:

The cloud platform only needs to provide users with the
services they need. The internal implementation of the cloud
platform and the collection of underlying data are transpar-
ent to users, but it is always confidential to other terminals.
In order to make full use of the control of cloud platform
system equipment and resources, and provide higher perfor-
mance access and data processing capabilities, the system
integrates SOA ideas, as a service source, provides data pro-
cessing and data services between modules [10]. The struc-
ture of the cloud platform system is shown in Figure 2:

As shown in Figure 2, the cloud platform is composed of
platform application services, management systems, storage
systems, and communication systems. Each system can
exchange information and update data. The device is connected
to the cloud platform through the device access interface pro-
vided by the cloud platform, and the use of wireless network
transmission can solve the problem of Internet access in com-
plex areas. Its main core components are wireless routers, LoRa
base stations, routers and three-layer switches [11–12]. The net-
work detection diagram of the system is shown in Figure 3.

The wireless ad hoc network base station is an impor-
tant tool for building back-end IP networks. Through the
wireless MESH protocol network, a personal network sys-
tem with multiple wireless links can be created, which can
be easily connected to the network to support links. There
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Figure 1: System flow chart of Internet of things cloud platform.
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are many types of routing structures, including the advan-
tages of high bandwidth and strong stability [13]. Because
the equipment is easy to install, the construction cost of
the optical fiber switcher is low, and it can be used all
the time. The wireless installation is simple, and when
the site does not require a wireless connection, the appli-
cation can be switched to other places where a wireless
network is needed to continue using it. The LoRa base sta-
tion is a protocol converter, which is responsible for con-
verting the radio frequency signal transmitted by the node
into an IP network signal and sending it to the LoRa
server for transmission. It is a bridge between the temper-
ature storage terminal and the server [14], with a built-in
LoRaWAN protocol, and supports access to a network of
5000 nodes at most. The wireless transmission distance is
up to 20 kilometers, and the 470MhzISM unlicensed fre-
quency band is used for communication.

2.2. Mathematical Model of Data Fusion Algorithm. Data
fusion includes many aspects, and the models are also diverse.
Figure 4 is a general model of data fusion, which is divided into
four levels. There is no time sequence characteristic between
levels, and these sub-processes are processed in parallel [15].

The first level: Including the registration, association,
recognition, etc. between data and images. The so-called reg-
istration is to preprocess the information sent back from the
sensors of various 5G urban components, so that they are all
distributed on the same coordinate or platform. Association
mainly refers to the association of data, and identification
mainly refers to identity recognition and identity fusion [16].

The second level: Situation assessment, which mainly
includes situation extraction, situation analysis and situation
prediction.

The third level: Practical evaluation, is about the applica-
bility analysis of the data fusion model.

The fourth level: Optimizing fusion processing, includ-
ing optimizing the use of resources, optimizing 5G urban
component sensor management, and optimizing weapon
control [17]. The purpose is to enable decision makers to
make correct decisions.

Using a single 5G urban component sensor cannot accu-
rately track the target’s trajectory, nor can it accurately
determine the target’s identity information. Using data
fusion in a multi-sensor information system can bring many
benefits, but first of all, it can strengthen the robustness of
the system. A single sensor is greatly affected by the external
environment, and the results obtained are often error-prone.
Using multi-sensor fusion can reduce the dependence on the
environment and make it easier to adapt to changes in the
environment. Secondly, the space and time coverage of the
system is enhanced. For example, the visible light sensor
can only work during the day. If the visible light sensor is
used alone, we cannot get the information at night [18],
and the use of a multi-sensor information system can cover
the range that a single sensor cannot reach.

At present, there are many classification methods for
data fusion. Among them, the most commonly used classifi-
cation method is based on the level and substance of the
fusion, which is divided into pixel level, feature level and
decision level [19]. As shown in Table 1 is a comparison of
the advantages and disadvantages of the three fusions, with
1 representing the highest level; 2 representing the medium
and 3 representing the lowest [20].

The 5G urban component sensor sensing node is the
most basic element in the wireless sensor network system.
It usually has the function of sensing and detecting certain
spatial parameters, temporary storage and calculation of
data, and wireless communication, and it is powered by
the battery of each node [21]. Data fusion is based on the
sampled data from multiple sensors, and the data is inte-
grated and calculated to obtain the final result [22].
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Figure 2: Cloud platform system architecture diagram.
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Sensor sequences and sensors may be represented as fol-
lows.

A tð Þ = A1 tð Þ, A2 tð Þ,⋯, Ap tð Þ� � ð1Þ

Then there are:

ai tð Þ = K + εi tð Þ, i = 1, 2,⋯, p ð2Þ

Management station

Internet of things

Central station

Cloud platform services

LoRa base station 1 

LoRa base station 3

Monitoring of receiving
stations 

LoRa base station 2

Figure 3: Schematic diagram of system network detection.
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AiðtÞ is the measured value of the sensor at time t, K is
the true value [23].

It records the sampled data from t1 to tm, respectively,
and the matrix of summarized values is shown below.

R =

a1 t1ð Þ a1 t2ð Þ ⋯ a1 tq
� �

a2 t1ð Þ a2 t1ð Þ ⋯ a2 tq
� �

⋯ ⋯ ⋯ ⋯

ap t1ð Þ ap t1ð Þ ap t1ð Þ ap tq
� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð3Þ

In each element of the matrix R, the elements represent
the recorded value of the sample sensor i at time t. The col-
umns in the matrix represent the measured values of the
sensor sequence at the same time. The rows in the matrix
represent the sequence of sampled values of the same sensor
over time.

The data fusion algorithm studied in this paper is based
on the data sequence at the same time and does not consider
time correlation. Therefore, the data sampling model used
by this type of data fusion algorithm is relatively simple,
expressed as follows:

R = a1, a2,⋯, anf g ð4Þ

The sequence R represents the sampling data sequence
of the sensor sequence to the parameter X at a certain
moment. This sequence expression method omits the time
parameter because the algorithm does not involve time cor-
relation [24]. This expression facilitates the selection of
values and is more favorable to the processing and computa-
tion of data by this type of algorithm [25–26].

(1) Fusion function

For the purposes of measuring values of differences
between data, “differences” can be quantified in terms of
absolute distances. This distance is given by:

Dij = ∣ai − aj∣ ð5Þ

Although absolute distance is defined as a measured dis-
crepancy between 2 pieces of data, the concept of conver-
gence function is implemented as a measure of the role of
a piece of data in the integration process.

The confluence functional can be represented as below.

gij = exp U•Dij

� � ð6Þ

Equation (6) is considered to be the best explanation and
description of the convergence degree factor. However, the
convergence function is still a broad concept and is not lim-
ited to a particular formula. The convergence degree func-
tion is used to describe the level of relative convergence
between data, and the expression based on absolute distance
is only one of them. In addition, in some algorithms, there
are expressions based on the quotient of the two, and so
on. Therefore, the fusion function should be more under-
stood as a way of expression, and its form is not fixed
[27–28].

(2) Fusion matrix

An integration matrix has been produced to facilitate
integrated management and analysis[27]. This convergence
matrix has the following representation:

G =

1 g12 ⋯ g1q

g21 1 ⋯ g2q

⋯ ⋯ ⋯ ⋯

gq2 gq2 ⋯ 1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð7Þ

Element A of the matrices represents the integration of
data ai with respect to the data aj in series D. The conver-
gence matrix has its diagonal elements all 1. That’ s due to
the fact that the integration of the data with respect to itself
is meaningless and can be considered to be 1 with respect to
the integration of itself[30].

(3) Fusion result expression

A weight factor can change from line to line in different
algorithms. However the weighting factor has important
characteristics and rules [31]. Then:

m1 +m2+⋯+mp = 1 ð8Þ

a
For extreme data, the value of mi is not excluded. But

in the case of the sum of the gravity factor, the coefficient
of unity is not negative and is less than or equivalent to 1
[32].

The power factor can be considered in some sense as the
product of the outcome of the merging method. The final
expression of the fusion result is as follows.

Z =m1 × a1 +m2 × a2+⋯+mp × ap ð9Þ

Table 1: Comparison of advantages and disadvantages of three
fusion levels.

Pixel level
fusion

Feature level
fusion

Decision level
fusion

Amount of
information processed

1 2 3

Loss of information 3 2 1

Anti interference
performance

3 2 1

Fault tolerance
performance

3 2 1

Fusion performance 1 2 3

Dependence on
sensors

1 2 3
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2.3. Overview of Data Fusion Algorithms in the Data Layer.
Fusion algorithm is the basic content of data fusion system.
At present, most computing algorithms are researches based
on the fusion of similar information. However, the data
fusion of multiple types of sensors lacks effective algorithms
and integrated models. The study found that with the help of
modern statistical technology, the complex problems in the
data fusion of different information can be solved. Multi-
sensor fusion algorithms from different sources strength-
ened the thinking innovation in method. The data fusion
algorithm is shown in Figure 5. Different application settings
choose different fusion algorithms. From experience, the
weakness of the algorithm makes the development of
another algorithm always quick, usually, the deficiencies of
this kind of algorithm are often room for improvement of
another algorithm, so the complementarity between algo-
rithms makes it a trend to combine two or more algorithms
and then data fusion. So it can be combined and used
according to the compatibility between the algorithms, and
then the data is merged.

(1) Sampling data model

In wireless sensor networks, multiple sensors of the same
type usually estimate and measure the same parameter. Due
to the large differences in the space and geographic location
of each sensor, there will be different situations of noise
affecting each sensor. Therefore, the measured value is often
in a certain area of the true value.

Due to the difference and suddenness of noise, the devi-
ation of each measured value from the true value is also dif-
ferent. Normally, the component sensor has a set and known
sampling frequency. According to the distribution of sam-
pling time points, the sampling sequence of sensor Ai from
time t1 to time tp is Ai = fai1, ai2,⋯, aipg. Supposing that
in a wireless sensor network, there are q nodes that measure
parameters in the same context. The sampled data can be
represented by the following matrix:

H =

a11 a12 ⋯ a1p

a21 a22 ⋯ a2p

⋯ ⋯ ⋯ ⋯

aq1 aq2 ⋯ apq

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð10Þ
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Neural networks

Expert system

Figure 5: Typical information fusion algorithm
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The element aij in parameter H denotes the value of the
sensor Ai measured at time t j. Because the application sce-
narios of sensor networks are different, in some applications,
the measured value of the sensor node at the current
moment has nothing to do with the measured value at the
previous moment. Therefore, the sequential sampling data
model is used in some fusion algorithms that only fuse the
sampled data at the current moment. That is, at time t, the
sampling data of the sensor sequence A = fA1, A2,⋯, Apg
can be represented by the following sequence:

Tt = a1, a2,⋯, ap
� � ð11Þ

The element ai in the sequence Tt represents the sam-
pling data of the sensor Ai at the time t.

Let K be the true value of the sampled data at time t,
then:

ai = K + νi ð12Þ

Where νi represents the measurement error at time t for
transducer Ai.Prior knowledge EðνiÞ and DðνiÞ are both
unknown.

(2) Fuzzy mathematics and closeness

Fuzzy mathematics is a mathematical theory and
method for studying and dealing with fuzzy phenomena. It
uses precise mathematical methods to describe and model
a large number of fuzzy concepts and fuzzy phenomena in
the real world in order to achieve the purpose of properly
processing them. Supposing there is a universe S, then a
mapping from S to the unit interval [0,1]: f A : S⟶ ½0, 1�
is called a fuzzy set on S, which can also be called a fuzzy
subset, denoted as L. The mapping f A : S⟶ ½0, 1� is called
the membership function of the fuzzy set A.

The gap or space between fuzzy sets can be expressed
through a custom measurement process. For this reason, a
metric needs to be established on the fuzzy power set. In
addition, this metric can also be standardized, that is,
mapped to the interval [0,1]. In the fuzzy pattern recognition
method, the degree of closeness is used to identify the pat-
tern category of the fuzzy subset to be discriminated. In
order to measure the category of the subset to be identified,
it is necessary to determine the relative closeness between
each stage and the benchmark fuzzy set. In a sense, the close-
ness is the distance, and the closeness is proportional to the
distance. Therefore, it should be the opposite of the value of
distance. In addition, there are other definitions of closeness
closely related to fuzzy sets, such as the maximum and min-
imum closeness:

α L,Hð Þ = ∑p
i=1 L f ið Þ∧H f ið Þð Þ

∑p
i=1 L f ið Þ∨H f ið Þð Þ

ð13Þ

Arithmetic mean minimum closeness:

α L,Hð Þ = ∑p
i=1 L f ið Þ∧H f ið Þð Þ

0:5∑p
i=1 L f ið Þ +H f ið Þð Þ

ð14Þ

Geometric mean minimum closeness:

α L,Hð Þ = ∑p
i=1 L f ið Þ∧H f ið Þð Þ

∑p
i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L f ið ÞH f ið Þp ð15Þ

Index closeness:

α L,Hð Þ = 1
e∣L−H∣ ð16Þ

(3) Credibility matrix

Due to the difference in the location of the sensor itself
and the quality of its parts, as well as some external random
factors, such as electromagnetic radiation, strong weather,
human factors, etc., the measurement parameters of the sen-
sor node must have some deviations. These deviations are
large or small, creating the problem of how to verify the
measurement parameters. Credibility is used to measure
the degree of closeness between the measured value of the
current node and the measured value of other nodes, so as
to judge the validity of the data. The establishment of the
credibility function is based on the concept of maximum
and minimum closeness in fuzzy mathematics.

The credibility of ai and aj at time t can be expressed as:

aij tð Þ =min ai, aj
� �

/max ai, aj
� �

1 ≤ i, j ≤ nð Þ ð17Þ

The confidence level matrix can then be denoted as fol-
lows:

Sn tð Þ =

s11 tð Þ s12 tð Þ ⋯ s1p tð Þ
s21 tð Þ s22 tð Þ ⋯ s2p tð Þ
⋯ ⋯ ⋯ ⋯

sp1 tð Þ sp1 tð Þ ⋯ spp tð Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð18Þ

(4) Mean and variance of credibility

This is expressed as follows so that the effect of self and
self proximity may reduce the mean credibility of the i row:

wi tð Þ = 〠
n

j=1
aij − aii/ n − 1ð Þ ð19Þ

8 Mobile Information Systems



The expression for the variance of parentage in row i is
as follows:

oi
2 tð Þ = 〠

n

j=1

∑n
j=1aij/n − aij

� �2

n
ð20Þ

3. Experiment of LOT Cloud Platform

The LOT cloud platform system studied in this paper com-
bines embedded technology and Internet technology. The sys-
tem consists of 3 parts, and its structure is shown in Figure 6.
The network domain uses Onenet as the device access plat-
form, Sina Cloud (SAE) as the third-party application plat-
form, and the application domain is the mobile client and
PC terminal. Hadoop is a distributed system infrastructure

developed by the Apache Foundation. Users can develop dis-
tributed programs without understanding the underlying
details of the distribution, and make full use of the power of
the cluster for high-speed computing and storage.

The domain uses the Onenet Internet of Things plat-
form, which provides Restful API interface, Socket interface,
and EDP and Modbus device access protocols. The mobile
application client checks the bound device and enters the
device control panel. The client sends a command request
to the SAE server through the application bar, and the SAE
server sends the client request to the equipment installed
in the machine area, and the machine returns a correspond-
ing message. Finally, the SAE server returns the message
generated after running to the application library, and the
platform sends the message to the client, thereby completing
the data and communication interaction between the

Router

Sensors Sensors Sensors

Third-party application
platforms (SAE)

Client Hardware
platform PC

Router

Access gateway

OneNet cloud services

API

EDP protocol

Controller

Application domain

Network domain

Device domain

Figure 6: Schematic diagram of the system structure.

Table 2: Server specifications.

The server Parameter The server Parameter

Processor 2 Memory 64GB

Processor dominant frequency 2GHz Outline specification 4U rack mounted

Cache capacity 18MB Storage device Dell Fibre Channel disk

9Mobile Information Systems



T
a
bl
e
3:
H
ad
oo
p
cl
us
te
r
pl
an
ni
ng
.

A
dd

re
ss

10
.1
0.
7.
20
0

10
.1
0.
7.
20
1

10
.1
0.
7.
20
2

10
.1
0.
7.
20
3

H
os
t

na
m
e

N
od

e1
N
od

e2
N
od

e3
N
od

e4

Fu
nc
ti
on

N
am

en
od

e,
se
co
nd

ar
y

na
m
en
od

e,
H
M
as
te
r

D
at
an
od

e,
ta
sk
tr
ac
ke
r,
H
R
eg
in
Se
rv
er

D
at
an
od

e,
ta
sk
tr
ac
ke
r,
H
R
eg
in
Se
rv
er
,z
oo

ke
ep
er

D
at
an
od

e,
ta
sk
tr
ac
ke
r,
H
R
eg
in
Se
rv
er
,z
oo

ke
ep
er

10 Mobile Information Systems



platform and the application device. The PC side obtains the
SAE server resource service through HTTP request, which
indirectly realizes the user’s management and monitoring
of the hardware equipment.

The sensor information processing system of the service
platform is realized by using the existing equipment in the
laboratory to deploy a distributed parallel computing cluster.
The laboratory has an existing Dell PowerEdge R910 server
and 20TB storage. The specifications are shown in Table 2.
By using server virtualization solutions, create multiple vir-
tual machines on the server, check memory access permis-

sions and network connectivity. The virtual server running
on it has better performance and stability and can be con-
nected remotely. Remote management is carried out through
the client, and 4 virtual machines form a Hadoop cluster.
The addresses and division of labor are shown in Table 3.

4. Hadoop Cluster Data Processing
Performance Analysis

Investigate the performance of the Hadoop platform on data
sets of different scales, and take the stand-alone version of
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Figure 7: Comparison of the performance of different size data sets.
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Figure 8: Comparison of processing time and total time in both modes.
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the system as a reference. In stand-alone mode, Hadoop
runs completely locally, without using HDFS or loading
any Hadoop daemons. The data source file size is 50MB,
100MB, 200MB, 500MB, 1000MB, 1500MB, 2000MB,
respectively. By default, MapReduce uses the TextInputFor-
mat interface to read and process files in HDFS in line units.
One line is an independent record, so the number of data
items can represent the workload of the system. The data
volume corresponding to the file is 550,000, 1.3 million,
2.65 million, 4.2 million, 7.52 million, 9.87 million, and
14.2 million, respectively. And it verifies two cases with 2
and 5 sensors. The number of cluster nodes is 4. In order
to reduce the influence of other factors on the experimental
effect, compare the two sides using the same hardware envi-

ronment, the experimental result is the average of three
experiments. The time comparison is shown in Figure 7,
and the comparison between the processing time and the
total time in the two modes is shown in Figure 8.

It can be seen from Figure 7 that when the amount of
data is small, the processing efficiency of the Hadoop cluster
system is not as good as that of a single machine. When deal-
ing with large data sets, the running time of a single machine
increases almost linearly. Because the stand-alone version
executes all input data sequentially and there is no parallel
processing mechanism. However, the time increase of the
cluster decreases with the increase of the amount of data,
which shows that the system exerts the advantages of parallel
computing under the massive amount of data.
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Figure 9: Accuracy of Hadoop clustered system and standalone mode.
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Figure 10: Performance comparison of two cases with 2 and 5 sensors.
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It can be seen from Figure 8 that when processing small-
scale data, the processing time of the Hadoop cluster system
exceeds half of the total time, while the processing time of
the stand-alone mode exceeds 2/3 of the total time.

Selecting the data source file with a size of 50MB,
100MB, 200MB, 500MB, 1000MB, 1500MB, 2000MB.
Figure 9 shows the accuracy of the detection file and the
Hadoop cluster system and stand-alone mode with 2, 3,
and 4 nodes in the cluster. Figure 10 shows the accuracy of
the Hadoop cluster system and single-machine mode under
different processing sensor numbers.

It can be seen from Figure 9 that the size of the data
source file has a great impact on the accuracy of the Hadoop
cluster system and single-machine mode detection. As the
data source file increases, the accuracy rate decreases. When
the data source size is 2000MB, the Hadoop cluster system
with 3 and 4 cluster nodes has the highest accuracy,
79.21% and 76.28%, respectively.

It can be seen from Figure 10 that with the increase in
the number of processing sensors, although the size of the
text has become larger, the detection accuracy of massive
data has increased significantly in the processing of files of
the corresponding size.

5. Conclusion

With the advent of the 5G information era, sensor networks
are an important medium for information collection. With
the reduction in cost and the smaller and smaller electronic
components, a large number of wireless sensors have begun
to be used. As the most important terminal node of the Inter-
net of Things, the deployment scale of sensors will inevitably
become larger and larger. Correspondingly, the amount of
data and requests generated will become larger and larger. So
far, managing and processing the massive data generated by
a large number of sensor nodes has become a thorny issue.
Due to the huge amount of raw data collection, wireless sen-
sors have an inevitable demand for data fusion. However,
the computing power of the microprocessor is weak, the
energy is limited, and the data fusion algorithm with high
computational complexity is not suitable for wireless sensor
networks. This article aims at the information processing
method of 5G urban component sensors, combined with the
Internet and cloud service technology, to build an Internet of
Things cloud platform. By using 4 virtual machines to form
a Hadoop cluster, it analyzes its performance on different scale
data sets. But in the research process, this article still has many
shortcomings, for example, the detection accuracy of massive
data and the number of sensors are the most appropriate.
These issues still need to be studied.
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