Retraction

Retracted: Evaluation of Music Education in Universities and Colleges: Implementing Decision Tree Algorithm

Mobile Information Systems

Received 25 July 2023; Accepted 25 July 2023; Published 26 July 2023

Copyright © 2023 Mobile Information Systems. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article has been retracted by Hindawi following an investigation undertaken by the publisher [1]. This investigation has uncovered evidence of one or more of the following indicators of systematic manipulation of the publication process:

1. Discrepancies in scope
2. Discrepancies in the description of the research reported
3. Discrepancies between the availability of data and the research described
4. Inappropriate citations
5. Incoherent, meaningless and/or irrelevant content included in the article
6. Peer-review manipulation

The presence of these indicators undermines our confidence in the integrity of the article’s content and we cannot, therefore, vouch for its reliability. Please note that this notice is intended solely to alert readers that the content of this article is unreliable. We have not investigated whether authors were aware of or involved in the systematic manipulation of the publication process.

In addition, our investigation has also shown that one or more of the following human-subject reporting requirements has not been met in this article: ethical approval by an Institutional Review Board (IRB) committee or equivalent, patient/participant consent to participate, and/or agreement to publish patient/participant details (where relevant).

Wiley and Hindawi regrets that the usual quality checks did not identify these issues before publication and have since put additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research Publishing teams and anonymous and named external researchers and research integrity experts for contributing to this investigation.

The corresponding author, as the representative of all authors, has been given the opportunity to register their agreement or disagreement to this retraction. We have kept a record of any response received.

References

Research Article

Evaluation of Music Education in Universities and Colleges: Implementing Decision Tree Algorithm

Lurong Yang¹ and Jin Xiao²

¹Keimyung University, Dalseo-gu, Daegu, Republic of Korea
²School of Music and Dance, Zhengzhou Normal University, Zhengzhou, Henan, China

Correspondence should be addressed to Lurong Yang; 16748@sias.edu.cn

Received 3 March 2022; Revised 21 April 2022; Accepted 3 May 2022; Published 31 May 2022

Academic Editor: Hasan Ali Khattak

Copyright © 2022 Lurong Yang and Jin Xiao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The ensuring and improvement of value in advanced education is a perpetual cycle for the structure and development of college. Nature of music training guidance is remembered for school educating quality. The utilization of showing quality assessment instruments is vital because of music schooling’s one-of-a-kind concentration. This paper fosters a choice tree calculation-based assessment file framework for school MUSIC training instructing quality. Master meeting and scientific pecking order process are utilized to decide the assessment record and weight of framework for evaluating the nature of music training. To rearticulate it in an unexpected way, this paper centers around choice tree calculation stream and designs in the event that we examine information mining hypothesis overall. In order to show the value and quality evaluation framework, we established the “selection tree model” and adjusted the C4.5 calculation. In order to create a choice “Decision Tree Classifier,” we mainly establish a data mining algorithm. The model’s accuracy and materialness were checked by applying it to homeroom showing assessment information from 125 instructors. In the last investigation, key dynamic ascribes that affect how well music instruction educators are assessed and are featured, and in light of these discoveries, a sound exhortation is given.

1. Introduction

While talking about the showing quality assessment strategy and deciding how compelling is a music training program, a decent way is expected to examine and find out assessment pointers and as well as to notice, gather, investigate, and decipher assessment information. It is the main element in deciding how successful is a music instruction program. Mao Kun et al. utilized “proclivity map” innovation to produce beginning assessment pointers in light of a hypothesis for assessing showing quality in advanced education as a feature of assessment of the Colleges and Universities Music Education Teaching Quality. When analyzing the relationship between markers, we use the factor survey strategy, while when measuring indicators, we use the insight order method. Showing quality administration framework was created because of starter investigation of the Comprehensive Evaluation Decision Tree. At Tianjin University, this approach was utilized to survey the nature of educating for two successive years, i.e., four semesters [1]. One more exploration study from that very year investigated current procedures of utilizing choice tree innovation in an information digging framework for assessing music schooling quality. You ought to propose an assessment strategy for work out regimes utilizing choice tree innovation to guarantee that work out regimes are more fair, sensible, and powerful [2]. Understudies’ learning results are reflected by an assortment of target components that make up the nature of music instruction. Music training’s three-in-one objective framework plans to further develop understudies’ music wellbeing while likewise showing them athletic abilities and developing an uplifting outlook. Guide all those who may achieve these goals so that we can be separated from the essence of education. A few examinations have tracked down a solid connection between accomplishing music wellbeing advancement objectives and settling on the substance of an illustration, deciding showing objectives, as well as choosing instructing techniques.
Moreover, fortifying significant and troublesome parts of athletic abilities, orchestrating a sensible homeroom, and giving proper assessments are completely connected to a definitive objective of dominating athletic abilities [3]. Because of the systemicity and intricacy of school and college music training, we should initially seek after a far-reaching arrangement of assessment content and guarantee that the assessment content has a reasonable need in the assessment cycle; also, we should regard every collection during the time spent assessment. The arrangement of concentrated navigation and judgment depends on suppositions. A last proportion of objectivity quantitative assessment approach is regularly utilized. Be that as it may, because of the trouble and lack of definition, a quantitative evaluation cannot adequately catch and address the present state of music schooling instructing, so a blend of quantitative and subjective methods of appraisal will be utilized to gauge the nature of school music training from now on.

2. Relevant Work

Among many, the main area of information base exploration is information disclosure and information mining. Individuals all around the globe are beginning to understand its importance. Inmon et al. proposed the issue of information arrangement which was really taken care of by proposing the information stockroom in the beginning phases of information mining; the US government sent off the sequoia 2000 project as an information investigation instrument in gigantic data sets [4]. The rise of super enormous information bases was an aftereffect of Friedman’s advantage in information mining innovation, application, and study in 1997. Countless business undertakings seized this business activity. Banks, for instance, use corporate information [5] to all the more likely comprehend and dominate their clients’ notorieties, propensities, and shopper brain research and afterward change their market procedures as important to boost their benefits. The idea learning framework was quick to utilize choice tree innovation founding future choice tree learning calculations. In the last part of the 1970s, Quinlan thought of the scandalous ID3 calculation. Property characterization was utilized to decide the split trait involving the idea of entropy from data hypothesis without precedent for this calculation. For managing enormous scope data set troubles, this procedure enjoys a specific explicit benefit. Be that as it may, there are a few clear blemishes in it. Ascribes with several characteristics are preferred than those with a solitary worth when choosing split hubs. Later, Quinlan better calculated and concorded the C4.5 calculation that is generally utilized today. For choosing split ascribes, the C4.5 calculation utilizes a data gain proportion gauge, which makes up for the ID3 calculation’s failure to deal with persistent qualities and missing qualities generally. Mehta et al. proposed the SLIQ arrangement calculation in the late 1990s, which was rapid and customizable [6]. The proposed SPRINT computation is a versatile and equal inductive choice tree calculation like SLIQ [7]. Rastogi et al. introduced the PUBLIC calculation viewpoint of “incorporating building/trimming” [8]. The information mining research of China falls behind that of different nations. The University of Tsinghua is presently contending with the Fudan University and more recognized Chinese universities and colleges to finish critical hypotheses and applied data mining research [9]. Because of these discoveries, our nation has gained fast headway around here. In China, choice braid has been broadly examined and investigated, and the outcomes might be found in the accompanying regions: improving accuracy is the principal objective, reducing the quantity of choices accessible is the subsequent goal, combination of others innovations with your own is the third methodology, and the fourth stage is programing acknowledgement. Accepting choice tree softrization is one of the exploration bearings. The usage of information mining innovation in school and college showing organizations has progressed slowly in my country [10].

3. Methodology

3.1. Decision Tree Details

3.1.1. Introduction. Being an inductive learning strategy, decision tree utilizes a bunch of unorganized and sporadic occasions to derive the grouping principles of the articulation type of the choice tree [11, 12]. The decision tree is a tree structure that resembles the flowchart made by ordinary people in many ways. Each area hub corresponds to a certain value, and the objective variable’s standard runs from the root hub to the leaf hub.

3.1.2. Establishing. The age of tree is the result of steady improvement. We should continuously separate and divide the preparation set. Parting occurs in stages, beginning at the tree’s root and progressing to the top. To begin with, in the first example informational collection, the ideal characteristic is picked as the split trait of the root hub in view of a particular split property as the assessment rule. At the same time, the branch’s limit is picked as the best parted mark of the pertinent split quality. According to the selected part attributes, we split the key parts. The basic sample set is many disjoint subsets, which can produce different branch centers. Parting of each recently created youngster hub is done similarly until all of the leaf hubs have been produced [13].

3.1.3. Metrics. Trait determination measurement is a choice parted model and involves a center situation during the time spent decision tree development. The choice tree ID3 calculation utilizes “data gain” as characteristic determination metric [14]. The meaning of data gain is as per the following.

\[I(s_1, s_2, \ldots, s_n) = -\sum_{i=1}^{n} \frac{s_i}{n} \log_2 \frac{s_i}{n} \]

Suppose attribute A possesses V values. Attribute A may be used to divide data set S into v subsets \(\{s_1, s_2, \ldots, s_v\} \). The
information value then produced by splitting the sample with A is as follows:

\[
E(A) = \sum_{j=1}^{v} \frac{s_{1j} + s_{2j} + \ldots + s_{nj}}{s} I(s_{1j}, s_{2j}, \ldots, s_{nj}).
\]

(2)

The information value is reduced by splitting data set with attribute A representing the obtained information and advantage of A attributes.

\[
\text{Gain}(A) = I(s_1, s_2, \ldots, s_s) - E(A).
\]

(3)

The selection metric [15] is applied by the decision tree C4.5 algorithm. The expression of the information gain rate is as follows:

\[
\text{GainRatio}(A) = \frac{\text{Gain}(A)}{\text{splitInfo}(s)}
\]

(4)

3.2. Consistency Check. In order to make the best judgment with a moderate single reference and obtain different balance, the most important value of the eigenvalue of each basic organization and its related eigenvector is solved in this way, which is the key data collection from the recording layer to the target layer. The specific advances are liable to first deal with the most outrageous “eigenvalue \(\lambda_{\max} \)” of the judgment lattice A and later to utilize the recipe A\(\omega \) = \(\lambda_{\max} \) \(\omega \). Settle the part vector \(\omega \) contrasting with \(\lambda_{\max} \). Later standardization, \(\omega \) is situating heap into general meaning of the relating part in a comparable level to a variable in the earlier level [16].

3.2.1. Testing Consistency. It is to assess the consistency of the matrix. Despite the fact that it is difficult to require all decisions to be totally predictable, the decisions ought to be made generally steady. Thus, checking the reliability and consistency of the “judgment matrix” is important. Let us compute the consistency file CI of “matrix A.”

\[
CI = \frac{\lambda_{\max} - n}{n - 1}.
\]

(5)

Equation (5) shows that the order of the judgment matrix is represented by \(n \). The value of CI will be zero (CI = 0) when A possesses complete consistency. The consistency of matrix A will turn worse and worse as the value of CI gets larger and larger. To ensure that the matrix is consistent, the comparison between CI and the average random consistency index RI is necessary. Table 1 shows the given RI value for the judgment matrix of order 1–9.

RI = \(\sum_{i=1}^{n} a_i \text{RI} \).

(6)

In (7), \(\text{RI} \) is considered the “average random consistency test index of the B layer” that corresponds to \(a_i \).

\[
\text{CR}, \text{CR} = \left(\frac{CI}{RI} \right)
\]

(8)

Likewise, when CR \(\leq 0.1 \), it is perceived that the computation consequences of the complete positioning have agreeable consistency.

3.4. Collection of Data.

(i) Participants. Twenty-five (25) random teachers are chosen with young, middle-aged, and elderly bearing positions like assistants, lecturers, and professors. Moreover, 35 students were also chosen randomly from each teacher’s class. For evaluation, the teacher music evaluation form was used.

(ii) Data Collection. Mostly questionnaire survey method is used in a project’s research process which involves the issuing and recovery of questionnaires, often no less than 70% of the total number issued is the specific percentage; otherwise, the evocativeness of information is not achieved. The questions in the questionnaires about the items can be met and replied at any time. A total of 3824 student questionnaires were delivered and 3658 copies were recovered in this study.

(iv) Data Processing. Individual credits of instructors, such as age, qualification, proficiency, and the experience of the understudies in class, have an influence on the character of the educator’s study hall instructing, according to some research. The data of the Office of Academic Affairs’ “educator’s fundamental data table JSJBXX” and the table “JSKTPJ” are combined, and result is saved in the table JSPIJXX.
The current section mostly depicts the plan cycle of an instructor’s homeroom, including a quality assessment file, as well as the information collection and handling process. Above all else, the master interview technique is embraced, utilizing the specialists’ expert experience and information, and the first markers are changed by the approach to requesting feelings, and lastly the homeroom showing quality assessment arrangement of schools and colleges is laid out.

4. Result

4.1. Teaching Assessment. Prehandled table JSPJXX is used for the preparation of test informative collection using the choice tree calculation to build out a choice tree model for the assessment of school instructors’ study hall exhibiting quality and focus its characterization criteria. The following are examples of explicit advances:

1. In the preparation set, the data entropy of the characterization ascribes. To begin, use the equation to determine how the dates are categorized for the preparation set and then use the data entropy to determine the data gain rate of each characteristic. The entire test amount is 80 in the preparatory informational index. The quantity of tests with astonishing order credits is 23, the quantity of tests with great arrangement ascribes is 25, the quantity of tests with qualified grouping ascribes is 23, and the characterization ascribes are bad, and the quantity of tests is 9, according to the report. As a result of equation (1), we get

\[I(S_1, S_2, S_3, S_4) = -\frac{23}{80} \log_2 \frac{23}{80} - \frac{25}{80} \log_2 \frac{25}{80} - \frac{23}{80} \log_2 \frac{23}{80} - \frac{9}{80} \log_2 \frac{9}{80} = 1.913. \]

(9)

2. Ascertain the data entropy of the subset separated by each property estimation. To start with, take the estimation of the subgroup data entropy of the “instructing age” trait for instance. There are three qualities for the showing age property, and here it is significant to ascertain the data entropy for the subgroup of each characteristic worth. If “educating age” is “high,” there are 7 information tests for phenomenal study hall showing execution, 6 information tests for good homeroom showing execution, 3 information tests for qualified homeroom showing execution, and 0 for unfortunate study hall instructing execution. Compute with formula (2),

\[I(S_{11}, S_{12}, S_{13}, S_{14}) = -\frac{7}{16} \log_2 \frac{7}{16} - \frac{6}{16} \log_2 \frac{6}{16} - \frac{3}{16} \log_2 \frac{3}{16} = 1.524. \]

(10)

Lay out the root hub of the choice tree. As per the estimation above, the request for the data gain pace of each characteristic is as per the following: the basics include showing influence, mindset and strategy. Degree and title can show age. According to the “C4.5 calculation,” the ideal arrangement is to use the “understudy base” with the highest test property data gain rate as the root hub of the choice tree in the estimation findings. As a result, the “understudy establishment” is used as a test characteristic in the construction of a choice tree, and the “understudy establishment” is designated as the choice tree’s root hub. As shown in Figure 1, the two sides of “substitute organization” are great and general respectively, and keeping in mind that partitioning every subset into branches similar methodologies is applied to relate two qualities and branches.

4.2. Pruning. Due to the lack of information, low and long-term correlation, and long-term unbalanced branches of the selection tree, the scale of the conclusion tree is too large and the processing system is complex. We should disconnect the choice tree appropriately. In order to cope the issue of small conceivability and relevance of choice tree, we use post-pruning strategy to prune it [17–20]. The purpose of choice tree pruning is to remove a leaf hub from a subtree. It should be replaced; in case, a verdict determines that the misclassification proportion of its subtree is larger as compared with misclassification proportion of a single leaf.

4.3. Test of Classification. The current study included fifty tests information for assessment as well as for correlation. The results demonstrate that sufficient amount of assessments of music schooling quality examination approach, as determined by the decision tree calculation, is 46, while the preposterous number is 4. Figure 2 shows the correlation, and the pass rate is 92%, as displayed in Figure 3.

The above examination tests obviously recommend that the choice tree model has a high expectation precision which showed that it was incredibly sensible to develop and plan the choice tree model investigated in this review. Simultaneously, providing the obtained information test size is sufficiently large, the exactness rate will also improve, and the use esteem in commonsense applications will increase.

The study takes on “choice tree C4.5 calculation,” utilizes “SQL Server” to lay out an information base, interfaces in MATLAB, lays out a choice tree model for assessing the nature of music instruction in schools and colleges, and utilizing present pruning strategy on prune the choice
the utilization of choice tree calculation in school music education is progressively expanding. The discoveries additionally show the chance of the interaction. In the following work, it is important to expand the advancement and give achievable ideas to school music training through this technique.

Data Availability

On reasonable request, the corresponding author will provide the datasets used and analyzed during the current work.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

References

Tables and Figures

<table>
<thead>
<tr>
<th>Evaluation situation</th>
<th>Sample situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation pass rate</td>
<td>50</td>
</tr>
<tr>
<td>Evaluation failure rate</td>
<td>45</td>
</tr>
</tbody>
</table>

Figure 2: Evaluation results comparison.

Figure 3: Rate chart of evaluation qualification.

5. Conclusions

Choice tree computations have recently been used in a variety of industries. For example, it was first used for military logical testing before gradually expanding it into industries such as clinical benefits, corporate money, and retail. This work assembles a choice tree model in view of the nature of school educators’ music instruction and directs research on the strategies for assessing the nature of school instructors’ music instruction utilizing the C4.5 choice tree calculation in information mining innovation, while the latest things show our unmistakable acknowledgement that
[19] Y. Zhang, Research on Decision Tree Classification and Pruning Algorithm[D], Harbin University of Science and Technology, China, 2009.
[20] H. N. Wei, Comparison of Decision Tree Pruning methods[J], Journal of Southwest Jiaotong University, no. 01, Chendu, China, 2005.