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Accurately predicting the short-term passenger �ow of urban subways is very important for urban subway stations to formulate
passenger �ow organization and evacuation plans e�ectively and rationally plan passenger travel routes.�is paper establishes a novel
framework to predict the hourly inbound and outbound passenger �ow of subway stations based onWOA-GMM station classi�ers,
CEEMD-SE noise reduction, and BiGRU optimized by attention. Firstly, this paper classi�es subway stations using the improved
Gaussian mixture model (GMM) with Whale Optimization Algorithm (WOA) to realize the feature extraction of di�erent types of
subway stations. Secondly, this paper uses the Complementary Ensemble Empirical Mode Decomposition (CEEMD) to decompose
the noise reduction of each station’s hourly inbound and outbound passenger �ow. It combines the empirical modal components by
calculating the sample entropy (SE), which makes the time series stable and reduces the time cost of forecasting. Finally, a Bi-
directional Gated Recurrent Unit (BiGRU) model improved by attention mechanism (AM) is established for each station’s inbound
and outbound passenger �ow.�e prediction model established in this paper is veri�ed by subway passenger �ow data in Shanghai,
China, within 24 days. Finally, it is concluded that the model can predict the passenger �ow of subway stations. Compared with the
traditional BackpropagationNeural Network (BP), the Long Short-TermMemory (LSTM), and the normal BiGRUmodel, the model
proposed in this paper has an average reduction of 65.90%, 64.54%, and 49.06% in Mean Absolute Percentage Error (MAPE) in the
prediction of the hourly inbound and outbound passenger �ow of each type of station, respectively.

1. Introduction

�e ability to accurately forecast the short-term passenger
�ow of city subways is critical to inhabitants’ quality of life.
With the rapid advancement of global urbanization, many
urban rail transit systems have achieved explosive growth
[1]. �e number of newly opened transportation systems has
surged during the past decade. In 2019 alone, the total
number of passengers transported by subway and light rail
globally reached 70.794 billion. By the end of 2020, 538 cities
in 77 nations and regions have inaugurated urban rail
transportation, with a total operating mileage of over
33,346 km and over 34,220 stations [2]. �e rapid expansion
of the rail transit network has also caused passenger �ow
organization and train scheduling problems. Excessive
passenger �ow on the subway and excessive inbound and

outbound passenger �ow of the station may cause safety
problems such as stampede incidents and are not conducive
to passengers reaching their destination according to the
target time. However, due to the di�erent external char-
acteristics such as spatial layout and commercial e�ect of
each station, excessive attention to these characteristics will
complicate the prediction of passenger �ow. �erefore,
making the best use of the time and space features of subway
stations and accurately anticipating the passenger �ow of rail
transit stations is a pressing issue that must be addressed.

2. Literature Review

Considering that the geographical location of di�erent
stations and the surrounding economic development con-
ditions are di�erent, the passenger �ow between adjacent
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stations greatly correlates. +erefore, it is necessary to
perform cluster analysis on stations from time and space
perspectives. Zhou et al. [2] thoroughly considered each
station’s topology structure and passenger flow information,
which used complex network evaluation and the k-means
method to cluster the stations. It proposed a method to
balance and control passenger flow. However, in practical
applications, the k-means algorithm [3], Affinity Propaga-
tion (AP) algorithm [4], Spectral Clustering (SC) algorithm
[5], and other methods are more suitable for processing
spherical data, and the processing effect for data with ir-
regular shapes is not satisfactory. In contrast, the GMM
algorithm assumes that a combination of multiple Gaussian
distributions forms the data points, and there is no re-
striction on the shape of the data. Multiple Gaussian dis-
tribution functions can be used to fit the shape of the data
points to the greatest extent. However, since the GMM
algorithm is based on the Expectation-Maximum (EM)
algorithm, it is simple to attain a local optimum and it is
extremely sensitive to the initial value. For such a problem,
Guo et al. [7] presented utilizing the Particle Swarm Op-
timization (PSO) optimized GMM as a correction approach
for the parameters of the electromagnetic transient model. It
also verifies the effectiveness of optimizing the initial pa-
rameters of the GMM algorithm through the heuristic al-
gorithm. WOA [8] is a new variant of the heuristic
optimization algorithm that outperforms the PSO and Grey
Wolf Optimizer (GWO) algorithm [9, 10] in terms of
performance. Abbas et al. [11] used the WOA to extract
essential features in the breast cancer dataset, which greatly
improved the prediction accuracy. Gadekallu et al. [7] used
the combination of Principal Component Analysis (PCA)
and WOA to accurately extract the important features of
tomato disease data and used a deep neural network to
identify the disease types. Among them, using the WOA
improves the model’s accuracy by 4% on the test set. Yan
et al. [13] used WOA to improve the extreme gradient
boosting (XGB) model and found that the optimized model
predicted daily reference evapotranspiration considerably
better than the basic FAO-56 PM model. To overcome the
problems, the parameters of GMM based on the EM al-
gorithm attain the local optimum and rely too much on the
selection of the initial value. +e WOA is used to optimize
the initial parameters of GMM in this study. At the same
time, it also solves the problem of low fitting accuracy and
robustness of the k-means algorithm.

In addition, changes in the external environment will
have a particular impact on passenger flow data. +e data
noise created in this manner is unpredictable, and too much
random fluctuation will diminish the predictability of the
results. +erefore, it is necessary to decompose and denoise
the original data. In recent years, researchers have developed
various processing methods to identify the characteristics of
nonlinear sequences to maximize the universality of the
prediction results and reduce the impact of external envi-
ronmental factors on the results. +ese include wavelet
transform (WT) [14], Singular Spectrum Analysis (SSA)
[15], Empirical Mode Decomposition (EMD) [16], Ensemble
Empirical Mode Decomposition (EEMD) [17], etc. Some

researchers have also proved the higher accuracy of the
hybrid prediction model with decomposition and noise
reduction processing. Zhu et al. [18] used the Autoregressive
Integrated Moving Average model (ARIMA) to predict the
passenger flow and combined WT to decompose and
denoise the data, which achieved higher accuracy than the
ARIMAmodel alone. However, the wavelet transform needs
to specify the wavelet basis function artificially, and the
decomposition function lacks directionality [19]. In contrast,
the empirical mode decomposition method is more adap-
tive. Zhao et al. [20] used the empirical mode decomposition
method to convert the time series into a series of eigenmode
functions and residuals. +ey used a long and short-term
memory neural network to estimate subway passenger flow,
and the results were more accurate than previous predic-
tions. However, EMD is prone to modal aliasing, and
CEEMD [21] solves this problem by introducing comple-
mentary noise. +erefore, this paper uses CEEMD with high
computational efficiency and high reconstruction accuracy
of the original signal to denoise the original data.

Parametric and nonparametric models are the two types
of traditional short-term passenger flow prediction models.
+erefore, the traditional short-term passenger flow predic-
tion models are mainly divided into parametric and non-
parametric models. One of the representative parametric
models is ARIMA [22]. ARIMA considers the periodic
characteristics of time, and the prediction method is direct
and does not require too much preprocessing. However,
ARIMA ignores the influence of randomness on the overall
forecasting results, and the forecasting accuracy of time series
with strong randomness is not high. Compared with para-
metric models, nonparametric models are more flexible and
can deal with more complex situations, including Support
Vector Machine (SVM) [23], LSTM [24], and Gated Re-
current Unit (GRU) [25]. +e WT-SVM model proposed by
Sun et al. [26] complemented the advantages ofWTand SVM
to predict the subway passenger flow.+erefore, SVM still has
a big limitation in kernel selection. Yang et al. [27] proposed
the Wave-LSTM model, which used the method of con-
trolling variables to determine the model parameters and
verified the effectiveness and prediction accuracy of the hy-
brid model by comparing it with traditional models. In
contrast, Deep Neural Networks (DNNs) [28] have a greater
advantage in sequence learning, so the improved LSTM
model captures the long-term time dependence of sequences
mainly through gated recursive units. [29], used LSTM and
GRU to forecast the short-term passenger flow of urban rail
transit and found that 5minutes was the best temporal
granularity for both models to predict short-term passenger
flow. Under this time granularity, the overall performance of
GRU is better than that of LSTM. However, it is often difficult
for recurrent neural network models to capture local features
accurately. In this regard, Wu and Tan [30] used a combi-
nation of CNN and LSTM to predict traffic flow, but this
method would increase the difficulty of training and be less
efficient for long-term sequence prediction. +e AM [31]
method extracts valuable features globally. Reference [32]
improved the CNN model mainly used for local feature
perception by using the features with a strong global
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perception of AM and effectively extracting global features.
+erefore, this paper adopts the BiGRU model improved by
AM tomake the final passenger flow prediction, which greatly
improves information utilization and accuracy.

3. Paper Contribution

+is paper establishes the WOA-GMM-CEEMD-SE-
BiGRU-AM model to predict the short-term passenger flow
of urban rail transit and compares it with other models to
verify its accuracy and effectiveness. +e contributions of
this paper are as follows:

(1) Since different stations have different spatiotemporal
characteristics, this paper employs GMM to group
stations with comparable characteristics. However,
the EM algorithm is the core part of the GMM, and
its clustering effect largely depends on the initial
value of the EM algorithm. +erefore, the initial
parameters of the GMM are optimized byWOA.+e
stations are finally classified according to their
spatiotemporal characteristics.

(2) +e passenger flow data of rail transit fluctuates
greatly, and the regularity is poor. +erefore, this
paper decomposes and denoises the passenger flow
data of each type of station through CEEMD and
uses a more regular component as the target variable
of prediction to increase the prediction accuracy.
However, considering the time cost of prediction,
similar variables are combined by calculating SE.

(3) In order to predict the passenger flow of rail transit,
this paper firstly establishes the BiGRU, but to extract
the local features of the time series more accurately,
AM is used to improve the BiGRU. Finally, compared
with other models, it can be verified that the model
established in this paper has high accuracy.

+e rest of the chapters are arranged as follows: Chapter
4 introduces the model, 4.1 introduces the processing flow of
the station clustering algorithm, 4.2 introduces the CEEMD-
SE method for decomposing noise reduction, and 4.3 in-
troduces the building process of the BiGRU-AMmodel. +e
third chapter carries on the calculation of the example and
the validation of the model, and the fourth chapter con-
cludes this paper 4.

4. Model Introduction

4.1. Clustering Model Based on WOA-GMM

4.1.1. Whale Optimization Algorithm. Since GMM is clas-
sified based on the EM algorithm, this model can easily
achieve local convergence [33]. +erefore, this paper uses
WOA to solve this problem. +e whale optimization algo-
rithm is a metaheuristic algorithm based on swarm intel-
ligence. By simulating the predation behavior of humpback
whales, the random learning strategy is used to achieve
global shrinkage, and the convergence rate is fast, which is
suitable for solving global optimization problems. +e
predation process of the humpback whale is as follows:

Step1: Determine the prey location and select the
hunting method.

(1) Shrinkage and encirclement mechanism:
When the humpback whale surrounds the prey, it
will choose to swim toward the humpback whale
with the best position, identify the position of the
prey, and surround it. Such hunting is realized by
reducing the value of a.

D′ � CXp(t) − X(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

X(t + 1) � Xp(t) − AD′, r< 0.5

A � 2ar − a, C � 2r, a � 2 − 2 t/tmax( 􏼁, |A|< 1
(1)

where X(t) is the position of the t-th iteration of the
humpback whale. Xp(t) is the optimal position
currently searched; t is the current iteration number;
D is the distance from the humpback whale to the
prey. tmax is the maximum number of iterations; a is
a value linearly decreasing from 2 to 0; r is a random
vector in the range 0 to 1.

(2) Spiral spit mechanism
Calculate the distance between itself and the optimal
individual in the current population, and spit out
bubbles while swimming in a spiral.

D″ � Xp(t) − X(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

X(t + 1) � D″ebl cos(2πl) + Xp(t), r≥ 0.5
(2)

b is the logarithmic spiral shape constant; l is a
random number in [−1, 1].
Step 2: Search for prey.
When humpback whales search for prey, they will
randomly swim according to the position of the same
species to achieve a global search.

D � CXrand(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

X(t + 1) � Xrand(t) − A D, |A|≥ 1.
(3)

Xrand(t) is a random position.

4.1.2. Gaussian Mixture Model. +e Gaussian mixture
model (GMM) [34] assumes that all data points come from
different distributions, and by finding a mixture of multi-
dimensional Gaussian probability distributions, it eventually
generates a distribution that can satisfy any shape. Data
points are judged to be from the same distribution in one
group. Compared with the k-means algorithm to calculate
the Euclidean distance between data points, the GMM al-
gorithm can measure clusters’ distribution probability,
which makes the fitting accuracy higher. In addition, GMM
has lower time complexity than traditional clustering al-
gorithms and is more in line with the central limit theorem
under the condition of large samples.

Mobile Information Systems 3



In the multidimensional case, the objective function of
GMM is

L � log(p(X)) � 􏽘
N

i�1
log 􏽘

K

k�1
p xi|μk, 􏽘

k

⎛⎝ ⎞⎠p μk, 􏽘
k

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

p xi|μk, 􏽘
k

⎛⎝ ⎞⎠ �
1

(2π)
n/2

􏽐k1/2
exp −

1
2

xi − μk( 􏼁
T

􏽘

−1

k

xi − μk( 􏼁⎛⎝ ⎞⎠ ∼ N μk, 􏽘
k

⎛⎝ ⎞⎠.

(4)

p(X) is the product of the likelihood functions of all
Gaussian distributions. xi is the i-th sample (dimension p);
p(xi|μk, 􏽐k) is the conditional distribution under the
specified parameters, which obeys the expectation μk (di-
mension p), and the covariance matrix is 􏽐k (dimension p ×

p) which is usually distributed; L is the log-likelihood
function; K is the number of clusters; N is the number of
samples.

+e calculation steps of GMM are as follows:

Step 1: Set the number of sample clusters to K, and the
samples obey a Gaussian distribution:

p xi( 􏼁 � 􏽘
K

i�1
αip xi|μi, 􏽘

i

⎛⎝ ⎞⎠ , (5)

where p(xi) is a multivariate Gaussian distribution; αi

is the probability of the i-th mixture component.
Step 2: Calculate the probability of xj:

cij �
αip xj|μi,Σi􏼐 􏼑

􏽐
k
l�1 αlp xj|μl,Σl􏼐 􏼑

, (6)

where cij represents the probability that the j-th sample
belongs to the i-th class.
Step 3: Compute the maximum likelihood estimate for
each cluster to update the model parameters, including
the expectation, variance, and probability of each data
belonging to class i of Gaussian mixture distribution.

μi
′ �

􏽐
m
j�1 cijxj

􏽐
m
j�1 cij

,

Σi′ �
􏽐

m
j�1 cij xj − μi

′􏼐 􏼑 xj − μi
′􏼐 􏼑

T

􏽐
m
j�1 cij

,

αi
′ �

􏽐
m
j�1 cij

m
.

(7)

Step 4: Repeat steps 2 and 3 until the objective function
converges.
Step 5: +e j-th template is divided into the corre-
sponding category according to the rule of taking the
maximum value of cij.

4.1.3. WOA-GMM. GMM is established based on the EM
algorithm. +e EM algorithm is an expectation-maximiza-
tion algorithm, but it is easy to fall into a local optimum, and
the result strongly depends on the initial parameters.
+erefore, this paper uses the WOA to initialize the pa-
rameters of the EM algorithm and then establishes the
GMM.

Step 1: Determine the number of clusters.
Step 2: Construct a Gaussian mixture model objective
function.
Step 3: WOA is used to solve the maximum likelihood
estimation of the Gaussian mixture model constructed
in Step 2.
Step 4: +e optimization parameters obtained in Step 3
are used as the initial parameters of the EM algorithm.
Step 5: Iterate until optimal.

+e model flow is shown in Figure 1. t1 and itermax1
are the current and maximum iterations of the WOA.
t2 and itermax2 are the current number of iterations
and the maximum number of iterations of the GMM
algorithm.

4.2. Data Noise Reduction Model Based on CEEMD-SE

4.2.1. Complementary Ensemble Empirical Mode
Decomposition. EMD is a decomposition noise reduction
method used to smooth and linearize data. However, due
to the discontinuity of the Intrinsic Mode Function
(IMF) components, the method will produce modal
aliasing during the decomposition process, and the im-
proved EEMD model solves this problem. At the same
time, due to the white noise introduced by EEMD, its
residual parts will affect the original data to a large extent
[35]. As a result, this work uses the CEEMD model,
including complimentary noise to improve the compu-
tational efficiency and signal reconstruction accuracy.
+e calculation process of the CEEMD model is as
follows:

Step 1: A set of positive and negative Gaussian white
noise sequences ϵ+i (t) and ϵ−i (t) is added, which obtains
a new passenger flow sequence based on the original
passenger flow sequence x(t).
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x
+
i (t) � x(t) + ϵ+i (t),

x
−
i (t) � x(t) + ϵ−i (t).

(8)

x+
i (t) and x−

i (t) represent the result of adding positive
and negative white noise to the original passenger flow
sequence.
Step 2: Perform empirical mode decomposition on the
sequences in Step 1 separately to obtain n-1 IMF
components and one residual component.

x
+
i (t) � 􏽘

n

j�1
c

+
ij(t),

x
−
i (t) � 􏽘

n

j�1
c

−
ij(t),

(9)

c+
ij(t) and c−

ij(t) are, respectively, the j-th modal com-
ponent obtained by empirical modal decomposition
after adding Gaussian white noise for the i-th time; when
j� n, it is the residual component.

Step 3: Replace the Gaussian white noise sequence and
repeat Step 1 and Step 2 until N groups of eigenmode
components are obtained.
Step 4: Calculate the average value of N groups of IMF
components in Step 3 to obtain the final decomposition
result.

ci(t) �
1
2N

􏽘

N

j�1
c

+
ij(t) + c

−
ij(t)􏼐 􏼑. (10)

ci(t) is the final i-th decomposition result.

4.2.2. Sample Entropy. After CEEMD decomposes the time
series data, multiple IMF components can be obtained. SE
[36] can measure the complexity of different IMF compo-
nents, which improves the Approximate Entropy (AE),
reduces the dependence on the length of the time series in
the calculation process, and reduces the impact of the loss of
original data on the complexity calculation. +e sample
entropy calculation steps are as follows:

Final value of solution

Normalize the samples

Start

Determines the number of cluster
centers

Initialize search whales and
parameters

Elbow method

If t1<itermax1

Yes

Yes

Update the position of whales using
Eq.(2)

Update the position of whales using
Eq.(3)

Update the position of whales using
Eq.(1)

t1 = t1+1

Select the optimal
solution

Update parameters using EM
algorithm

No

If t2<itermax2

Yes

If r<0.5

If |A|<1

t2 = t2+1

No

YesNo

No

Figure 1: Flowchart of station clustering model.
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Step1: Let a particular IMF component obtained by
CEEMD decomposition be X � (x(1), x(2), . . . ,

x(N)). Take all consecutive u-dimensional vectorsXi �

(x(i), x(i + 1), . . . , x(i + u − 1)), i � 1, 2, . . . , N − u +

1 in X.
Step 2: Define the distance between Xi and Xj as

d Xi, Xj􏼐 􏼑 � max
k∈(0,u−1)

|x(i + k) − x(j + k)|. (11)

Step 3: Given a similarity tolerance r (r> 0), count the
number of d(Xi, Xj)< r for each vector Xi, denoted by
Gi, and calculate its ratio to N-u expressed as Gu

i (r).

G
u
i (r) �

1
N − u

Gi. (12)

Step 4: Calculate the mean of all Gu
i (r) expressed as

Gu(r).

G
u
(r) �

1
N − u + 1

􏽘

N−u+1

i�1
G

u
i (r). (13)

Step 5: Increase the u dimension to u+ 1 dimension,
repeat Step1∼Step4, and get G

u+1
(r) .

Step 6: Calculate SE.

SampEn(u, r) � lim
N⟶∞ −ln

G
u+1

(r)

G
u
(r)

􏼢 􏼣􏼠 􏼡. (14)

However, when SE is applied to actual data, N is always
finite, thus giving an estimate of sample entropy as

SampEn(u, r, N) � −ln
G

u+1
(r)

G
u
(r)

􏼢 􏼣. (15)

4.3. Predictive Model (BiGRU-AM)

4.3.1. Bidirectional Gated Recurrent Unit. GRU is a gated
recurrent neural network model that can solve problems
such as long-term memory and gradient in backpropagation
and is suitable for processing time series data. Compared
with LSTM, the GRU model replaces the input gate and
forget gate functions with only the update gate. +e formula
of the hidden layer of the model is as follows:

zt � sigmoid wz ht−1, xt􏼂 􏼃 + bz( 􏼁,

rt � sigmoid wr ht−1, xt􏼂 􏼃 + br( 􏼁,

􏽥ht � tanh wh rtht−1, xt􏼂 􏼃 + bh( 􏼁,

ht � 1 − zt( 􏼁ht−1 + zt
􏽥ht,

(16)

where zt is the update gate. rt is the reset gate; 􏽥ht is the newly
generated information after processing the historical in-
formation through the update gate. wz, wr, and wh are the
weight parameters of the GRU network; bz, br, bh are the
thresholds of the GRU network.

+e GRU structure diagram is shown in Figure 2.
+e hidden state of the GRU model layer only considers

the impact of historical information on the current input,
and the impact of future information is equally important, so
this paper uses BiGRU to solve this problem. BiGRU consists
of two unidirectional and opposite GRUs. +e model in-
tegrates the information before and after the current state,
and the final output is the weighted summation of the output
results of the forward GRU and the backward GRU and is
linearly superimposed with the threshold. +e main cal-
culation formula of BiGRU is

h
(t)
f � GRU h

(t− 1)
, x

(t)
􏼐 􏼑,

h
(t)
b � GRU h

(t+1)
, x

(t)
􏼐 􏼑,

h
(t)

� αh
(t)
f + βh

(t)
b + c,

(17)

where h
(t)
f and h

(t)
b are the forward and backward GRU output

vectors for the current state, and β are the weight parameters
of the forward and backward GRU; c is the linear threshold.
+e BiGRU network structure is shown in Figure 3.

4.3.2. Attention Mechanism. Although BiGRU improves the
efficiency of information utilization to a certain extent, it still
has the problem that local features cannot be accurately
extracted when dealing with long-term sequence data.
+erefore, when building the model, this paper adds an
attention layer to the hidden layer to solve this problem.+e
attention layer further extracts the key information of the
time series by calculating the weight of the output result in
the BiGRU layer, thereby reducing the length of the output
result and improving the robustness of the model:

v
(t)
i � ustanh wh

(t)
i + b􏼐 􏼑,

α(t)
i �

e
v

(t)

i

􏽐
n
i�1 e

v
(t)

i

,

c
(t)

� 􏽘
n

i�1
α(t)

i h
(t)
i ,

(18)

v
(t)
i is the unnormalized attention score. +e higher the
attention score, the better the match between the input
vector and the target vector; us is the randomly initialized
attention matrix; w is the weight coefficient; b is the bias
coefficient; c(t) is the attention vector; h

(t)
i is the value

represented by the i-th output result at the t-th time.

5. Data Analysis

5.1. Data Sources and Descriptions. +is paper selects Au-
tomatic Fare Collection (AFC) data of Shanghai Metro Lines
1, 11, 2, 8, 9, 12, and 16 from April 1, 2015, to April 24, 2015,
to test the established subway station passenger flow pre-
diction model. +e dataset contains timestamps, station
names, and passenger arrival and departure records.

6 Mobile Information Systems



5.2. Station Clustering. Considering the large differences in
passenger flow data in different time periods, the original
data needs to be standardized first. Second, the optimal
number of clusters needs to be determined. Akaike Infor-
mation Criterion (AIC) and Bayesian Information Criterion
(BIC) are always used for trading off the complexity of the
clustering model and the goodness of fitting the data:

AIC � −2 ln(L) + 2k, (19)

BIC � −2 ln(L) + ln(N)K. (20)

L is the log-likelihood function in equation (4). K is the
number of clusters; N is the sample size.

+e second term in (19) and (20) is the penalty term. It
can be seen that the penalty term of BIC considers the
sample size, and the overall value is larger than that of AIC.
+erefore, BIC can more effectively balance the model ac-
curacy and complexity when the number of samples is too
large, preventing the model from becoming too complex.
Since 162 stations need to be clustered and due to the large
sample size, only BIC is used to determine the optimal
number of classifications. +e smaller the BIC, the better the
model classification effect. Set the number of clusters to a
range from 1 to 20, and take the number of clusters cor-
responding to the minimumBIC value. From Figure 4, it can
be determined that the optimal number of clusters is 5.

Secondly, use WOA to find GMM parameters for the
aggregated passenger flow data of 5 types of stations: the
number of humpback whales is 80, and the maximum

number of iterations is 500. Finally, the optimal initial
weights of each Gaussian distribution are 0.09, 0.35, 0.31,
0.09, and 0.16.
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Figure 3: BiGRU network structure diagram.
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Figure 4: Bayesian Information Criterion to determine the optimal
number of clusters.

Table 1: WOA-GMM vs. GMM.

Model AIC BIC
WOA-GMM −16764.0204 −788.7970
GMM −16562.1785 −586.9550
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Figure 2: GRU structure diagram.
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To illustrate the advantages and efficiency of theWOA,
we still use AIC and BIC as evaluation metrics to compare
the GMM and WOA-GMM. As shown in Table 1, the
model optimized by the WOA is smaller in both AIC and
BIC indicators, which proves its excellent improvement
effect.

Figures 5 and 6, respectively, represent the 24-hour
cumulative passenger flow changes in 5 clusters within
24 days. +e typical characteristics of these clusters of sta-
tions are shown in Table 2.

5.3. Decomposition and Noise Reduction of Station Passenger
Flow Sequence. Next, this paper takes the inbound passenger

flow of the first cluster of the station as an example to illustrate
the process of data decomposition and noise reduction.

Using CEEMD, the empirical mode decomposition
process of adding complementary white noise is carried out
step by step for the daily hourly inbound and outbound
passenger flow data of five clusters of subway stations.
Figure 7 represents the decomposition of the corresponding
data of the first cluster of subway station inbound passenger
flow into 10 IMF components, the last of which represents
the residual.

As shown in Figure 7, many of the components have
similar complexities. IMF1∼IMF5 have high complexity,
IM6∼IMF7 have lower complexity and a particular trend, and
IMF8∼R have obvious trends. However, conclusions based on
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Figure 5: +e inbound volume of 5 clusters.
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Figure 6: +e outbound volume of 5 clusters.
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observation alone are not accurate, so this paper uses sample
entropy (SE) to determine the complexity of these components.

Figure 8 represents the changing trends of inbound
passenger flow of the first cluster of the station, respectively.
Next, to reduce the training time and improve the model
prediction efficiency, this paper combines the IMF com-
ponents of the inbound passenger flow of various types of
stations into the combined components in Table 3 according
to the IMF components with similar complexity as shown in
Figure 8.

+e trend of the combined components over time is
shown in Figure 9. In this paper, the recombination com-
ponents Comp1 and Comp2 with high frequency and
randomness are regarded as high-frequency components;
the recombination components Comp3 with low frequency
and certain randomness are regarded as low-frequency
components; the recombination components Comp4 with
the lowest frequency are regarded as trend components. +e
assignment results are shown in Table 3.

5.4. Passenger Flow Forecasting Process. +is paper opti-
mizes BiGRU based on the attention mechanism, im-
plements it in Python, and uses the TensorFlow
framework to build the model. +e experimental hard-
ware device is configured as an 11th Gen Intel(R) Cor-
e(TM) i7-1165G7 with 16G memory. According to the
prediction module in the model process, the model pa-
rameters are first initialized. +e number of nodes in the
input layer is set to three according to the number of
auxiliary prediction variables (date, hour, subway station
type), and the number of hidden layers of the BiGRU-AM
network is selected to be two. Adam is used to contin-
uously adjust the hyperparameters of the BiGRU-AM
model in the iterative process until the error value is
small.

In the process of inbound passenger flow prediction
for the first station cluster, the Root Mean Square Error
(RMSE) is used to evaluate the prediction accuracy, and
its expression is shown in equation (21). +e smaller the

Table 2: Typical features of stations.

Number
of stations Passenger flow characteristics Representative stations Spatial characteristics of the station

Cluster1 15

+e number of such stations is small,
but the passenger flow is large. +e

morning and evening peaks of
passenger flow are obvious, and the
inbound volume in the evening peak
is higher than in the morning peak.

+e outbound volume in the
morning peak reaches an obvious

peak, and the inbound volume is still
large after 20 : 00.

Qibao Station, Shanghai Railway
Station, Zhongshan Park Station,

People’s Square Station, etc.

Most of these stations are subway
transfer stations, railway stations,

airport transportation hubs, or located
in the city center, which belong to the
city’s core business district. After the
evening peak, the passenger flow is still
relatively large, which further proves
that the commercial development

around these stations is relatively good,
and more people work overtime at

night and participate in entertainment
activities.

Cluster 2 57

+e number of such sites is large, and
the traffic is low. Compared with
other categories, the morning and
evening peaks of cluster 2 are not very
prominent, and the overall passenger

flow is relatively low.

Wild Animal Park Station,
Donglu Road Station, Zhongchun
Road Station, Lingang Avenue

Station, etc.

Such stations are mostly located in
underdeveloped areas, where buildings
are mostly nonresidential, nonoffice, or

in scenic spots.

Cluster 3 50

+e passenger flow of such stations
has apparent peaks in the morning
and evening. +e number of inbound
volumes in the morning peak is the

highest among several types of
stations, and the number of

outbound stations in the evening
peak is also larger.

Sanlin Station, Shanghai Indoor
Stadium Station, Century Park
Station, Beixinjing Station, etc.

+e areas where such stations are
located are primarily residential, and
some are located in the outer suburbs,
with many houses and relatively low
house prices. +erefore, many citizens
go to work during the morning rush
hour and leave work during the evening

rush hour.

Cluster 4 14

+e overall passenger flow of such
stations is low, and the inbound

volume in the morning peak is the
most obvious.

Shanghainan Railway Station,
Jiuting Station, Songjiang

University Town Station, Shendu
Highway Station, etc.

+is station is also surrounded by
residential areas, similar to the third
cluster, but the overall passenger flow is

low.

Cluster 5 26
+e morning peak departure volume
and evening peak arrival volume of
such stations are extremely obvious.

Dongchang Road Station, China
Art Museum Station, Hechuan
Road Station, Shangcheng Road

Station, etc.

+ere are many R&D and technology
buildings around such stations and rich

industrial parks.
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RMSE, the higher the prediction accuracy. Figure 10
shows the effect of setting the number of neurons in
the two layers in BiGRU on the prediction accuracy of
each combined component. It can be seen that when the
number of neurons in the two layers is 13 and 11, re-
spectively, the overall predicted RMSE reaches the
minimum. +e same method is used for the number of
neurons in the BiGRU layer of other clusters of inbound
and outbound passenger flow prediction models. Next,
choose the optimal learning rate with the optimal number
of neurons already determined. To simplify the model, a
unified learning rate is determined separately in the

prediction process of inbound passenger flow and out-
bound passenger flow. Taking the inbound passenger flow
as an example, Figure 11 shows the variation of the in-
bound passenger flow prediction accuracy with the
learning rate for each station cluster. It can be seen that
the RMSE is the smallest when the learning rate is 0.006.
Similarly, it can be found that the optimal learning rate
for inbound passenger flow prediction should also be set
to 0.006.

+is paper sets the step size to 20 and the batch size
to 110. According to experience, the number of neurons
in the attention layer is set to 64. In this process, the
optimal number of iterations for inbound and outbound
passenger flow and the number of neurons in the two
GRU layers in BiGRU are shown in Tables 4 and 5, re-
spectively. Among them, the number of iterations is the
average number of iterative predictions for each IMF
combination, and the ratio of the training set and test set
is 9 : 1.

In order to verify the validity of the BiGRU-AMmodel in
the prediction of subway passenger flow, experiments are
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Figure 7: +e first cluster of station inbound passenger flow IMF.
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Table 3: Grouping of IMF components of inbound passenger flow
at the first cluster of stations.

Components IMF Frequency and randomness
Component 1 IMF1, IMF2 High-frequency component
Component 2 IMF3, IMF4, IMF5 High-frequency component
Component 3 IMF6, IMF7 Low-frequency component
Component 4 IMF8, IMF9, R Trend component
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carried out based on the above data.+e prediction results of
the combined components prediction results are shown in
Figure 12. Figure 12 shows that the model’s prediction re-
sults for Comp1∼Comp3 are close to the true value, while
the prediction for Comp4 is slightly different from the true
value. It further illustrates the advantages of decomposing
the passenger flow series into more trending components. In
later chapters, we will further evaluate the model with more
accurate metrics.

5.5. Predictive Model Comparative Analysis. In order to
further illustrate the effectiveness of the overall model, after
classifying the stations, BPNN, LSTM, and BiGRU are first
selected for comparison. Secondly, the BiGRU model and
the BiGRU-AM model are selected to compare with the
CEEMD-BiGRU-AMmodel finally constructed in this paper
to prove the accuracy of the basic model and the effect of
model improvement.

+ere are many error evaluation indicators in subway
passenger flow forecasting. +is paper adopts the following
four commonly used error evaluation indicators: MAPE,
RMSE, Mean Absolute Error (MAE), and Coefficient of
Determination (R2). +e expression is as follows:
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Table 4: Inbound passenger flow prediction hyperparameter settings.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Average number of iterations 499 421 437 322 323
BiGRU hidden units 1 13 16 22 16 18
BiGRU hidden units 2 11 14 21 14 17

Table 5: Outbound passenger flow prediction hyperparameter settings.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Average number of iterations 278 251 486 522 503
BiGRU hidden units 1 13 16 22 20 18
BiGRU hidden units 2 11 14 21 19 17
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where n is the number of test set data; yi and 􏽢yi are the actual
and predicted values at a time, respectively; y is the sample
mean.

Among them, MAPE represents the difference between
the actual value and the predicted value as a percentage of
the predicted value itself, RMSE represents the average
difference between the predicted value and the actual value,
andMAE represents the average absolute difference between
the predicted value and the actual value. +e smaller these
three indicators are, the better the model prediction effect is.
R2 represents the proportion of the total variation of pre-
dicted passenger flow that can be explained by independent
variables such as station location, entry, and exit time. +e
larger the R2, the better the prediction effect of the model.

Figure 13 compares the forecasting effects of different
models for the first cluster of subway station inbound
passenger flow in a short period of time. It can be seen from
the figure that, compared with other models, the CEEMD-
BIGRE-AM model has the highest fitting degree to the
passenger flow sequence and is closer to the actual value. In
comparison, other models are more different from the actual
value. +e basic hyperparameters of the comparison models
in this paper are the same as those of the main model, and
the settings mentioned in Section 5.4 are the same.

Next, we will use the four model evaluation indicators
MAPE, RMSE, |R2, and MAE to comprehensively analyze
the prediction accuracy of different models. +e prediction
errors of different models for inbound and outbound pas-
senger flow are shown in Tables 6 and 7.

It can be seen from the comparison that the CEEMD-
BiGRU-AM model outperforms the other five models on
the four error evaluation indicators of MAPE, RMSE,
MAE, and R2. For predicting each type of passenger flow,
the model established in this paper has reached the
minimum in MAPE, RMSE, and MAE indicators and the
maximum in R2. Regardless of whether the overall pas-
senger flow of the station is large, the morning and
evening peak passenger flow is large, or the passenger
flow is small.

(1) BP neural network easily falls into local optimum,
resulting in problems such as gradient disap-
pearance. Although LSTM solves this problem, its
hidden layer only considers the impact of his-
torical information on the current input, and GRU
as a simplified version also has this problem.
BiGRU considers the equally important future
information by combining two GRUs in opposite
directions. Tables 6 and 7 show that the standard
BiGRU model outperforms the BP and LSTM
models in most prediction situations and metrics.
It verifies the superiority of using the BiGRU
model as the base model.

(2) +e model can extract local features more accurately
after using the attention mechanism to improve
BiGRU.+e BiGRU-AMmodel has been far superior
to the BiGRU, LSTM, and BP neural network models
for each station’s inbound and outbound passenger
flow prediction cluster. For the prediction of the

fourth type of station departures, the BiGRU-AM
model reduced 31.19%, 52.18%, and 27.71% inMAPE
indicators compared with BP neural network, LSTM,
and BiGRU, respectively.

(3) +e data becomes more stable after using the
CEEMD-SE model to decompose and reconstruct
the passenger flow time series data, and the pre-
diction accuracy is further improved. In terms of the
RMSE index, the station’s entry and exit prediction
accuracy are reduced by more than 40% on average
compared to BP and LSTM and increased by more
than 0.8% on average.

5.6. Statistical Testing of Predictive Models. Considering that
the above four evaluation indicators may have generalization
and randomness, this paper further uses the statistical test
method to verify the model’s overall prediction effect. In
order to verify the overall statistical significance of the
combined model proposed in this paper, the Friedman test,
Nemenyi test [37], and paired t-test [38] were used to verify
the differences between different models.

+e Friedman test can determine whether different
algorithms perform significantly on multiple datasets
without the need for normality assumptions. In this

Table 6: Prediction results of inbound passenger flow by different
models.

Model MAPE RMSE MAE R2

Cluster1 BP 0.5802 519.7456 329.7053 0.9685
LSTM 0.9802 486.2718 294.5146 0.9725
BiGRU 0.5616 347.8101 224.6894 0.9859

BiGRU-AM 0.2508 278.0797 181.2615 0.9910
CEEMD-SE-
BiGRU-AM 0.1846 106.7617 52.9222 0.9945

Cluster 2 BP 1.4894 90.0056 64.1910 0.9367
LSTM 1.3702 77.6200 58.8833 0.9529
BiGRU 1.3609 79.4832 58.3151 0.9507

BiGRU-AM 0.8673 76.7342 54.2109 0.9540
CEEMD-SE-
BiGRU-AM 0.5303 51.9745 35.6999 0.9789

Cluster 3 BP 0.5435 123.6597 89.2809 0.9763
LSTM 0.3719 74.5092 54.4306 0.9914
BiGRU 0.3369 74.4969 53.7010 0.9914

BiGRU-AM 0.4445 72.3535 50.8886 0.9919
CEEMD-SE-
BiGRU-AM 0.1388 22.1308 14.6956 0.9992

Cluster 4 BP 1.377 207.373 141.936 0.9840
LSTM 1.0932 151.2548 100.1705 0.9915
BiGRU 0.7577 133.337 96.8934 0.9934

BiGRU-AM 0.8194 116.7057 84.085 0.9949
CEEMD-SE-
BiGRU-AM 0.3983 113.671 57.7737 0.9952

Cluster 5 BP 1.213 245.1781 174.3473 0.9744
LSTM 0.9732 161.1152 110.4429 0.9890
BiGRU 1.2524 152.2723 103.4169 0.9901

BiGRU-AM 1.7635 147.832 98.4795 0.9907
CEEMD-SE-
BiGRU-AM 0.9436 138.6708 89.9303 0.9918
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section, this paper uses the inbound and outbound traffic
of each type of passenger flow as a whole to consider 10
sets of data sets and studies the differences between dif-
ferent models on the four measurement indicators MAPE,
RMSE, MAE, and R2, under the condition of a significance
level α � 0.05. +e null hypothesis is that there is no sig-
nificant difference in the performance of the five algo-
rithms, and the alternative hypothesis is that the
performance of the five models is significantly different. It
is necessary to sort each algorithm and its corresponding
evaluation index corresponding to each data, which set it as
1, 2, 3, 4, and 5 from the 1st to the 5th.

Due to the small sample size, it cannot be calculated
directly using the chi-square statistic, but the F statistic is
constructed from it:

τχ2 �
k − 1

k
·
12N

k
2

− 1
􏽘

k

i�1
ri −

k + 1
2

􏼠 􏼡

2
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(N − 1)τχ2

N(k − 1) − τχ2
,

(22)

k is the number of algorithms to be compared, which is 5
here; N is the number of datasets, 10 here. ri is the average
ordinal value of the i-th algorithm. τχ2 is the chi-square

statistic. τF is the F statistic and obeys the F distribution with
k-1 and (k-1) (N-1) degrees of freedom.

+e F-test here has a critical value of F0.05(4, 36) � 2.634
and a significance level of 0.05. +rough calculation, the p-
values (probability that the test statistic is greater than the
critical value) corresponding to different metrics are shown
in Table 8.

It can be found that, for all indicators, the p-values of all
indicators are much less than 0.01. +erefore, the null hy-
pothesis is rejected, and the prediction effects among the five
models are considered to be significantly different.

On this basis, it is necessary to continue to compare
whether there are significant differences between the two
models. In this regard, the Shapiro-Wilk test [39] is firstly
performed on the evaluation index corresponding to each
algorithm to judge whether it conforms to the normality
assumption. +e null hypothesis for this test is that the
data follow a normal distribution. So if the p-value is less
than 0.05, the null hypothesis is rejected, indicating that
the data are not from a normal distribution. Its test
statistic is

W �
􏽐

n
i�1 aix(i)􏼐 􏼑

2

􏽐
n
i�1 xi − x( 􏼁

2,
(23)

x(i) is the i-th smallest sample value in the data; x is the
average value of the sample; xi is the i-th sample value; ai is a
constant that meets certain conditions, which will not be
repeated here.

Next, using the Shapiro-Wilk test, it can be seen that,
among the four indicators, only the five models corre-
sponding to the RMSE after logarithmic transformation do
not reject the assumption of normal distribution. +e p-
values of the tests are shown in Table 9.

As can be seen in Table 9, most of the models have
p-values less than 0.05 for MAPE, MAE, and metrics.
+erefore, we performed a further test using Nemenyi’s test,
which does not require normality to be assumed. +e null
hypothesis is that there is no significant difference between
the two models, and the alternative hypothesis is that there is
a significant difference between the two models. +e statistic
is

C D � qα

��������

k(k + 1)

6N
,

􏽳

(24)

qα is the critical value of α of the Tukey distribution, where
α � 0.05 is taken and the value is 2.728. k is the number of
algorithms to be compared, which is 5. N is the number of
datasets, 10 here.

+e critical value is 1.9290 by calculation, and the av-
erage sequence value of the five models is shown in Table 10.
+e difference in mean ordinal values between the two pairs
is shown in Figure 14.

In the case of a small amount of data, the Nemenyi test
rejected the null hypothesis that the two models are in-
consistent. When the average ordinal difference between the
twomodels is only greater than the critical value of 1.929, the
null hypothesis is rejected, and there is a significant

Table 7: Prediction results of inbound passenger flow by different
models.

Model MAPE RMSE MAE R2

Cluster1 BP 0.5411 529.8081 354.0068 0.9624
LSTM 0.8076 580.7955 338.0679 0.9548
BiGRU 0.2570 393.9422 252.4433 0.9841

BiGRU-AM 0.6007 442.1145 207.9781 0.9843
CEEMD-SE-
BiGRU-AM 0.1971 330.0983 217.4731 0.9854

Cluster 2 BP 1.2569 84.7622 57.3832 0.9258
LSTM 1.2017 87.9346 63.8113 0.9202
BiGRU 0.7426 53.9097 40.0580 0.9700

BiGRU-AM 0.5117 49.3602 36.0384 0.9749
CEEMD-SE-
BiGRU-AM 0.4114 48.0017 35.4340 0.9762

Cluster 3 BP 0.4730 143.0040 103.4939 0.9525
LSTM 0.4425 92.7357 69.7211 0.9800
BiGRU 0.2982 85.0159 61.7147 0.9832

BiGRU-AM 0.2075 75.8107 54.9353 0.9867
CEEMD-SE-
BiGRU-AM 0.0631 20.1710 14.3087 0.9991

Cluster 4 BP 0.8992 145.4933 104.8215 0.9880
LSTM 1.2938 132.9566 99.9509 0.9890
BiGRU 0.8559 130.3113 87.7698 0.9904

BiGRU-AM 0.6187 118.6154 84.5365 0.9922
CEEMD-SE-
BiGRU-AM 0.2563 68.5438 41.4484 0.9974

Cluster 5 BP 0.8703 220.3739 151.0948 0.9844
LSTM 0.6068 140.2159 89.9998 0.9936
BiGRU 0.8587 132.4883 88.1245 0.9943

BiGRU-AM 0.5882 136.9004 88.4033 0.9940
CEEMD-SE-
BiGRU-AM 0.1644 53.1928 33.0957 0.9991
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difference between the two contrasting models. It can be
seen from Figure 14 that the combined model established in
this paper is significantly different from other models, and
the differences between the BiGRU-AM model and BP and
LSTM are also significant, while other models cannot di-
rectly reject the null hypothesis.

+en, for the ln(RMSE) that meets the normality as-
sumption, a paired t-test with the same null hypothesis is
performed between the two models, and its statistic is

t �
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��
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Figure 14: Nemenyi test of MAPE, MAE, and R2 (CSBA replaces the CEEMD-SE-BiGRU-AMmodel in the figure), (a) MAPE, (b)MAE, (c)
R2.

Table 10: +e average sequence value of five models.

BP LSTM BiGRU BiGRU-AM CEEMD-SE-BiGRU-AM
MAPE 4.4 3.9 2.9 2.8 1
MAE 4.9 4.1 2.9 2.0 1.1
R2 4.8 4.05 3.05 2.1 1

Table 9: p-value of the Shapiro-Wilk test.

BP LSTM BiGRU BiGRU-AM CEEMD-SE-BiGRU-AM
MAPE 0.1665 0.5567 0.4062 0.0219 0.0478
MAE 0.0243 0.0008 0.0073 0.0293 0.0007
RMSE 0.0090 0.0006 0.0053 0.0050 0.0037
R2 0.2390 0.0224 0.0060 0.0020 0.0370
ln(RMSE) 0.3250 0.0758 0.2861 0.5042 0.7861

Table 8: p-value of the Friedman test.

MAPE MAE RMSE R2

p-value 1.745e− 05 1.256e− 07 2.394e− 07 1.977e− 07
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d is the mean of the sample differences; N is the sample size
of 10; s is the standard deviation of the sample differences.

+e statistic (25) follows a t-distribution with 9 degrees
of freedom. It is obtained that the significance level is α �

0.05 the p-value of the paired t-test between the models, as
shown in Table 11.

At a significance level α � 0.05, the above test can prove
the following:

(1) +e model after comprehensively using CEEMD and
AM to improve BiGRU is significantly different from
other comparable models.

(2) BiGRU already has a significant difference compared
with BP and LSTM and has a significant difference
with BiGRU-AM under the significance level
α � 0.05.

(3) Combining the results of Tables 9 and 10, it can be
found that the model established in this paper is
significantly better than other comparative models.
AM and CEEMD have a noticeable improvement
effect on the BiGRU model.

6. Conclusion

+is paper proposes a clustering algorithm based on the
GMM and WOA. On this basis, CEEMD decomposes the
passenger flow sequence and then uses the AM-optimized
BiGRUmodel to predict the short-term passenger flow.+is
paper uses the AFC data of some lines of the Shanghai Metro
from April 1, 2015, to April 24, 2015, as a calculation ex-
ample. +is paper draws the following conclusions:

(1) Using WOA to optimize the parameters of the
GMM, the stations are divided into 5 categories
according to their spatiotemporal characteristics to
save computational costs.

(2) Use the CEEMD method combined with SE to
stabilize the time series and decompose and denoise
the time series of inbound and outbound passenger
flow in this method. +e actual measurement ex-
ample shows that, compared with the BiGRU-AM
model without decomposition and noise reduction,
the method improves the model’s measurement of
MAPE by an average of 49.92%.

(3) Using BiGRU as the prediction model’s main body
and the attention mechanism to capture local
features of long-term sequences, the model re-
duces the MAPE indicators by 31.19%, 52.18%,
and 27.71%, respectively, compared to BP, LSTM,
and BiGRU.

+is paper predicts the hourly inbound and outbound
passenger flow of subway stations in different geographic
locations.

6.1. Future Work. Some further research work needs to be
considered for the current research framework. For example,
a model is established based on the structure of the subway
station network to form a more complex spatiotemporal
system to improve the efficiency of this theoretical frame-
work and broaden its application field, but it may increase
the time cost. Of course, further verification of this theo-
retical approach is needed.
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+e data used to support the findings of this study are in-
cluded within the article.
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