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In the training process of professional athletes, to optimize the training plan and make the athletes play the best competitive state
at a special time point, it is usually achieved by controlling the training load and active and e�ective recovery process. For the
general public, daily exercise is mainly for physical �tness and physical rehabilitation. Whether it is a professional athlete or the
general public, there are times when injuries occur during sports. �e appropriate degree of exercise load varies from person to
person. According to di�erent sports, people’s exercise suitability is also di�erent. �erefore, it is meaningful to analyze and
monitor the exercise load of the athlete during exercise. �is paper proposes to use radial basis neural network (RBFNN) in the
analysis of sports f-load of athletes. RBFNN is a kind of neural network that relies on error backpropagation for parameter
adjustment, and its convergence speed is slow. When the data dimension is large and the amount of data is large, it will a�ect the
classi�cation accuracy of the data. For this reason, this paper integrates the gray wolf optimization algorithm (GWO) and RBFNN,
and applies GWO to the initial value determination of weights and thresholds, which can e�ectively reduce the adjustment range
of parameters and improve the accuracy of data classi�cation. �e model can more accurately analyze the exercise load state of
athletes during exercise. �e experimental results show that the high-quality heart rate data can be classi�ed based on the model
used in this paper, so that the exercise load state can be correctly judged.�is has a good reference value for the analysis of exercise
load during sports training and the next monitoring.

1. Introduction

How to assess appropriate exercise load during human
exercise has long been a topic of interest in the �eld of sports
science research [1]. To begin with, in the training process
for professional athletes, optimizing the training plan so that
the athletes can play in the best competitive state at a speci�c
time point is usually accomplished by controlling the
training load and active and e�ective recovery process.
Although the �nal performance of athletes is related to their
physical and psychological ability factors in the sports
process, the ability gap between elite athletes is shrinking as
information science advances. As a result, athletes must
devote more time and energy to navigating these minor

di�erences. Coaches must develop a more reasonable
training plan and e�ectively evaluate the athletes’ daily
training load to understand the athletes’ overall state [2].�e
likelihood of sudden death during exercise is low for the
general �tness crowd. Excessive load or a sudden increase in
exercise load during exercise, on the other hand, has been
shown in studies to cause accidental injury to the body and
greatly increase the risk of cardiovascular disease. A small
load, on the other hand, does not stimulate the body and
cannot achieve the e�ect of body exercise. As a result,
whether for professional athletes or the general public, the
body can only produce a good adaptive response to improve
sports performance or achieve the e�ect of physical �tness
through long-term appropriate load stimulation [3]. As a
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result, scientific and effective evaluation of exercise load has
become an important task of sports science research in the
process of developing a training or exercise plan.

At present, the analysis methods and means of exercise
load during exercise are continuously updated. Initially,
exercise load assessment was performed through the athletes
training log as well as a questionnaire. Questions recorded
and surveyed were primarily athletes’ self-reported feelings
of fatigue. +e follow-up gradually developed into an
analysis method based on physiological indicators in the
laboratory. Physiological indicators mainly include blood
lactate, maximum oxygen uptake, heart rate, and so on. +e
most primitive training logs and questionnaires are relatively
subjective and are greatly affected by factors such as indi-
vidual differences and the subjectivity of athletes, so the
analysis results are not very accurate. On the other hand, the
exercise load analysis method based on physiological indi-
cators has significantly improved in the analysis accuracy.
However, the problem is that the athletes must be monitored
in real time during the entire training cycle to adjust the
exercise load and training content [4]. +is will bring some
inconvenience to the athlete. For example, the collection of
blood samples is inconvenient and invasive, so sampling and
monitoring are cumbersome. Combined with expensive
monitoring equipment, it is an urgent problem to construct
a reliable, easy-to-use, noninvasive and nonintrusive
method to assess exercise load [5].

With the development of technology, researchers have
found that the analysis of exercise load based on heart rate
indicators meets the above needs. At present, many smart
wearable devices can collect and monitor heart rate in real
time. +ese sensing devices are inexpensive, easy to wear,
and harmless to the body and can be purchased and used by
both professional athletes and the general public. In terms of
heart rate-based exercise compliance analysis, some studies
have shown that the state of the autonomic nervous system
can be monitored through post-exercise heart rate and other
related indicators [4]. Other studies have shown that changes
in exercise load can cause changes in the autonomic nervous
system [6]. +e above studies provide a more refined and
comprehensive direction for the analysis of heart rate-based
exercise load. To further accurately evaluate and analyze the
exercise load, this paper uses an intelligent analysis model,
that is, the radial basis neural network based on the gray wolf
optimization algorithm (GWO-RBF), which is applied to the
classification and identification of heart rate data during
exercise. Based on the classification results, the state of
exercise load is analyzed. +e main work of this paper is as
follows: (1)+e importance of the analysis of exercise load to
professional athletes and the general public; (2) An im-
proved radial basis neural network is proposed for the
analysis of exercise load. Specifically, the hybrid gray wolf
optimization algorithm is integrated with the BP neural
network, and the algorithm is applied to the determination
of the initial values of weights and thresholds, which can
effectively reduce the adjustment range of parameters and
improve the classification accuracy of heart rate data. (3) To
verify the performance of the proposed method, the ex-
perimental verification is carried out on the collected heart

rate data set. +e experimental results demonstrate the
feasibility of the proposed method for solving exercise load
analysis.

2. Relevant Knowledge

2.1. Definition of Heart Rate and Exercise Load. Heart rate is
one of the most commonly used monitoring methods in
both domestic and international sports training. By mea-
suring the frequency of heartbeats, a linear relationship with
exercise time, intensity, oxygen uptake, metabolism, and so
on, is established to reflect the health status and exercise
function of the human body. +e load is controlled by the
heart rate monitoring results, and the negative stimulation to
the human body caused by the excessive load is avoided.
Some researchers proposed as early as the mid-20th century
that there is a linear relationship between heart rate and
exercise intensity within a certain range. Some researchers
have also confirmed that there is a strong relationship be-
tween maximum heart rate and maximum oxygen uptake.
Resting heart rate, maximum heart rate, average heart rate,
and heart rate recovery time are all common heart rate
indicators. We can accurately assess the size of the exercise
load using these indicators. Furthermore, heart rate vari-
ability can be used to track an athlete’s recovery from fatigue
(HRV). Many people regard HRV as a tool for measuring the
body’s response to training. HRV is a measure of the time
difference between heartbeats that reflect the autonomic
nervous system’s function. As a result, it can accurately
reflect body pressure. It is frequently used in athletic training
to determine optimal training periods, monitor recovery
status, and detect potential overtraining.

Exercise load refers to the physical load imposed on the
human body, also known as an external load. +e external
load will lead to changes in human physiological functions.
+e load that human physiology can bear is called a
physiological load, also known as an internal load. It is the
physiological nature of physical exercise that the responsive
changes in body function and structure are caused by ap-
propriate external load stimuli. Load intensity is defined as
the internal response caused by a certain amount of external
load stimuli that the athlete’s body is subjected to in a unit
time or a continuous action. Some scholars divide exercise
load into physiological, psychological, biochemical, and
biomechanical loads according to the impact of exercise load
on human function. Some scholars also divide exercise load
into fitness load, teaching load, competition load, etc.,
according to the purpose of bearing load. +e traditional
training theory believes that exercise load is a kind of
stimulus, which is composed of two factors: quantity and
intensity. Load volume refers to the duration of the load and
includes the total number of tasks performed during a single
training exercise or series of exercises. Load intensity is the
depth of stimulation to the body, such as the force value of a
single exercise, the force of action, or the concentration of
training workload at a certain time. Load volume and load
intensity can promote the scientific level of sports training.

At present, people have begun to pay attention to
physical fitness exercise, and national fitness has become a
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trend. All governments have pointed out that physical ed-
ucation and extracurricular exercises should be strengthened
to promote physical and mental health and physical fitness
of young people. +e state requires that all school education
should pay attention to the physical education of students
and strengthen the physical exercise of students. Physical
exercise means reaching a certain intensity of exercise. +e
exercise load that each individual can withstand is different.
Exercise load will affect the quality of physical exercise to a
large extent, so exercise load is an important indicator for
judging exercise intensity and quality. Everyone’s heart
capacity is different, so based on people’s heart rate data,
sports activities with appropriate exercise load can be
formulated.

2.2. Analysis Method of Exercise Load. In training science,
exercise load is the cumulative stress of competition or
training that an individual bears over a period of time [7].
According to the source of indicators for exercise load
monitoring, exercise load has two classification forms: ex-
ternal load and internal load. +e monitoring of external
loads includes load monitoring based on on-site observation
[8–10], GPS-based load monitoring [11–13], and video
analysis-based load monitoring [14–16]. Internal load
monitoring mainly includes load monitoring based on heart
rate [17–19]; load monitoring based on blood, urine, and
saliva components [20, 21]; load monitoring based on
psychological questionnaires [22–24]; and load monitoring
based on RPE scale [25–27]. Exercise load data collection
was initially performed by recording training logs and filling
out questionnaires. In contrast, training logs are much more
frequent than questionnaires, basically at least once a day
[28].+e data collected in this way are both a waste of energy
and a waste of energy and have been criticized by people. A
study in Reference [29] shows that 24% of trainers over-
estimate their training volume; 17% of trainers underesti-
mate their training volume. It can be seen that this margin of
error can seriously affect the training plan. Compared with
collecting physiological index data to assess exercise load,
using questionnaires to assess exercise load has lower reli-
ability and validity [30]. Different questionnaires describe
the questions in different styles, and different respondents
have different understandings. In the process of filling out
the questionnaire, some people will scribble randomly be-
cause they feel bored or impatient. All of these will affect the
accuracy of the data collected by the questionnaire, resulting
in a big difference between the final results and the actual
situation. In conclusion, it is unreasonable to quantify ex-
ercise load during exercise based on training logs and
questionnaires. With the development of science, such
evaluation methods are gradually replaced by some objective
physiological measurement indicators. Arguably, there is no
“gold standard” for assessing exercise load [31].

3. Exercise Load Analysis Model

3.1. Grey Wolf Optimization Algorithm. GWO is an intel-
ligent optimization algorithm that is widely used in a variety

of fields due to its simple structure, fast convergence speed,
and small number of parameters. +e algorithm mimics the
natural process of wolves hunting their prey. +e three head
wolves lead the gray wolf population in a continuous ap-
proach to the prey, culminating in an attack. +e wolves are
divided into four levels and have a strict hierarchy. Figure 1
depicts the hierarchical relationship:

Figure 1 depicts a pyramid shape. From top to bottom,
there are four levels. +e α wolf is the first level. +e α wolf is
the top leader of the wolf pack and the wolf with the best
organizational and leadership skills. It is in charge of guiding
the other wolves in decision-making, hunting plans, and
food distribution. +e second level is the β wolf, who is the α
wolf’s assistant and eventual successor. +e β wolf is in
charge of conveying the α wolf’s orders and assisting the α
wolf in making business decisions.+e βwolf also serves as a
conduit for the α wolf to communicate with the rest of the
wolf pack. +e δ wolf is the third level. It must carry out β
and α wolves’ orders and manage omega wolves. +e δ wolf
is the wolves’ guardian, primarily in charge of keeping the
wolves safe. +e omega wolf is the fourth level. Omega
wolves must obey orders and execute orders from their
superiors, and they are an integral and important part of the
wolf pack.

+e gray wolf population moves according to the po-
sition of the first three rank wolves in the hierarchy shown in
Figure 1 when hunting for prey. +e gray wolf optimization
algorithm abstracts the wolf pack’s hunting, hierarchy, and
movement rules into a mathematical model and abstracts
the α, β, and δ wolves into three vectors representing the
three wolves’ current positions, respectively. Figure 2 depicts
the hunting rules for the gray wolf population:

+e hunt for wolves is divided into three stages:

3.1.1. Look for Prey. +e wolves approach their prey grad-
ually, and the position movement formulas are

H � μ · Xp(t) − X(t)


, (1)

X(t + 1) � Xp(t) − η · H. (2)

Eq. (1) is the distance formula between the current wolf
pack position and the prey position. In the formula, Xp(t) is
the position vector of the prey in t iterations. X(t) is the
position vector of the gray wolf population. μ is the coef-
ficient, which the update formula is shown in Eq. (5). In the
formula Eq. (2), η is the coefficient, and the updated formula
of the coefficient is

η � 2π · r1 − π, (3)

π � 2 −
2t

maxiter
, (4)

μ � 2r2. (5)

In Eq. (3) and Eq. (4), π is a coefficient that decreases
linearly from 2 to 0, and Eq. (4) is the updated formula of π.
Where maxiter is the maximum number of iterations. r, r1,
and r2 are random numbers, and the value range is [0, 1].
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3.1.2. Surrounding the Prey. +e wolves move according to
the positions of the three α wolves, β wolves, and δ wolves.
+e movement formula is shown in (6)–(12):

Hα � μ1 · Xα(t) − X(t)


, (6)

Hβ � μ2 · Xβ(t) − X(t)


, (7)

Hδ � μ3 · Xδ(t) − X(t)


, (8)

X1 � Xα(t) − η1Hα


, (9)

X2 � Xβ(t) − η2Hβ



, (10)

X3 � Xδ(t) − η3Hδ


, (11)

X(t + 1) �
1
3

X1 + X2 + X3( , (12)

where α, β, and δ represent α wolf, β wolf, and δ wolf,
respectively.Xa(t),Xβ(t), andXδ(t) are the position vectors of
α wolf, β wolf, and δ wolf iteration t times, respectively. Hα,
Hβ, and Hδ are the distances between the prey and the three

wolves at t iterations. Eq. (12) represents the average position
of the three ruthless wolves as the position of the wolves with
t+ 1 times.

3.1.3. Attack the Prey. Typically, wolves attack their prey
when it stops moving. It is known that the value range of π is
between 0 and 2. η is constantly changing between [− 2π, 2π].
When the value of η is [− 1, 1], according to Eq. (5), the next
time the wolf pack position is updated, the wolf pack po-
sition will be between the current position and the prey. So
when | η |> 1, the wolves will attack and start looking for new
prey.

3.2. Selection of Radial Basis Function. Assuming that the
input layer has n nodes, the input layer vector
X � x1, x2, ..., xn . +e number of hidden layer neurons in
RBFNN is h, and the activation function is φ(x). +ere are k
nodes in the output layer, then the output layer vector is
Y � y1, y2, . . . , yk . Table 1 shows the commonly used
radial basis functions.where ε is the radial base width and c is
the center value. In this paper, the most commonly used
Gaussian kernel function is selected as the radial basis
function. +e data are input to the hidden layer through the
input layer, and after nonlinear transformation, it is output
linearly through the output layer. +e output results are as
follows:

Y � 
h

j�1
wjRj(x), j � 1, 2, 3, . . . , h,

j � 1, 2, 3, ..., h,

(13)

where wj is the weight.

3.3. Determination of Parameters. In addition to selecting
the kernel function, the leaves of three parameters must be
determined when training the radial basis neural network
model: the radial basis width, the weight w, and the center
value c. +ese parameters have a significant impact on the
neural network model’s efficiency and final accuracy.

3.3.1. Base Width Radial. +e radial basis width is shown in
Eq. (14) because the radial basis function is a Gaussian kernel
function:

σj �
Hmax��
2h

√ .j � 1, 2, 3, . . . , h, (14)

where Hmax is the greatest possible distance between the
centers.

3.3.2. Weights. RBFNN selects weights using the minimum
mean square error method, and the weight update calcu-
lation formula is as follows:

wk,j(t + 1) � wk,j(t) + c
ek(t)

zn

����
����
2, (15)
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where n is the number of input data, Z is the input vector of
the hidden layer, and c is a constant and takes value in [0,2].

+e central value c is given by the K-means algorithm,
and the specific process is as follows:

3.3.3. Center Value. +e central value c is given by the K-
means algorithm, and the specific process is as follows:

Suppose a set of data X � [X1, X2, . . . , Xn]T. +is set of
data is divided into k categories, and the data center of each
category is C � [C1, C2, . . . , Ck]T. +e closest distance is
Dmin, and the Euclidean distance is used as the judgment
basis. +e Euclidean distance formula is

dist(X, D) �

������������



n

i�1
X

t
i − C

t
j 

2




, (16)

where Xt
i is the ith dimension component of the mth data in

the dataset, and Ct
j is the tth dimension component of the jth

center of the central dataset.
If the value of dist(X, D) is less than the nearest distance

Lmin, put this data into the category where the nth center
data are located. After all the data are classified, the average
value of each center point is taken as the center point C.

3.4. GWO-RBF Model. Because traditional RBFNN has
difficult-to-determine parameters, it affects the model’s
classification accuracy and adaptability. So, in this paper,
GWO is applied to RBFNN to solve the problemsmentioned
above. +e GWO algorithm’s main concept is based on the
hunting process of the parent, offspring, and mutant gray
wolf populations. +is is the optimization process in the
mathematical model, and the result is the optimal solution.
+e GWO optimization algorithm is used to adjust the
weights and center values of RBFNN, which improves the
model’s classification accuracy.

First, encode the weights and center values, and edit
these two parameters into a multidimensional vector. +en,
adjust the vector through Eq. (4)–(12). +e mean square
error is used as the fitness function. +e vector value cor-
responding to the minimum error is found as the weight and
center value of RBFNN. +e process of GWO-RBF is shown
in Figure 3:

+e algorithm execution steps are summarized in the
algorithm flow chart as follows:

Step 1: Encode all parameters that need to be optimized,
with the first t components representing weights and
the remaining t+ 1 to t+ n representing central value
parameters.

Step 2: Determine the RBFNN’s structure. Determine
the number of neurons in the input layer to be t+ n, the
number of neurons in the output layer to be 1, and the
number of neurons in the hidden layer to be 1.
Step 3: Modify the value of wc following the GWO
algorithm flow.
Step 4: Determine the fitness function value for each
adjustment and use the mean square error as the fitness
function.
Step 5: If the mean square error is less than 0.01 or the
maximum number of iterations is 1000, the process is
complete. Otherwise, return to step 3 to carry on with
the execution.

Table 1: Radial basis functions.

Function name Calculation formula
Gaussian function φ(X) � exp[− XXT/ε2]
Inverse multiple quadratic function φ(X) � exp[− 1/(XXT + ε2)1/2]
Reflected sigmoid function φ(X) � 1/(1 + exp[XXT/ε2])
Gaussian kernel function φ(X) � exp[− ‖X − cj‖

2/2ε2j], j � 1, 2, 3, . . . , h

START

Experimental data input

construct a vector by weights and 
central value

Construct a neural network model
GWO-RBF

Use GWO to determine weights and 
center values

Assign weights and center values to 
the neural network

Perform heart rate classification

get the classification error rate

Error rate or 
iteration meets 
requirements

result data output

END

No

Yes

Figure 3: GWO-RBF process.
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4. Experimental Analysis

4.1. Experimental Design. To analyze the exercise load status
of different objects during different sports, to better under-
stand the exercise load that various groups can bear during
sports training. First of all, this paper selects four types of
objects: college students, general sports athletes, provincial
athletes, and national athletes. Among them, there are 30
college students, 20 general sports personnel, 10 provincial
athletes, and 5 national athletes. Second, collect the heart rate
data of each subject when they are walking, jogging, fast
running, sit-ups, playing badminton, and rowing. Finally,
discrete wavelet transform and independent component
analysis are selected as feature extraction methods, and Naive
Bayes (NB), support vector machine (SVM), BP neural
network(BPNN), and RBFNN are used as contrastingmodels.

Before collecting heart rate data, questionnaires were
distributed to each experimental subject. +e purpose was to
understand the psychological feeling of each experimental
subject’s body under different exercise loads. +e ques-
tionnaire is shown in Table 2:

After collecting the questionnaires of each subject, the
basic information of the experimental subjects was obtained,
as shown in Table 3.

4.2. Experimental Data and Analysis. To analyze the ab-
normal situation of people’s exercise load when they perform
various sports, the collected heart rate data are classified and

processed. +e evaluation index is classification accuracy. Its
calculation formula is calculated by dividing the number of
pairs of samples by the total number of samples. Generally
speaking, the higher the accuracy, the better the model. +e
classification results are shown in Table 4 and Figure 4.

It can be seen from the above experimental results that for
the above five classification models, the experimental results
obtained by the feature extraction method based on discrete
wavelet transform are better than those based on independent
component analysis. For the five classification models of NB,
SVM, BPNN, RBFNN, and GWO-RBF, the classification
accuracy obtained by discrete wavelet transform is improved
by 0.0301, 0.0099, 0.0172, 0.0143, and 0.0174, respectively,
based on the independent component analysis. From the
perspective of model classification performance, the experi-
mental results obtained by GWO-RBFNN are the best. +is is
because themodel fuses GWOwith RBFNN. GWO intelligent
population algorithm is used to adjust the parameters of RBF
neural network weight and center value, which improves the
classification accuracy of RBF. Among the remaining clas-
sification models, RBFNN has the best experimental results,
which shows that the network is suitable for the classification
of heart rate data, which is one of the reasons why this model
is selected as the basic model in this paper.

+e classification results of each sample can be obtained
through GWO-RBFNN. For the wrongly classified sample, it
means that the sample is abnormal. At this time, it is
necessary to pay attention to the state of the athlete, whether
the exercise load carried out at this time is not suitable for

Table 2: Questionnaire.

NO. 1 sport name:
Heart rate observations under different exercise intensities (bpm)

Mild Generally Severe
Test1
Test2
Test3

NO. 2 sport name: Heart rate observations under different exercise intensities (bpm)
Mild Generally Severe

Test1
Test2
Test3

NO.3 sport name: Heart rate observations under different exercise intensities (bpm)
Mild Generally Severe

Test1
Test2
Test3

. . .

Occupation Age Sex Weight Height

Table 3: Basic information of experimental subjects.

Object
College students General athletic staff Provincial athlete National athlete

Mean Std Mean Std Mean Std Mean Std
Age(years) 20.12 ±1.25 24 ±2.36 17.23 ±2.85 20.42 ±3.68
Gender Male:0.6 Female:0.4 Male:0.7 Female:0.3 Male:0.5 Female:0.5 Male:0.6 Female:0.4
Weight (Kg) 62.95 ±3.54 59.76 ±4.31 68.93 ±4.90 71.31 ±3.58
Height (cm) 173.02 ±5.64 167.48 ±6.34 176.93 ±7.13 178.93 ±6.53
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the physical condition of the athlete. +e significance of this
study is to be able to judge whether the current exercise load
of the athlete belongs to the normal and acceptable range of
exercise load based on the heart rate data collected in real
time. When the classification result is abnormal, it indicates
that the state of the athlete is not good, and it is necessary to
stop and check the physical state in time.

5. Conclusion

With the continuous evolution of the concept of exercise
load, more scholars have begun to analyze the impact of
exercise load on people’s physical exercise process. Whether
it is a professional athlete or the general public, it is
meaningful to be able to understand their exercise load in
real time and adjust their exercise plan in real time according
to their characteristics. +e monitoring and management of
exercise load is a long-term and continuous matter. To
improve the analysis efficiency of exercise load, this paper
proposes a GWO-RBF model to apply the real-time heart
rate collected during exercise. Compared with the traditional
RBFNN, the model proposed in this paper applies the GWO
optimization algorithm to the RBFNN and adjusts its
weights and center values, thereby improving the classifi-
cation accuracy of the RBFNN.+e feasibility of this method
is also verified by comparative experiments. In this paper,
the exercise load analysis method based on the intelligent
model abandons the disadvantages of the traditional ques-
tionnaire survey and other data collection methods. +is
approach makes the analysis of exercise load simpler and
smarter. Exercise load analysis is the basis for exercise load
monitoring and management, and the accuracy of its data is
important. However, there are still some problems in this
work. For example, the performance of the model depends
heavily on the settings of the initial parameters and is

sensitive to parameters. Moreover, the classification accu-
racy still needs to be improved, and it is best to reach 95%
before it can be truly applied to the market.
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