
Research Article
FPGA-Based Real-Time Embedded Fish EmbryoDetection System

Mengqi Wang ,1 Guofu Feng ,1 Ming Chen,1 Ruijuan Ye,1 and Yaohui Wang2

1Key Laboratory of Fisheries Information, Ministry of Agriculture and Rural A�airs, Shanghai Ocean University,
Hucheng Ring Road 999, Shanghai 201306, China
2Nantong Long Yang Aquatic Company, Haian 226600, Jiangsu, China

Correspondence should be addressed to Guofu Feng; g�eng@shou.edu.cn

Received 17 August 2022; Revised 6 September 2022; Accepted 19 September 2022; Published 7 October 2022

Academic Editor: Jiafu Su

Copyright © 2022MengqiWang et al. is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In today’s aquaculture industry, the period of �sh embryos needs to be detected in real time because di�erent periods of �sh
embryos require di�erent environments for their cultivation. e paper proposes an FPGA-based real-time embedded �sh
embryo detection system to solve the problems of today’s �sh embryo period detection, which consumes a lot of human resources
and has low accuracy. Based on the selection of YOLOv3 as the basic model, this paper combines model optimization and
hardware acceleration to make the whole system achieve the e�ect of real-time detection.With only a 4.23% reduction in the mAP
value of the model, the inference speed of the model was improved by nearly 150%. Finally, we achieved 34.1 fps of real-time �sh
embryo detection on a 100MHz FPGA chip, while having 82.49% mAP, and the whole embedded system only consumed 2.524w
while running. e results show that the FPGA-based real-time �sh embryo detection system proposed in this paper is fully
capable of meeting the needs of today’s aquaculture embedded devices. It is bene�cial to promote the transformation of �sh
embryo analysis from traditional manual methods to AI-based embedded devices and facilitate the rapid analysis of �sh embryos.

1. Introduction

Fish embryonic development has always been an extremely
critical aspect of aquaculture. It is crucial for the contin-
uation of rare �sh species, high yield breeding, and sus-
tainable development of �shery resources [1]. Since a
mismatched culture environment can have a signi�cant
impact on embryo development, mainly in terms of sur-
vival rate and malformation rate, real-time �sh embryo
detection results are needed to adjust the corresponding
culture environment [2–4]. Because �sh embryos are very
small before they are fully developed, the traditional
method is to manually operate a microscope to observe the
growth of �sh embryos [1]. e approach has many
problems, such as the di�culty of deploying equipment in
�sh culture greenhouses, the experience gap between an-
alysts that a�ects the accuracy of identi�cation, and the
di�culty of analyzing directly in the culture environment.
 erefore, automation and miniaturization of equipment
are the main research directions for �sh embryo detection
in the future [5, 6].

It is di�cult to achieve good results in aquaculture by
relying only on embryo analysis by human eyes, so it is
clearly not feasible to spend a lot of human resources to
perform embryo analysis. Arti�cial intelligence would be a
good solution to solve the problem in traditional methods.
In 2017, Ishaq et al. demonstrate the potential of a deep
learning approach for accurate high-throughput classi�ca-
tion of whole-body zebra�sh [7]. In 2019, Rauf et al. develop
a framework based on improved CNN to classify the �sh
species [8]. In 2021, Naderi et al. develop CNN-based
framework for cardiac function assessment in embryonic
zebra�sh from heart beating videos [9]. With the widespread
use of arti�cial intelligence in cytology, bioinformatics, and
medicine [10–12], embryo detection in aquaculture and
academia is gradually experimenting with the approach.
Qian et al. [13] established a microinjection system for
detecting zebra�sh embryos using CNN. However, the
method is more suitable for deployment in the laboratory
and cannot be directly applied to aquaculture. Xu et al. [14]
built a Drosophila embryo detection framework using
multifeature fusion (MFF) CNN on GPU. Dirvanauskas

Hindawi
Mobile Information Systems
Volume 2022, Article ID 8021288, 15 pages
https://doi.org/10.1155/2022/8021288

mailto:gffeng@shou.edu.cn
https://orcid.org/0000-0001-8026-1072
https://orcid.org/0000-0002-6390-2066
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8021288

et al. [15] used CNN to classify embryonic development. ,e
above studies are CPU based for both classification and
detection tasks for CNNs and use GPUs for acceleration. In
environments such as greenhouses for aquaculture, the
approach may make it difficult to deploy equipment directly
to the field due to various uncertainties. ,e conventional
CPU+GPU architecture is difficult to fully meet the needs of
aquaculture due to various instrument failures in environ-
ments such as greenhouses due to temperature and
humidity.

Recently, field programmable gate arrays (FPGAs) have
attracted increasing attention from researchers because of
their excellent performance, high energy efficiency, fast
development cycles, and strong ability of refactoring
[16–18]. Although GPUs outperform FPGAs in terms of
inference efficiency, dedicated devices made of FPGAs
significantly outperform GPUs in terms of power con-
sumption. Such characteristics make FPGAs a better choice
for embedded devices [19–21]. In addition, FPGAs can
design camera devices directly into the programable logic
(PL), allowing FPGAs to process video streams directly with
near-no latency [22]. And a series of modern chips repre-
sented by ZYNQ make up for the weak logic processing
power by embedding ARM processors in FPGAs, fully
meeting the needs of deep learning in terms of flexibility
[17, 23].

2. Related Work

To the best of our knowledge, we are not aware of any
implementation of embryo detection on FPGA.

Nowadays, there are indeed many researchers who have
achieved some results in the intersection of FPGA and other
disciplines. Zhao et al. [24] built an FPGA-based underwater
image recognition system. ,e system successfully deploys a
convolutional neural network on Xilinx’s ZYNQ7035 chip.
Wei et al. [25] complete an FPGA-based remote sensing
image classification system. Luo and Chen [26] built an
FPGA-based defect detection system for additive
manufacturing, and they used a binarized neural network
(BNN) to turn the computational part of the neural network
into the most suitable FPGA bit operation. Al Koutayni et al.
[27] built the first CNN-based gesture recognition system on
ZYNQ. However, the above approach does not take into
account the optimization of the model itself, and since the
system itself only deals with simple classification problems, it
is only necessary to deploy themodel to the FPGA. However,
if the model structure or the data type of the model can be
changed to directly reduce the computation of the model
itself, the inference speed of the model will be significantly
improved.

To solve the above problems, we propose an FPGA-based
embedded system to achieve real-time detection of fish
embryos. ,e embedded system uses a combination of
hardware and software to improve the inference speed. We
first performed channel pruning, layer pruning, and INT4
quantize on the pretrained model. After pruning, the model
is retrained to fine-tune it. In quantization, the TQTmethod
is used to increase the inference speed of the model with as

little loss of accuracy as possible. After completing the
optimization of the model, we designed an efficient hard-
ware architecture on ZYNQ.,e architecture uses FPGAs to
implement the computationally intensive part and an ARM
CPU to implement the logic control part. By deploying the
optimized model to this structure, we have accomplished the
detection of fish embryos in real time.

3. Software Design Process

3.1. YOLOv3-Based Fish Embryo Detection. ,e target de-
tection model chosen for the paper is the YOLOv3 model
proposed by Redmon [28]. YOLOv3 was chosen as the final
model for our implementation of embryo detection. Because
compared to YOLOv4 and YOLOv5, the accuracy of
YOLOv3 is not as good as these two models, but YOLOv3
gets the simplicity of the network model and higher in-
ference speed with the cost of some accuracy on the data set
relevant to this application. For embryo detection tasks with
a small number of classifications and large of image simi-
larity, the accuracy of YOLOv3 is also fully capable of
handling the corresponding needs. Faster R-CNN has higher
accuracy but slower inference speed. MobilenetV3 has faster
inference speed but poorer performance for small target
detection. ,e YOLO series, which combines inference
speed and accuracy, is more suitable for deployment on
FPGA platforms to accomplish the goal of real-time embryo
detection than the previously mentionedmodels [22, 29, 30].

Figure 1 illustrates the network structure of YOLOv3.
YOLOv3 adds a BN layer and a LeakyReLU layer [31] after
each convolutional layer in the network. ,is structure is
called DBL (DarknetConv2D+BN+LeakyReLU). ,e DBL
structure is the basic component of the YOLOv3 network. As
seen in Figure 1, two DBLs form the Res structure by direct
connection and hop-level connection. Five res structures
and one DBL structure form the backbone of YOLOv3. ,e
input image size of YOLOv3 is 416× 416× 3. ,ere are three
outputs in traditional YOLOv3 with feature map depths of
255 and an image edge ratio of 13 : 26 : 52. ,e depth of each
output feature map is based on the bounding box of the
YOLO algorithm.

3.2. YOLOv3 Optimization Strategy for FPGAs. Since
deploying the entire YOLOv3 model directly to the FPGA
would put a huge strain on the memory space and com-
putational resources of the entire system. YOLOv3 has 52
convolutional layers. Direct deployment without any opti-
mization of the model will make the network inference time
much higher than the expected time. ,us, in the paper,
model pruning and model quantization of YOLOv3 are
chosen to reduce the calculation of the network. ,e process
of YOLOv3 model optimization is given in Figure 2. Fol-
lowing the training of the initial neural network, the model
will be pruned. After the pruning of the model, the accuracy
lost by the pruned model is compensated by fine-tuning
operations. In this paper, we choose to use the original data
set to retrain the pruned model again. ,en, fine-tuning
operations are performed to compensate for the lost

2 Mobile Information Systems

accuracy of the model after pruning. ,e approach taken in
this paper is to use the original data set to train the pruned
model again. Finally, the whole model is quantified into the
INT4 model. ,e quantized YOLOv3 model will be more
suitable for computing on FPGAs.

3.2.1. Pruning of YOLOv3. ,e pruning operation for
convolutional neural networks is classified into layer
pruning and channel pruning. ,e pruning of the network
model can reduce the computation of the model and im-
prove the inference speed of the model. Traditional pruning
is mostly based on the size of the model’s weights. ,is is not
suitable for YOLOv3, which has an extremely large number
of weight parameters. In order to achieve better effect, a
pruning method based on BN layer scaling factor is used in
this paper. Since more than 90% of the operations of the
convolutional neural network are done in the convolutional
layer, the importance of the convolutional layer in the
network should be considered when pruning the model. In
YOLOv3, the basic unit is the DBL structure, in which the
batch normalization (BN) layer plays the role of accelerating
the convergence of the network and controlling the oc-
currence of the overfitting phenomenon. In the DBL
structure, the BN layer is after the convolution layer and
before the activation function LeakyReLU. Its calculation
formula is as follows:

xout �
c xconv − μ(
��
σ2

+ 0.000001

+ β . (1)

In formula (1), μ is the mean value of all input x in an
input batch; c is called the scaling factor; σ2 is the variance; β
is the bias; and xconv in channel c is the computed result of the
convolution layer output in channel c of the input, which can
be expressed as

xconv in channel c �
n

i�0
xic ∗wic(. (2)

`In equation (2), wic is the weight required in the
convolution operation and is stored in the corresponding
weight file. As seen from equation (1), the result of the
convolutional layer outputs is directly affected the scaling
factor c, and the magnitude of c can be understood as the
importance of the convolutional layer output result in the
next round of operations. ,e larger the scaling factor c is,
the more important its corresponding channel is in the
overall DBL structure. In order to make the distribution of
the scaling factor c in the DBL structure more suitable for
the pruning operation, we add the scaling factor c to the
loss function of the model and perform sparse training
again on the already trained model. ,e formula is as
follows:

416×416×3
13×13×255

26×26×255

52×52×255

DBL

DBL

DBL

DBL

up-
sample

up-
sample

concat

concat

DBL

DBL conv

DBL conv

DBL conv

y1

y2

y3

res1 res2 res8

Darknet-53 without FC layer

res8 res4

DBL*5

DBL*5

DBL*5Res_unitDarknetconv2D_BN_Leaky (DBL)

= =DBL DBL DBLconv BN Leakyrelu res ADD

Figure 1: Network structure of YOLOv3.

Initial network Model pruning Model quantization Optimized model
(INT4)

Pruned model

Model pruning

Finetune

Parameter
quantization

Activation
Function

quantization

Figure 2: Model optimization process.

Mobile Information Systems 3

Loss � Loss(w) + λ
c∈Γ

Regg(c) . (3)

In formula (3), Loss(w) is the original loss function of
YOLOv3; Regg(c) is the sparse regular term; Γ is the set of c;
and λ is the sparsity factor. In this paper, stochastic gradient
descent (SGD) optimization is used, and the gradient cal-
culation process can be written as

∇c∗ � ∇cλ
c∈Γ

Regg(c). (4)

Assuming that the learning rate is η, the parameters in
equation (4) can be updated as follows:

c′ � c − η∇c∗, � c − ηλ∇c
c∈Γ

Regg(c). (5)

From equation (5), it is clear that calculating the amount
of variation of the c parameter only requires calculating the
partial derivatives of the regular terms and multiplying them
by the corresponding sparsity factor ηλ throughout the
training process of the network. After the sparse training,
channels with relatively small absolute values of c, i.e.,
channels with c parameters close to 0, are removed to
perform channel pruning on the model. In this paper,
channels with scaling factor c less than 10−3 are removed.

Figure 3 shows the specific operation of channel pruning.
In the convolution operation from layer j to layer k, channel
2 and channel 4 in the convolution layer j will be removed
because their value of the scaling factor c is smaller to other
channels and less than 10−3.

After the channel pruning, the YOLOv3 still needs to be
layer pruned due to insufficient compression of the model.
Since the smallest unit in the YOLOv3 structure is the DBL
structure, the value of all c on the BN layer can also reflect
the importance of the DBL structure in the whole network.
,e c of all remaining channels in each layer is averaged, and
the average value is used as a criterion to rank the calculation
importance of all DBL structures at the time of deletion. A
pruning rate will be set to remove unimportant DBL
structures in the network. As shown in Figure 4, layer
pruning was performed to cull the model DBL structure
based on the mean value of c. DBL2 and DBLM with smaller
mean values of c were removed.

After the whole pruning operation is completed, a
narrower, more compact model is obtained, which needs to
be fine-tuned since the accuracy of this model will neces-
sarily decrease. In this paper, the original data set is used as
the fine-tuned data set to train the pruned model for another
50 epochs with the original loss function and 1% learning
rate. After fine-tuning, the pruned model will be quantified.

3.2.2. Quantification of the Pruned YOLOv3. Traditional
quantization methods used in FPGAs generally choose to
convert the entire floating-point model into an 8 bit fixed-
point model (INT8). ,is type of quantification method
generally discards the decimal values directly in the quan-
tification process [32]. However, such an approach leads to a
significant decrease in the accuracy of the network model. To

minimize the loss of model accuracy due to quantization
while increasing the speed of inference as much as possible,
the trained quantization threshold (TQT) method is used in
this paper to transform the already pruned single-precision
floating-point model (FP32) into a 4 bit fixed-point model
(INT4) during the training process [33], where the quan-
tization function q(x; s) can be written as

q(x; s) � clip p⌊
x

s
⌋; n, p · s. (6)

In formula (6), x is the value to be quantified, and s is
called the quantization scale factor. When x is a signed
number, n � −2b−1, p � 2b−1 − 1, and s � 2⌈log2 t⌉/2b−1. b is
the bit width of quantification results. t is a trainable pa-
rameter, which is used as a quantization threshold in
equation (6). It is usually set to the maximum of the weights.
clip (a; b, c) function is used to restrict a to the middle of b,
c. Let a equal c when a is greater than c, and let a equal b

when a is less than b, ⌊x⌉, i.e., rounding the input x. Since the
quantization scale factor s is a power of 2, it is more friendly
to hardware, and the pruning operation in the previous
section has removed some of the outliers and promoted a
tighter distribution of weights and activation functions,
which makes the quantized results more accurate.

As mentioned before, the threshold t is a learnable
parameter in training, and log2 t is used to control the range
of the parameter after quantization. ,e gradient of t can be
obtained by the chain rule. ,e gradient is calculated as
follows:

∇ log2 t()q(x; s) ≔ s · ln 2 ·

x

s
 −

x

s
, n≤

x

s
 ≤p,

n,
x

s
 < n,

p,
x

s
 >p.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

,en, the gradient of x can be obtained as

∇xq(x; s) ≔
1, n≤

x

s
 ≤p,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

where we define the gradient of the integrable function [x] as

z

zx
[x] �

z

zx
[x] � 1. (9)

In this paper, Algorithm 1 is used to quantify the entire
network during the quantization training.

4. Hardware Design Process

4.1. General Architecture. In the paper, a heterogeneous
architecture is used to implement the whole system. ,e
architecture can be divided into processing system (PS) and
programable logic (PL). ,e PS part consists of a CPU that
can be used as a controller and an off-chip memory that is

4 Mobile Information Systems

used to store data; the PS is responsible for the scheduling
and storage of the entire system. ,e PL part consists of
several custom IP cores implemented on FPGAs, each of
which is responsible for implementing a network layer
function; the PL part is responsible for the computational
part of the system. An entire system is implemented on
Xilinx ZYNQ chip. Figure 5 illustrates the overall archi-
tecture of the system.

,e processor is an ARM processor embedded on the
chip. DDR is off-chip memory. DMA indicates that the data
transfer method between memory and CPU and FPGA is
direct memory access. ,e AXI bus is used for data and
control signal transfer. ,e CNN accelerator is a neural
network computing part composed of multiple IP cores. To
transfer large amounts of data, the off-chip DDR is con-
nected to the CNN accelerator via the AXI4-STREAM bus.
,e system uses a DMA controller internally to take care of
address reading and writing. DMA0 divides the separate
read and write data ports, each of which is 64 bits, and is
responsible for transferring the feature maps and weights
that the CNN accelerator needs to compute, as well as for

writing the results of the CNN accelerator’s computation to
memory. Since DMA1 is only responsible for transferring
the results of the previously obtained convolutional layer
operations, DMA1 is only responsible for moving data from
the main memory to the slave memory, which is located
inside the CNN accelerator and is used for the layer-hopping
accumulation operations inside the accelerator. ,e on-chip
processor coordinates system operation via the AXI4-Lite
bus. ,e AXI bus between the processor and the CNN
accelerator can also be used to transfer parameter types, and
since the model in this paper has been quantized in the
previous section, only INT types and bool types are
transferred.

4.2. CNN Accelerator

4.2.1. Overall Architecture of the CNN Accelerator. ,e in-
ternal design of the CNN accelerator is shown in Figure 6. To
enable the full functionality of the network structure in
YOLOv3, the IP cores in the CNN accelerator contain:
convolutional layer IP, UpSampling layer IP, YOLO layer IP,

Cj1

Ck1

Ck2

Ck1

Ck2

Cj2
Cj3
Cj4

Cjn

Cj1

Cj3

Cjn

... ...

1.6714
0.0001
1.2362
0.0002

1.1139

......

1.6714

1.2362

1.1139

prune

γ γ

Figure 3: Channel pruning.
... ...

... ...

1.6714DBL1
DBL2
DBL3

DBL1

DBL3

DBLM
DBLN DBLN

0.5264
1.2362

1.1139

1.6714

1.2362

1.1139
0.3142

prune

γγ

Figure 4: Layer pruning.

Full precision inputs, weights and bias, outputs: X, W, bias
Bit width: for inputs and weights, b� 4, for bias, b� 8
Output: Y, predict number: Label

(1) Calculate q(x), q(w), q(bias) according to equation (6)
(2) Y� Forward(q(x), q(w), q(bias))
(3) Calculate losses and regularize all learnable parameters: L� loss (Y, Label)
(4) According to Equation (8), calculate gradient: ∇XL � zL/zq(x)∗ zq(x)/zX, zq(x)/zX

(5) Use the Adam optimizer [31] to update a portion of the full precision parameters according to Equation (9);W�Backward (W,
Adam, ∇XL)

(6) Returning to 1.

ALGORITHM 1: Quantization algorithm for each layer.

Mobile Information Systems 5

and acc IP. First, the convolutional layer IP core obtains the
weights and input feature maps from DDR by DMA and
outputs the output feature maps to the acc IP after con-
volutional operation. ,e acc IP implements the calculation
function of activation and hopping function. Switches 0 and
1 control whether the DMA0 input flows into the con-
volutional IP or into other IP cores. Also, switches 1 and 2
determine which layer the output of the convolution op-
eration should be placed on, and these network layers can be
YOLO layers, Up-Sampling layers, or direct outputs without
any network layers. Finally, the output of the whole process
is saved in the main memory by DMA. Among them, since
the detection system designed by FPGA only uses the in-
ference part of YOLOv3, this paper chooses to directly merge
the BN layer in the convolution operation. ,erefore, the IP
core of the convolutional layer in this paper is the same as the
DBL structure in the YOLOv3 model. Since the minimum
structure in YOLOv3 is the DBL structure, such a design can
satisfy the whole YOLOv3 deployment on FPGAs.

4.2.2. Convolutional Layer IP Core. Figure 7 shows the
internal design of the convolutional layer IP.,e interface of
the convolutional layer IP is divided into a data port and a
control port.,e data port is responsible for transmitting the

weights, input feature maps, and output feature maps of the
data stream. Before calling the convolution kernel IP, the
control logic determines whether the input is a feature map
or a weight file based on the parameters about the input type
transmitted by the C++ program on the PS. After judging, if
it is a feature map, it will be stored to buffer 1. If it is a weight
file, it will be saved directly into the internal memory in the
convolution kernel. If it is a feature map, the corresponding
output will be obtained after convolution performed by
multiple convolution kernel modules.

Finally, the result is output to the on-chip DDR in the
form of AXI-Stream. According to the flow in Figure 5, the
loop continues between the off-chip memory and the FPGA
until the whole network operation is finished.

Since the convolution kernel in YOLOv3 needs to input
multiple rows of data at the same time in one operation, and
the convolution kernel slides in a left-to-right, top-to-bottom
direction. In this paper, we choose to access the input in one
convolution operation as a line buffer. ,e convolutional
kernel modules in Figure 7 are all internally cached with the
line buffer as shown in Figure 8. During the top-down sliding
of the convolution kernel, two rows of data are reused for each
per-row sliding. For each input image, an array of shift
registers with the same column and the same row as the size of
the convolution kernel is constructed. Whenever the register

DMA_0_MM2S
DMA_1_S2MM

DMA_1_MM2S

Switch_0

Switch_1

AXI_Interconnect

AXI-Lite

Switch_2

YOLO

Upsample

Conv
acc

S00

S00
S00

S01

S02

S01

Input_s

Input_a_s

Input_b_sOutput_s

Input_s Output_s

Input_s Output_s

Output_s

M00

M00

M00M01

M02

M01

Figure 6: CNN accelerator design.

DDR Processor

AXI_MM2S
AXI_S2MM

AXI-Lite

AXI-Lite

AXI-Lite

AXI DMA 1

AXI DMA 0

DMA_1_MM2S

DMA_0_MM2S

DMA_0_S2MM

CNN Accelrator

Figure 5: System architecture.

6 Mobile Information Systems

gets an input, the data previously stored in the corresponding
column of the input are shifted upward, and then the new
number is filled in the vacant position, so that each time the
convolution kernel is shifted by row, only the data with the
same size of the convolution kernel width need to be filled.
Since the size of the convolution kernel in YOLOv3 is only
3× 3, and the maximum column size is 418 (the initial input
size is 416× 416, but the input size will change to 418× 418
because of the zero-padding operation during the convolution
operation), the maximum row buffer created for each con-
volution operation is 3× 418.

Figure 9 shows the structure inside the convolution
kernel module. For a feature map with N number of input
channels, N row buffers are created inside the module, and
each row buffer corresponds to one channel of the feature
map. ,e sliding window corresponds to the shift window
mechanism used in the convolution process to save the 3× 3
matrix in the row buffer that needs to be convolved to
calculate the 3× 3 matrix. C represents the convolutional
unit, and the weights and corresponding biases of the
convolutional matrix are stored in C. When the sliding
window part acquires the matrix to be computed, N con-
volutional units are computed in parallel. ,e SUM module
is responsible for adding up all the results of the compu-
tation. ,e output results are stored in the output buffer and
written to memory at once after the entire feature map is
computed.

,e internal structure of the convolutional unit C is
shown in Figure 10. ,e convolution unit C expands the
input 3× 3 feature map matrix and the weight matrix
separately. ,e corresponding multiplications are calculated
by nine multipliers in parallel, and the sum of all multi-
plications is calculated by eight address. ,e last adder is

used to add the bias to the calculated result, and the final
value obtained is the result value of one convolution
operation.

4.2.3. Ae acc IP Core. ,e acc IP core implements the
residual part of YOLOv3 and the activation function cal-
culation after the convolution layer. Figure 11 shows the
specific design of the acc layer. Since the residual part needs
to use the result of the previous convolutional layer oper-
ation, it needs to use two input ports, and the output port is
still one. ,e control logic first determines if there are two
input streams, if AXI stream b is empty, the accumulation
module outputs AXI stream b directly without any opera-
tion. If AXI stream b is not empty, it outputs input a and
input b after accumulation operation. Since all convolutional
layers in YOLOv3 go through the activation function cal-
culation, the output of the accumulation module goes di-
rectly to the activation module for the activation function
calculation, and the output is still output in the form of AXI-
Stream.

4.2.4. Upsampling Layer IP Core. ,e operation of the
upsampling layer is the reverse operation of the pooling
layer. For each input data, the upsampling layer in YOLOv3
is expanded into a window of size 2× 2, where the upper left
corner of the window is the original data and the data in the
rest of the window are the same as the original data. ,e
buffers are still line buffer, but for each input, it is first stored
inside the line buffer, and then the portion without input of
the window is filled. So the maximum line buffer size created
by the upper sampling layer IP core is 418× 2.

0 1 2 3

4 5 6 7

8 9 10 11

13 1412 15

Input image

0 1 2

4 5 6 3

9 108 7

Line 0

Line 1

Line 2

11
12
13
...Line buffer

Stream input data

Figure 8: Data allocation of line buffer.

AXI
Input buffer1

Stream

AXI

Stream

Conv kernel Output buffer

Output buffer

Output buffer

Conv kernel

Conv kernel

Control logic

M
U

X

Figure 7: Design of convolutional IP.

Mobile Information Systems 7

4.2.5. YOLO Layer IP Core. ,e YOLO layer is used to
transform the output feature maps derived from the entire
YOLOv3 network into target detection result for different
bounding box sizes. ,e YOLO layer transforms the input
into a W×H×C size input, that is, the original image is
divided into W×H grids, where the channel C is equal to
(4 + 1+Class)×Numbers. Class and Numbers represent the
total number of classes predicted by the network and the
number of objects predicted by each grid. In this paper,
Class� 6, Numbers� 3, W�H� 13, 26, 52.

5. Experiments and Results

In this paper, we use ZYNQ7020 to complete the imple-
mentation of YOLOv3 acceleration system, and the chip
model is 7Z020-2CLG484I. HDMI driver is used to output
the detection results on a 1920∗1080 resolution screen in

real time. For image acquisition, we used XSP-1CA electron
microscope to capture the lens video with a frame rate of 60
FPS.,e YOLOv3 network was trained and optimized on an
NVIDIA GeForce RTX 2080Ti graphics card.

F1

F1

F2 F2F3

F4 F5 F6

F7 F8

F8

F9

F9

W1

W1

W2

W2

W3

W4 W5 W6

W7 W8

W8

W9

W9

Feature map matrix

Weight matrix

••
• •

••

••
• •

••

Bi
as

Figure 10: Structure of convolutional calculation unit.

••
••

••

N@W×H

Line buffer

Line buffer

Line buffer

Line buffer

Line buffer

Line buffer

Line buffer

Line buffer

N

Sliding window

Sliding window

Sliding window

Sliding window

Sliding window

Sliding window

Sliding window

Sliding window

C

C

C

C

C

C

C

C

SU
M

Figure 9: Structure of conv kernel.

Accumulation

Control logic

Activation
AXI Stream

AXI Stream a

AXI Stream b

Figure 11: Design of acc IP.

8 Mobile Information Systems

5.1. Fish Embryo Data set. Since this paper aims at accurate
real-time detection of fish embryos, a large number of
images of fish embryos are needed to pretrain the network.
,erefore, in this paper, images of fish embryos were col-
lected in batches using an electronic microscope in pools
1–10 of phase 2 of the intensive puffer fish farm in Zhon-
gyang, Nantong, Jiangsu Province (120.9°E, 32.6°N). Fig-
ure 12 shows a frame from the microscope acquisition video.

As can be seen, the features of the embryo in the figure
are more difficult to be extracted directly by the network
model and also more difficult to be recognized directly in the
system, so it is not advisable to use the YOLOv3 model
directly to train the whole image captured by the electron
microscope. In this paper, we chose to extract individual
embryo images using electron microscope magnification
and use LabelImg to annotate each target embryo and make
a data set in VOC format. In this paper, we choose to extract
individual embryo images after zooming in and use
LabelImg to mark each target embryo with annotations
(Annotations) to produce a data set in VOC format. A total
of 5710 images were collected and divided into training set,
test set, and validation set in the ratio of 8 :1 :1. Among
them, 6 types of embryos are included, respectively, dead,
gastrul, neurula, caryolytes, ocular, and olfactory. ,e in-
dividual embryo images in the data set are shown in Table 1.
In fact, in the results of embryo detection, the detection
accuracy of dead embryos is required to be the highest. In
this paper, more than twice as many dead embryos were
selected as the training set in the selection of data set for
ensuring the accuracy of dead embryos in the detection.
Figure 13 shows the embryo images of 6 periods in our data
set.

5.2. EmbryoData Set inDifferent TargetDetectionAlgorithms.
As shown in Table 2, in the YOLO family of algorithms, the
mAP value of YOLOv3 is smaller than that of YOLOv4 and
YOLOv5. But its inference speed is about twice that of YOLOv4
and four times that of YOLOv5. Since the mAP value reflects
the degree of overlap between the detection frame and the label,
a small loss is acceptable for this application. mAP value and
inference speed of Fast-RCNN are both inferior to YOLOv3.
MobileNetV3 has the best performance in terms of inference

speed, but its accuracy loss is too large. In summary, we choose
YOLOv3 as our porting model.

5.3. Basic Training of the YOLOv3 Model. For basic training
of the model, we pretrained the model using a 20-class
VOC2007 data set in order to enhance the generalization
ability of the network model and to speed up the conver-
gence of the model. In basic training and pretraining, the
model is saved once for every 100 epochs trained, the
learning rate is 0.01, the batch size is 32, the pretraining is 50
epochs, and the basic training is 500 epochs. ,e pretrained
obtainedmodel is trained using the data of embryos.,e loss
curves of the training process are shown in Figure 14(a).
Figure 14(b) shows the loss curves of the training process
without pretraining and directly training the model using
the embryo data set. Figure 14(b) shows the loss curves of the
training process for the model trained directly using the
embryo data set after no pretraining.

In Figure 14(a), the model was trained until 500 epochs
without convergence. In Figure 14(b), the model has
completed convergence by the 300th epoch of training, so
pretraining clearly improves the convergence rate of model
training. ,e loss values and mAP values after the model
training are completed in both cases and are given in Table 3.

As shown in Table 3, the mAP values and loss values
obtained from pretraining are all superior compared to the
model without pretraining. ,us, this paper uses VOC2007
data for pretraining before basic training. ,e trained model
achieves 86.72% mAP and 1.922 loss values on the test data
set. ,is indicates that the model has far surpassed the
accuracy of traditional manual identification methods for six
embryonic periods: dead, gastrul, neurula, caryolytes, ocular,
and olfactory. However, the trained model only has an
inference speed of 12 fps on the GPU, which is obviously not
sufficient for the task of real-time detection and thus requires
optimization of the model.

5.4. Model Pruning of the YOLOv3 Model

5.4.1. Channel Pruning. After completing the training of
YOLOv3, the optimal model from the base training is
sparsely trained according to Equation (1) to facilitate

Figure 12: Original image under the microscope.

Mobile Information Systems 9

channel pruning and layer pruning of the model. ,e dis-
tribution of the corresponding c parameters in the BN layer
during sparse training and basic training is shown in Fig-
ure 15, and all four plots in Figure 15 are histograms. ,e
vertical axis in Figures 15(a) and 15(b) plots the number of
rounds of model training, the horizontal axis indicates the
value of the c parameter, and the height of the histogram
represents the number of c parameters at this size. As shown
in Figure 15(a), in the basic training, as the number of
training rounds increases, the distribution of c parameters
still resembles a normal distribution, with the vast majority
of parameters in the range of 0.5–1.5. ,is distribution
makes it possible that most of the channels will still remain

after channel pruning, and it will make the mean values of c

parameters required for subsequent layer pruning almost all
the same, making the process of layer pruning of the model
difficult.

Figure 15(b) shows the changes in the distribution of c

parameters during sparse training, in which most of the
parameters gradually decrease to close to 0 as the number of
training epochs gradually increases, as a way to filter out the
channels that can be pruned. Plots (c) and (d) represent the
distribution of c parameters in each DBL structure in the
model after basic training and sparse training, respectively.
,e vertical axis indicates the number of layers in which the
specific DBL in its model is located, and the horizontal axis is
the size of the c parameter, and its histogram height indi-
cates the number of c parameters at this size. After the base
training, the parameter distribution of the model is very
heterogeneous, and most of the parameter distributions are
in the range of 0.5–1.5, making it difficult to perform channel
pruning for each layer. In contrast, after sparse training,
most of the parameters are close to with 0. ,is distribution
is more convenient for channel pruning. After sparse
training, all channels with c parameters less than 10−3 are
removed in this paper.

(a) (b) (c)

(d) (e) (f)

Figure 13: Embryo image: (a) dead embryo, (b) gastrul embryo, (c) neurula embryo, (d) embryo, (e) ocular embryo, and (f) olfactory embryo.

Table 1: Fish embryo data set.

Dead Gastrul Neurula Caryolytes Ocular Olfactory
Train 1528 896 912 712 814 848
Test 191 112 114 89 101 106
Validation 191 112 114 89 101 106

Table 2: Performance of several models trained by the embryo data
set.

Network mAP (%) FPS
YOLOv3 79.93 12.1
YOLOv4 81.22 6.8
YOLOv5 84.51 3.1
Fast-RCNN 76.14 6.4
MobileNetV3 54.33 14.2

10 Mobile Information Systems

5.4.2. Layer Pruning. After channel pruning, the mean values
of all the DBL structural c parameters in the model need to be
calculated and layer pruning is performed. Fine-tuning is
performed by secondary training after layer pruning. Since
the model needs to be deployed to hardware for practical
application in this paper, it is necessary to increase the in-
ference speed of the model as much as possible on the basis of
ensuring the accuracy of the model. In this paper, we start
with 10% pruning rate in increments of 10% and gradually
increase the pruning rate. ,e relationship between mAP
value, output video FPS and pruning rate is shown in Fig-
ure 16. When the pruning rate of the model exceeds 60%, the
mAP value decreases dramatically, and this change cannot be
corrected by retraining. Because the model eventually needs
to be deployed to the hardware, a balance point of inference
speed and accuracy is chosen, and the pruning rate chosen in
this paper is 50%.,at is, the network layers with the last 50%
of the c parameter size ranking are deleted. It is equivalent to
subtracting 26 DBLs (i.e., subtracting 26 convolutional layers)
to reduce the model by about half of the parameters and
computational effort.

Since there was a drop in model accuracy after pruning,
this paper chooses to fine-tune the model using the original
data set as the fine-tuning data set. After retraining 50
epochs with the original training set at 1%, the mAP value of
the model on the test set rebounded to 86.14%, where the
model size was reduced to 110.4MB and the video inference
speed on GPU could reach 17.4 FPS.

5.5. Model Quantization of the YOLOv3 Model. After the
model pruning, the 32 bit floating-point parameters of the
model were chosen to be quantized into INT4 and INT8
models all through Algorithm 1.,e quantization results are
shown in Table 4.

,e data in Table 4 are the individual performance
metrics of the model quantized by Algorithm 1 for INT8
quantization and INT4 quantization, respectively, the
mAP value, the model size, and the FPS at inference. ,e
data in Table 4 are the individual performance metrics of
the model quantized by Algorithm 1 for INT8 quanti-
zation and INT4 quantization, respectively, the mAP

value, the model size, and the FPS at inference. It can be
seen that the quantization method of Algorithm 1 can
significantly improve the inference speed of the model
while ensuring little change in model accuracy. ,e INT8
quantized model achieves 83.52%mAP and 33.9 fps on the
GPU.,e INT4 quantized model achieves 82.49%mAP on
the GPU and 50.3 fps on the GPU, which is a 32.9 fps
improvement over the pruned model. After quantization
by INT4 and INT8 of Algorithm 1, the two quantization
methods only have a difference of about 1.03% in mAP. In
fact, in the actual detection process, about 1% of mAP may
make 1 out of 1000 embryos misclassified, which has a
negligible impact on the detection accuracy of the actual
system application, but the network model after INT4
quantization is nearly 17 fps higher in GPU inference
speed of processing. In terms of model size, INT4
quantization can reduce the model size to 1/8 of the
original size, making it easier to store the model. Since this
paper has the requirement of real-time detection for the
system deploying YOLOv3 on FPGA, all the YOLOv3
models are quantized into 4 bit fixed points.

5.6. FPGA Implementation of Optimized YOLOv3. After
finishing the optimization of the whole YOLOv3 model, the
weight parameters of the optimized model are stored into
the DDR at the PS side of ZYNQ in advance. According to
the content in Section 3.2, we package the IP core in Vivado
and connect it using AXI bus protocol to complete the
hardware implementation of the YOLOv3 model. Figure 17
shows the specific design of the YOLOv3 gas pedal in
Vivado corresponding to Figure 6. ,e hardware acceler-
ation is accomplished by splitting each YOLOv3 network
layer into its corresponding network structure and passing
in weight parameters at the time of use. In which, as
designed in Chapter 3, the convolutional layer passes
through switch 1 and selectively enters the subsequent yolo
layer or upsample layer, where the acc IP core after the conv
IP core is used to handle the accumulation operation of the
results output from the two different network layers shown
in Figure 7 and to implement the activation function
LeakyRelu.

lo
ss

400

80
30

7

2

0 100 200 300 400 500
epoch

(a)

60

40

20

0

10050 150 200 250 300 350 400 450 500
epoch

lo
ss

(b)

Figure 14: Loss curve in training. (a) Loss without pretraining. (b) Loss with pretraining.

Mobile Information Systems 11

Table 5 shows the resource utilization of the YOLOv3 gas
pedal system built in this paper on the FPGA platform. In
terms of resource utilization, the resource utilization of LUT,
BRAM, DSP, and FF in this paper is 51.78%, 82.27%, 66.07%,
and 47.75%, respectively. ,e LUT, DSP, and FF parts are
used to process numerical and logical operations. ,e

BRAM is used to store feature maps and weight inputs. As
can be seen, the YOLOv3 accelerator in this paper is built
using almost all the resources on the chip in order to achieve
the maximum inference speed. Such a hardware architecture
can complete the inference process of YOLOv3 more
quickly.

,e performance of the detection model on different
types of embedded devices is given in Table 6, where we
use CUDA10.1 with Tensorflow2.4 to accelerate the in-
ference speed of the YOLOv3 optimized model on RTX-
2080Ti and ARM, and the ARM architecture uses the
Cortex-A9 dual-core ARM currently used by most

peformance comparison

mAP a�er pruned
mAP before finetune
FPS (GPU)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m
A

P

10
12
14
16
18
20
22
24
26
28
30

FP
S

10 20 30 40 50 60 70 80 90 1000

pruning thresold (%)

Figure 16: mAP and FPS in different model pruning thresholds.

epoch

0.5 1.5 2.5 3.5 4.5 5.5
γ in BN

100
200
300
400

(a)

epoch

0.5 1.5 2.5 3.5 4.5 5.5
γ in BN

20
60
100
140
180
220
260

(b)

0.5 1.5 2.5 3.5 4.5 5.5
γ in BN

layer

10

30

50

70

90

(c)

0.5 1.5 2.5 3.5 4.5
γ in BN

layer

10

30

50

70

90

(d)

Figure 15: c parameter distribution. (a) Distribution of c parameters during basic training, (b) distribution of c parameters during sparse
training, (c) distribution of all c parameters of the whole model after basic training is completed, and (d) distribution of all c parameters of
the whole model after sparse training is completed.

Table 3: mAP and loss comparison.

Loss mAP (%)
Pretrained model 1.922 86.72
Without pretrained model 3.4368 79.93

12 Mobile Information Systems

embedded systems. FPGA hardware acceleration is used
to improve the model inference speed. Since the optimized
model is used on all devices in this paper for comparison
on the same test set, there will be no gap in the mAP value
reflecting the accuracy of the model itself. ,e FPGA
accelerated system built on ZYNQ in this paper can reach
about 5 times the inference speed of pure CPU inference,
although the power consumption is slightly higher than
that of the inference system with ARM for the model.
With 24 frames as the real-time detection standard, this
system steadily achieves the effect of real-time inference.
Compared with GPU, this paper lacks about 50% of the
image inference speed. However, in terms of application,
the power consumption of GPU reaches nearly 92 times of
the power consumption in this paper compared to this
paper, and it is impossible to meet this power con-
sumption demand in actual aquaculture deployment. For
embedded deployment, the system in this paper not only
saves cost compared to traditional GPU +CPU and pure
CPU for aquaculture but also satisfies basically all fish
embryo detection needs at the same time.

5.7. Result. For each input embryo image acquired from the
microscope, we scaled it to the input size of 416× 416 re-
quired by the optimized YOLOv3 model. After input to the
optimized YOLOv3 model, based on the obtained 3 feature
map results, the nonmaximal value suppression algorithm
was used on the PS side to eliminate the duplicate detection
results and get the most accurate results. Some sample
embryo detection images are shown in Figure 18.

,e corresponding FPGA on-chip real-time detection
system effect and system structure are shown in Figure 19,
the whole real-time detection system consists of three parts,
namely ZYNQ chip responsible for CPU control and
YOLOv3 acceleration, electronic microscope responsible for
embryo data acquisition, and HDMI display responsible for
image output.

,e experimental results show that the system is able to
acquire the results of embryo detection correctly and in
real time. ,e inference speed of 34.1 fps on average is
achieved with 2.524w of power consumption at 100MHz
FPGA operating frequency, while 82.49% of mAP value
can be achieved in detection accuracy. Compared with the

Table 4: Indicators of the quantization model.

mAP (%) Model size (MB) FPS on GPU
Pruned model 86.14 110.4 17.4
INT8 quantization 83.52 24.9 33.9
INT4 quantization 82.49 12.8 50.3

Table 5: Performance of the embryo detection model on different types of embedded devices.

LUT BRAM DSP FF
Used 27548 50801 181 50801
Available 53200 106400 220 106400
Utilization 51.78% 66.07% 82.27% 47.75%

Table 6: Performance in different embedded devices.

Device Power (w) FPS Processing time per image (ms)
RTX-2080Ti 230 50.3 7.9
ARM Cortex-A9 dual-core 1.6 2.7 246
ZYNQ-7020 2.524 34.1 12.1

Figure 17: YOLOv3 accelerator implementation in Vivado.

Mobile Information Systems 13

original model deployed directly with CPU+GPU, the
mAP value is only 4.23% lower, but the real-time detection
can be completed with nearly 1/90th of the power
consumption.

6. Conclusion

In the paper, an FPGA-based system for fish embryo
detection is proposed. Based on using YOLOv3 as the
basic model, the model itself is optimized by combining a
model pruning method based on scaling factors and a

quantization method with trainable thresholds, and the
optimized model is deployed on an FPGA platform to
realize a real-time fish embryo detection system. Com-
pared with the direct use of the original YOLOv3 model, a
better compromise is achieved in terms of inference speed
and inference accuracy, and the on-chip computing re-
sources are utilized to the maximum. ,is FPGA-based
fish embryo detection system fully satisfies the current
demand for embedded devices in fish farming and facil-
itates the shift from the use of high-volume experienced
staff to artificially intelligent embedded devices for em-
bryo detection and rapid analysis of embryos in farming.
,e system has been applied in the embryo farming of
Zhongyang Pufferfish Estate in Nantong, Jiangsu Prov-
ince. It has achieved 34.1 fps with 82.49% mAP value for
real-time accurate embryo detection at 2.524w power
consumption.

Data Availability

All data used in this study are included in the manuscript.

Conflicts of Interest

,e authors declare no conflicts of interest.

Figure 19: Real-time fish embryo detection system.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 18: Embryo detection by the optimized model. (a) Caryolites, (b) dead, (c) gastrul, (d) neurula, (e) ocular, and (f–h) olfactory.

14 Mobile Information Systems

Acknowledgments

,is research was funded by Guangdong Key Areas R&D
Program Projects, under grant no. 2021B0202070001.

References

[1] J. Chen, S. Fangfang, J. Zhang, and F. Yongjie, “Zhao Dao-
quan,” Jiangsu Agricultural Science, vol. 49, p. 45, 2021.

[2] M. Ashaf-Ud-Doulah, S. M. M. Islam, M. M. Zahangir,
M. S. Islam, C. Brown, and M. Shahjahan, “Increased water
temperature interrupts embryonic and larval development of
Indian major carp rohu Labeo rohita,” Aquaculture Inter-
national, vol. 29, no. 2, pp. 711–722, 2021.

[3] L. Ma, R. Dessiatoun, J. Shi, and W. R. Jeffery, “Incremental
temperature changes for maximal breeding and spawning in
Astyanax mexicanus” Jove-Journal of Visualized Experi-
ments,” 2021.

[4] S. E. Cordova-de la Cruz, G. Martinez-Bautista, E. S. Pena-
Marin et al., “Morphological and cardiac alterations after
crude oil exposure in the early-life stages of the tropical gar
(Atractosteus tropicus),” Environmental Science and Pollution
Research, vol. 29, no. 15, pp. 22281–22292, 2021.

[5] R. L. Naylor, R. W. Hardy, A. H. Buschmann et al., “A 20-year
retrospective review of global aquaculture,” Nature, vol. 591,
no. 7851, pp. 551–563, 2021.

[6] J. Clarke, “Live imaging of development in fish embryos,”
Seminars in Cell & Developmental Biology, vol. 20, no. 8,
pp. 942–946, 2009.

[7] O. Ishaq, S. K. Sadanandan, and C. Wahlby, “Deep fish,” SLAS
Discovery, vol. 22, no. 1, pp. 102–107, 2017.

[8] H. T. Rauf, M. I. U. Lali, S. Zahoor, S. Z. H. Shah,
A. U. Rehman, and S. A. C. Bukhari, “Visual features based
automated identification of fish species using deep con-
volutional neural networks,” Computers and Electronics in
Agriculture, vol. 167, p. 105075, 2019.

[9] A. M. Naderi, H. Bu, J. Su et al., “Deep learning-based
framework for cardiac function assessment in embryonic
zebrafish from heart beating videos,” Computers in Biology
and Medicine, vol. 135, Article ID 104565, 2021.

[10] P. Dey, “,e emerging role of deep learning in cytology,”
Cytopathology, vol. 32, no. 2, pp. 154–160, 2021.

[11] B. H. Tang, Z. X. Pan, K. Yin, and A. Khateeb, “Recent ad-
vances of deep learning in bioinformatics and computational
biology,” Frontiers in Genetics, vol. 10, p. 214, 2019.

[12] Y. Li, Z. G. Luo, N. Y. Guan et al., Progress in Biochemistry and
Biophysics, vol. 43, p. 472, 2016.

[13] C. Qian, M. Tong, X. Yu, and S. Zhuang, “CNN-based visual
processing approach for biological sample microinjection
systems,” Neurocomputing, vol. 459, pp. 70–80, 2021.

[14] Q. Xu, Z. Wang, F. Wang, and Y. Gong, “Multi-feature fusion
CNNs for Drosophila embryo of interest detection,” Physica
A: Statistical Mechanics and Its Applications, vol. 531,
p. 121808, 2019.

[15] D. Dirvanauskas, R. Maskeliunas, V. Raudonis, and
R. Damasevicius, “Embryo development stage prediction
algorithm for automated time lapse incubators,” Computer
Methods and Programs in Biomedicine, vol. 177, pp. 161–174,
2019.

[16] I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: survey
and challenges,” Foundations and Trends® in Electronic De-
sign Automation, vol. 2, pp. 135–253, 2007.

[17] M. Xia, Z. Huang, L. Tian et al., “SparkNoC: an energy-ef-
ficiency FPGA-based accelerator using optimized lightweight

CNN for edge computing,” Journal of Systems Architecture,
vol. 115, Article ID 101991, 2021.

[18] N. Y. Khanday and S. A. Sofi, “Taxonomy, state-of-the-art,
challenges and applications of visual understanding: a re-
view,” Computer Science Review, vol. 40, Article ID 100374,
2021.

[19] A. G. Blaiech, K. Ben Khalifa, C. Valderrama,
M. A. C. Fernandes, and M. H. Bedoui, “A survey and tax-
onomy of FPGA-based deep learning accelerators,” Journal of
Systems Architecture, vol. 98, pp. 331–345, 2019.

[20] T. Li, T. Zhang, G. Yu, J. Song, and J. Fan, “Minimizing
temperature and energy of real-time applications with pre-
cedence constraints on heterogeneous MPSoC systems,”
Journal of Systems Architecture, vol. 98, pp. 79–91, 2019.

[21] V. R. S. Mani, A. Saravanaselvan, and N. Arumugam, “Per-
formance comparison of CNN, QNN and BNN deep neural
networks for real-time object detection using ZYNQ FPGA
node,” Microelectronics Journal, vol. 119, Article ID 105319,
2022.

[22] V. Sharma and R. N. Mir, “A comprehensive and systematic
look up into deep learning based object detection techniques:
a review,” Computer Science Review, vol. 38, Article ID
100301, 2020.

[23] I. Damaj, S. K. Al Khatib, T. Naous, W. Lawand,
Z. Z. Abdelrazzak, and H. T. Mouftah, “Journal of King Saud
University - Computer and Information Sciences,” Open
access journal, vol. 12, 2021.

[24] M. Zhao, C. Hu, F. Wei, K. Wang, C. Wang, and Y. Jiang,
“Real-time underwater image recognition with FPGA em-
bedded system for convolutional neural network,” Sensors,
vol. 19, no. 2, p. 350, 2019.

[25] X. Wei, W. Liu, L. Chen, L. Ma, H. Chen, and Y. Zhuang,
“FPGA-based hybrid-type implementation of quantized
neural networks for remote sensing applications,” Sensors,
vol. 19, no. 4, p. 924, 2019.

[26] Y. Luo and Y. Chen, “FPGA-based acceleration on additive
manufacturing defects inspection,” Sensors, vol. 21, no. 6,
p. 2123, 2021.

[27] M. R. Al Koutayni, V. Rybalkin, J. Malik et al., “Real-time
energy efficient hand pose estimation: a case study,” Sensors,
vol. 20, no. 10, p. 2828, 2020.

[28] A. F. J. Redmon, “YOLOv3: An Incremental Improvement”,
https://arxiv.org/pdf/1804.02767.pdf, 2018.

[29] K. H. S. Ren, R. B. Girshick, and J. Sun, “Faster R-CNN:
towards real-time object detection with region proposal
networks” https://arxiv.org/abs/1506.01497, 2015.

[30] A. G. H. Z. C. K. W.W. A. Adam, 2017 “MobileNets: efficient
convolutional neural networks for mobile vision applications”
https://arxiv.org/abs/1704.04861.

[31] E. A. Smirnov, D. M. Timoshenko, and S. N. Andrianov,
“Comparison of regularization methods for ImageNet clas-
sification with deep convolutional neural networks,” AASRI
Procedia, vol. 6, pp. 89–94, 2014.

[32] C. Wu, V. Fresse, B. Suffran, and H. Konik, “Accelerating
DNNs from local to virtualized FPGA in the Cloud: a survey
of trends,” Journal of Systems Architecture, vol. 119, p. 102257,
2021.

[33] A. G. Sambhav R Jain, M. Wu, and C. Dick, 2019, “Trained
quantization thresholds for accurate and efficient fixed-point
inference of deep neural networks” https://arxiv.org/abs/1903.
08066.

Mobile Information Systems 15

https://arxiv.org/pdf/1804.02767.pdf
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1903.08066
https://arxiv.org/abs/1903.08066

