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3D laser scanning equipment is an important equipment for reverse engineering. It is used as an information sensing device for the
Industrial IoT. After analyzing and processing the measured data, it can issue construction instructions to equipment such as
TBMs and shotcrete manipulator. It can be used to solve the problems of initial support contour detection, �atness detection,
monitoring measurement, and so on in tunnel engineering. �is paper considers that 3D laser scanning point cloud is a scattered
point cloud and cannot be used directly. In order to extract the point cloud information as much as possible, it is necessary to �t
the point cloud obtained by scanning �rst. �is paper uses the triangulation method, the Poisson reconstruction method, and the
Lagrange method, etc. to �t the scattered point cloud, analyzes the advantages and disadvantages of several �tting methods, and
analyzes the accuracy of the surfaces generated by several �tting methods.�is creates conditions for the subsequent utilization of
the tunnel 3D laser scanning point cloud.

1. Introduction

At present, equipment such as TBMs and shotcrete ma-
nipulator has been widely used in tunnel construction. In
tunnel construction, there is a structure �rst, and then, loads
and the structure need to be inspected and monitored. In the
construction of the New Austrian Tunnel, the initial support
and the surrounding rock share most of the load.�e correct
tunnel pro�le can reduce stress concentrations. Better
�atness can prevent the waterproof membrane from being
damaged and the secondary lining from being emptied. �e
deformation monitoring of the initial support can guide the
on-site construction [1]. �e tunnel engineer issues con-
struction decisions based on the inspection and monitoring
results. In order to make accurate decisions, it is necessary to
conduct comprehensive and rapid inspection and moni-
toring of tunnels, and to analyze the results. 3D laser
scanning equipment is an important Industrial IoT

information sensing equipment [2–4]. Comprehensive and
rapid detection and monitoring can be achieved. In the
construction of the ENN tunnel, the detected point cloud
contains the geometric information of the tunnel, and this
technology is gradually adopted in tunnel contour detection,
�atness detection, and monitoring measurement, etc. 3D
laser scanning generated in the construction of the New
Austrian Tunnel is a scatter cloud, which cannot be used
directly. In order to solve the point cloud utilization problem
and improve the calculation accuracy, it is necessary to
extract as much point cloud information as possible, and to
�t the point cloud [5].

�e author considers �tting the scattered point cloud
formed by 3D laser scanning �rst, extracting more point
cloud information, and eliminating or diluting the in�uence
of noise on subsequent work. �erefore, point cloud surface
�tting is a means to solve such problems. At the same time,
using a point cloud to �t the surface can also extract surface
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information from the point cloud as much as possible.
Realize the comparison of surface and surface and overcome
the problem that it is difficult to directly compare scattered
point clouds.

,e fitting method in this paper considers the fitting
methods of the parameter reconstruction method, the tri-
angular mesh method, and the implicit function method,
respectively, and selects the commonly used Lagrange in-
terpolation method, triangulation method, and the Poisson
construction method. According to the fitting situation of
various methods, the applicable scope of tunnel detection
and monitoring is analyzed.

2. Related Works

,e Amberg Tunnel software developed by Amberg Tech-
nologies uses the direct comparison method between point
cloud and design surface to realize over-under-digging
detection [6, 7], but this method is difficult to obtain high
detection accuracy in the case of point cloud noise [8–10].
Ho et al. [11], Yao et al. [12] and others projected on the
cross section through point cloud data [13–17], and com-
pared the projected contour with the design contour, and
obtained the over-undercut amount and over-undercut area
[18]. ,ese methods usually have a larger error than the
point cloud spacing because 3D laser scanning point cloud is
a scattered point cloud [19].

Tang et al. used the heat map of the Amberg Tunnel
software to analyze the smoothness of the tunnel [20]. Based
on 3D laser scanning point cloud surface, China Railway
Group Limited uses the pseudo-scale measurement method
to realize the flatness detection in the circumferential and
longitudinal directions of the tunnel, but this method is not
accurate enough when the grid division is large, and when
the grid division is small, the amount of calculation is too
large [21, 22].

,e outline of shield tunnels is relatively regular, and 3D
laser scanning technology has been widely used in con-
struction and operation [23]. Liu et al. [24] of Tongji Uni-
versity generated point cloud slices by the projection method,
found the center of the structure through the point cloud slice,
and monitored the change in the radius of the tunnel
structure to judge the tunnel deformation [11, 25]; Van
Gosliga and Pfeifer [25]. ,e least squares method is used to
fit the actual line shape of the tunnel; Li [26]. performed
ellipse fitting on point cloud slices, hoping to judge the de-
formation of the tunnel through the ellipse change after
fitting; Guangzhou Metro Design and Research Institute Co.,
Ltd. Zhang of the company [27] used the 3D laser scanning
results to detect the ovality of shield tunnels [28, 29].

3. Mathematical Theory of Fitting

Surface reconstruction methods are mainly divided into
three categories: parameter reconstruction, triangular mesh
method, and implicit function reconstruction [30, 31].

,e interpolation function is one of the methods of
parameter reconstruction. Given a known point, construct a
curve or surface, requiring the curve or surface to pass

through all known points [32]. It is an important method of
discrete function approximation [33].

,e triangular mesh method usually refers to the
Delaunay triangulation method [34], which generally con-
structs a triangular surface from the two nearest points at a
certain starting point and constructs the entire area into a
triangular surface network through continuous growth [35].

Implicit function methods include radial basis [36],
Poisson construction method, etc. the implicit surface is to
first separate the object point cloud, and then perform the
module on the processed data by default, and each module is
fitted together and then joined together. Using the Poisson
equation to solve this problem can reduce the above cal-
culations [37]. Because of the difficulty of 3D laser scanning
monitoring and measurement in the construction of the
New Austrian Tunnel, few people are involved [38].

4. Delaunay Meshing Method

4.1. ,eory of Delaunay Meshing Method. ,e meshing
method is to construct a mesh close to the original surface
after the known data control points are connected through a
certain relationship method. It is a common method for
processing 3D models. Most of the existing meshing
methods are as follows. It is improved on the theoretical
basis of the Delaunay triangulation method. ,e Delaunay
triangulation method usually converts a point cloud into a
point set first, and then maps it from space to a plane, and
then makes the points on the plane form a closed line
segment, and then, according to the formed line segment,
extends outwards, so it is suitable for point cloud data with a
small amount of point cloud data and a tighter topological
relationship, such as the generation of finite element meshes
[5]. ,erefore, for different types of point cloud data forms,
the meshing method needs to be changed accordingly.

,e Delaunay triangulation method needs to grow the
grid unit to form a complete surface. ,ere are usually three
widely used growth algorithms, the triangulation growth
method, the segmented area method, and the point-by-point
insertion method [39].

(1) ,e principle of the triangulation growth method is
to search for the edge formed by the two closest
endpoints in the point concentration, and then
search for the endpoints at the other end of the side
according to the judgment method of the triangu-
lation network, and then proceed to the next round
of edges. ,e determination of this work is carried
out continuously until the connection of all end-
points is completed. ,e specific steps are: first select
the first endpoint, generally take the point at the
geometric midline position to facilitate growth
around, and then, search for the closest point near
this endpoint, connect the starting endpoint with the
searched point; and use the triangle division criterion
to find the third point and connect it to get the initial
division unit; the second step is based on the initial
unit, with the three edges of the unit as the initial
edge, search for the corresponding endpoint and
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connect it according to the circumscribed hollow
sphere criterion. Finally, repeat the above steps until
the points in the point set are processed.

(2) ,e segmentation method mainly divides the point
set into small and disjoint subsets by dividing and
categorizing the point set, minimizing it to the set
containing only three points, and then connecting
them by these three points. ,e Delaunay triangu-
lation unit is formed, and then, the adjacent subsets
are gradually merged, and finally the Delaunay tri-
angulation of the entire point set is formed. ,e
specific steps are: first divide the point set on the
plane into x and y directions through the coordinate
system, and sort on the y coordinate based on the x
coordinate; then set the threshold so that the number
of subsets will pass the judgment If the number is
greater than the subthreshold, divide left and right
until it reaches below the threshold, and then, the
point set in the area can be connected to form a
Delaunay triangulation.

(3) ,e idea of point-by-point interpolation is exactly
different from that of the triangulation growth
method. ,e triangulation growth method is from
the inside to the outside, and the initial Delaunay
triangulation unit is formed by points and expands
outward, while the point-by-point interpolation
method first forms a triangulation mesh in the
polygon containing all the point sets and then es-
tablishes a triangulation mesh for the internal points.
,e specific steps are as follows: first, set a polygon to
contain all the points in the point concentration,
then construct the initial triangulation unit in the set
polygon, and then iterate the next step; finally, insert
any data point in the polygon, and place it in the
triangulation. Search for the triangle containing the
point and connect it with the triangle [40].

4.2. Analysis of the Tunnel Surface Calculation Example.
Relying on the point cloud data of a certain tunnel, this
paper constructs the surface based on MATLAB. ,e point
cloud data is sorted at a certain interval after processing, and
has a certain topological relationship. ,e central axis of the
tunnel data is used as the x-axis, then x is arranged on the x-
axis according to the order and stored in the point cloud text
according to the corresponding order. When the points are
arranged at a fixed distance, the triangulation method is the
same as the quadrilateral surface. However, the formation of
triangles increases the amount of calculation, and the
boundary formed on the surface will affect the effect of the
curved surface model, so based on the Delaunay triangu-
lationmethod, the growthmethod is used to expand to adapt
to the ordered point cloud. ,e specific algorithm flow chart
is shown in Figure 1.

Specific steps are as follows:

(1) import the point cloud data, extract the coordinate
values of the points (x, y, z), sort the order of the
point sets, and sort them according to the numerical

value from large-to-small to form a three-column
matrix P;

(2) We calculate the closest distance to another point
according to the spatial value of each point and
record and save it, connect the two points and find
the third point closest to the midpoint through line
segment calculation; and determine whether the
third point meets the maximum internal angle, and
the maximum is connected. ,e point gets the tri-
angle bag as the unit point set;

(3) look for the fourth point on the opposite side of the
third point of the unit point set, and connect the first,
second, and fourth points if they are satisfied;

(4) We determine whether the fourth point satisfies the
triangle circumcircle according to the maximum
empty circumcircle criterion, if yes, reverse the di-
agonals, and the optimization ends.

Start

Obtain the coordinate values of 
points (x, y, z) to form matrix P

�e point P1 is searched to obtain the 
nearest point P2. A�er connection, the 

third point P3 is found through the midline 
of the line segment and connected

Does the third point 
meet the maximum 

internal angle

�ree points form a triangle point set

According to P1 and P2, find the point P4 on 
the opposite side that meets the P3 condition 

and connect it with P1 and P2

Swap diagonals, end of optimization

Is P4 within the triangular
circumscribed circle

Distance between 
triangulations > 5 cm

end

yes

no

no

yes

no

yes

Figure 1: Flow chart of meshing algorithm.
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(5) We determine whether the distance between the
triangular nets is greater than 5 cm, if it is satisfied, it
will be rejected, and finally, the above steps will be
looped until the calculation is completed.

According to the triangulation method, the sampling
interval is 5. ,e point cloud data of cm is constructed.
Because the tunnel surface is not a polyhedron, the trian-
gulation that exceeds the point cloud interval is eliminated,
and the final results are shown in Figures 2 and 3.

From the results in Figures 2 and 3, it can be seen that
after the tunnel surface is constructed by meshing, the
surface is complete and has good continuity, but the
smoothness of the surface is poor and the details of the local
area are not enough. ,is result shows that the curved
surface constructed by the meshing method has the short-
comings of poor smoothness and insufficient local accuracy.

4.3.ApplicationScopeAnalysis. In this method, each point in
the point cloud is on the curved surface.,e author scans the
same tunnel twice to obtain a point cloud with a distance of
1mm. ,e measuring points are arranged in a longitudinal
direction of 1 cm and a circumferential direction of one
degrees angle. ,e two fitting surfaces are compared. ,e
mean is 0.0241mm and the variance is 0.0002057mm2. It
can be seen that the height of the fitted surface is consistent
with the actual surface, and the fitting accuracy is within
0.1mm. However, the high-order surface of the surface is
discontinuous, and the normal direction of the surface will
change abruptly.,erefore, the meshingmethod can be used
as a surface fitting method for tunnel contour detection.,is
method should not be used as a surface fitting method for
tunnel monitoring measurement and flatness detection.
However, if the point cloud density is large enough or the
problem of sudden change in the normal direction of the
surface is alleviated, it can also be used as a surface fitting
method for tunnel monitoring and measurement.

5. Poisson Surface Construction

5.1. Poisson Equation. ,e Poisson equation is a partial dif-
ferential equation commonly used in mechanical engineering
and theoretical physics in mathematics, and it is derived from
the Laplace equation [7]. It is precisely because of its extremely
extensive application foundation in the fields of electromag-
netics and astronomy, coupled with its advantages in image
processing, so modern architectural design, survey photog-
raphy, film, and television animation, and other fields that
require three-dimensional modeling are all adopted.,e loose
algorithm builds a three-dimensional model.

,e Poisson equation is first expressed as the Laplace
equation without other terms. ,e△φ � 0 Laplace equation
is also called the harmonic equation, which is a kind of
partial differential equation.

,e expression of the Laplace equation is as follows:

∇2u �
z
2
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zx
2 +

z
2
u

zy
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z
2
u

zz
2 � 0. (1)

In the formula: ∇2 known as the Laplace operator, the
Laplace equation here is a second-order partial differential
equation, in the case of three dimensions, the Laplace
equation boils down to solving the second-order differen-
tiable real independent variable x, y, z real function.

Also, the Poisson equation is

△φ � f, (2)

f and φ can be equations of real or complex numbers on a
manifold, so when amanifold is amember of Euclidean space,
Poisson’s equation is ∇2φ � f, so based on the fact that the
right-hand side of the Laplace equation is 0, the Poisson’s
equation in three-dimensional coordinates can be written.
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2􏼠 􏼡φ(x, y, z) � f(x, y, z). (3)

5.2. Poisson’s Construction Principle. ,e Poisson recon-
struction is a very intuitive method. Its core idea is that the
point cloud represents the position of the object surface, and
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Figure 2: Tunnel surface constructed by meshing method.
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Figure 3: Local area of tunnel surface constructed by meshing
method.
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its normal vector represents the direction inside and outside.
By implicitly fitting an indicator function derived from an
object, an estimate of a smooth object surface can be given.
In this paper, due to the uniform distribution of data, the
surface is constructed based on the uniform distribution of
point cloud samples.

,e surface construction method based on the Poisson
algorithm is a kind of mesh reconstruction algorithm based
on implicit function, mainly, through the optimization
interpolation to fit the surface, the surface obtained is an
approximate surface, and there is a certain error. ,e main
idea is to take the point cloud data containing outer
normals as input data. According to our sample set S each S
contains multiple Pi points with internal and external
normalsNi. If all data points are on or near the surface of an
unknown model M, Poisson equation is constructed
through the internal relationship between the indicator
function ofM and the gradient, then, based on the indicator
function and M isosurface extraction, the final output
surface model of a process. Define an indicator function to
describe the entity model, this function is defined as 1
inside the model and 0 outside the model, the indicator
function χM is as follows:

χM �
0, M ∈ themo de l outsi de,

1, M ∈ themo de l internal.
􏼨 (4)

Let z � f(x, y) be a function in the region D of the
plane, the function has the first continuous partial derivative,
any point on the function (x, y) ∈ D, ,e vector zf/zxi +

zf/zyj is the gradient of the function z � f(x, y) at P(x, y),
Do remember gra df(x, y), Is the gra df(x, y) �

zf/zxi + zf/zyj.
gra df(x, y) is a vector. It is in the same direction as the

maximum derivative at that point, and the gradient is equal
to the derivative in that direction. ,e gradient value of the
indicator function χ can be calculated according to the
above formula, since the indicator function does not
change almost anywhere on the surface of the object and
the gradient is a vector field of 0, the gradient of the in-
dicator function χM is equal to the inner and outer normals
of the model surface. ,e inner relation between a set of
directed sampling points and the indicator function is
constructed. ,e gradient of the indicator function can be
used to represent the set of directed sampling points [41],
,at is,

∇χ � V
→

, (5)

∇ stands for differential operator and the above equation is
Poisson’s equation.

Figure 4 represents the set of image points, the gradient
of indicator function, indicator function, and model surface,
respectively.

,us, the problem of indicating function can be trans-
formed into that of calculating gradient. ,e goal is to find
an indicator function that minimizes the vector region
whose gradient is equal to the point cloud data that is
minχ � ‖∇χ − V

→
‖. ,en, using the divergence operator, find

an indicator function χ, so that the Laplace operator (the

divergence of the gradient) is equal to the divergence of V
→
,

which stands for

Δχ � ∇ · ∇χ � ∇ · V
→

. (6)

5.3. Poisson Construction Process

5.3.1. Define Space. First, the point cloud data must select
the space of the function to discretize the data. However,
such a unified structure becomes impractical to reconstruct
for fine detail. Because the dimensions of space are cubic in
resolution, the number of triangles increases quadratic, so it
needs to make the implicit function represent only the
reconstructed surface, point cloud is stored by octree [42],
and improve the efficiency of data extraction.,e vector V is
then introduced, where V is the set of vector fields and Fo is
the node function.

Fo(q) � F
q − o · c

o · w
􏼒 􏼓

1
o · w

3 , (7)

o is the node, o · c indicates the node center, and o · w in-
dicates the width of node o; at this point, the vector field V
can be precisely a linear Fo set; the Poisson equation is
expressed by matrix and the indicator function Fo can be
calculated effectively.

5.3.2. Selecting the Basis Function. When choosing the basis
function F, the objective is to select a function such that the
vector field V defined in the equation can be accurately
represented as a linear sum of node functions Fo.

When selecting a function, you need the linear sum of Fo
to represent the value of the function at a point in the set, let
q be that point, so we just have to sum over the node o that is
close to q. ,erefore, we set F as the n-th convolution of the
Box filter, resulting in the basis function F:

F(x, y, z) � (B(x)B(y)B(z))
∗n

. (8)

Type: ∗ stands for convolution symbol, ∗ n represents n
identical functions convolving the B (a) calculation formula
of are as follows:

B(a) �
1, |a|༜0.5,

0, otherwise.
􏼨 (9)

5.3.3. Defining the Vector Field. Because the target data is
uniformly sampled, it is generally considered that the di-
vided module is a constant. ,e vector field V needs to be
made close to the gradient of the indicator function, so the
gradient field expression defining the indicator function is
approximately

V
→

(q) � 􏽘
s∈S

􏽘
o∈NgbrD(s)

αo, Fo(q) · s · N
→

. (10)

Type: S stands for convergence of points, s is the region
adjacent to K at any point in the point set, NgbrD represents
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the eight nearest nodes of the current node o, and s · N
→

is the
vertex normal vector of node o.

5.3.4. Solving Poisson’s Equation. After obtaining the vector
field V, Poisson equation Δχ � ∇ · V

→
is established. It can be

calculated by solving the minimum function χ, vector V is
the dimension |ϑ|. ,erefore, for the coordinate o of node
vo � (∇ · V

→
, Fo), for the solution χ, we need to approach v by

the vector formed by the Laplace operator of the projection
χ, the function, and Fo in the function space. ,is translates
to 􏽐

o∈ϑ
‖v − vo‖, that is, min

x∈R|ϑ|
‖Lx − v‖ is solved [43].

5.3.5. Isosurface Extraction. Because L is relatively sym-
metric, it has a fixed structure in space. ,erefore, the heavy
grid method [44] can be used to solve the problem, and in
order to obtain a reconstructed surface zM, one must first
select a standard value and then compute from the indicator
function. ,e standard values are chosen so that the
extracted surface is very close to the position of the input
sample. We do this by evaluating the sample location and
using the average of the standard value surface extraction
values. After the standard value is obtained, the surface can
be obtained by the cube method [45], and finally, the
modules in each region are spliced to form a complete
surface.

zM � q ∈ R
3
|χ(q) � c􏽮 􏽯, (11)

V
→

(q) � 􏽘
s∈S

􏽘
o∈NgbrD(s)

αo, Fo(q) · s · N
→

. (12)

5.4. Example Analysis of Tunnel Surface Construction. In this
section, based onMATLAB, Poisson construction method is
adopted to realize the surface construction of point cloud
data of ,under Grass Mountain tunnel. ,e programming
process is shown in Figure 5.

Point cloud data with an actual interval of 5 cm was used
to construct the surface. In order to more intuitively reflect
the surface effect, point cloud data of the arch with large
curvature were selected to construct the surface. ,e tunnel
surface constructed by the Poisson construction method is
shown in Figure 6.

It can be seen from Figure 6 that a complete surface can
be obtained after the point cloud is constructed by Poisson,
and the concave and convex contour of the surface is rel-
atively clear. On this basis, the Y-axis area from
−0.5m∼3.0m is enlarged to obtain Figure 7, and the results
are shown in the figure.

Figure 7 show the tunnel surface obtained by Poisson
reconstruction method is continuous and complete, which can
reflect the concave and convex condition of the tunnel surface.

Figure 8 shows that the Poisson construction surface
(grey) is highly coincident with the point cloud (red). When
the point cloud is further thinned, the surface can still be
further smoothed. When the full-section tunnel surface is
fitted, the range of the Poisson construction surface will be
larger than the range of the point cloud surface, and manual
intervention is required to set the boundary of the surface
fitting. ,e Poisson-constructed surfaces of the point cloud
obtained after scanning the same section of the tunnel twice
are also almost completely coincident.

5.5. Application ScopeAnalysis. ,e points in the point cloud
of this method are all on the surface and the high order is
continuous, and the normal direction of the surface will not
change abruptly. ,erefore, the Poisson-constructed surface
can be used as a fitting surface for tunnel monitoring and
measurement. However, this method requires manual in-
tervention and the setting of surface fitting boundaries, which
is not suitable for the surface fitting of tunnel contour de-
tection with low requirements on accuracy and high effi-
ciency. If the point cloud is thinned, the Poisson-constructed
surface can also achieve a smoother effect, meeting the re-
quirements of the reference surface for flatness detection.

6. Lagrange Interpolation

6.1. Lagrange Interpolation. Lagrange interpolation is usu-
ally used to fit curves. In the coordinate system, if we know
the value of y � f(x) at n plus 1 different points
x0, x1 . . . xn, the values of the function are y0, y1 . . . yn, then
the function (x0, y0), (x1, y1) . . . (xn, yn) passes rough the
n+ 1 points. ,en, it can be considered to construct a
polynomial y � Pn(x) whose degree does not exceed n over
the n+ 1 points so that it satisfies

Pn xk( 􏼁 � yk, k � 0, 1, . . . n(∗ ). (13)

1
1 1

1
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00

0

Directed point set Indicator function gradient

M

Indicator function Model surface

0
0

0
0

0 0

0

00

▽
M


MV

→

Figure 4: Poisson building process.
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To estimate any point ξ, ξ ≠ xi, i � 0, 1, . . . n, we can use
the value of Pn(ξ) as an approximation of the exact value
f(ξ). Equation (∗ ) is the interpolation condition and
contains the xi (I� �0, 1, ..., n), the minimum interval
formed. Among them, polynomials of less than n degrees
that meet interpolation conditions exist and are unique.

So, there are a total of n points
(x0, y0), (x1, y1) . . . (xn−1, yn−1) on the plane. We are going
to draw a function f(x) that takes its graph through these n
points; practice the following: let the set Dn be the set of
indices of points, (x, y)Dn � 0, 1, . . . n − 1{ }. Let us do n
polynomials, Pj(x), j ∈ Dn. For any of them, k ∈ Dn, we
have Pk(x), Bk � i | i≠ k, i ∈ Dn􏼈 􏼉.

Pk(x) � 􏽙
i∈Bk

x − xi

xk − xi

. (14)

In the calculation formula, pk(x) is a degree N− 1
polynomial, and we meet the conditions ∀m ∈ Ik, pk(xm) �

0 and pk(xk) � 1.
,is is what we get

Ln(x) � Σ
n−1

j�0
yjpj(x). (15)

6.2. Lagrange Interpolation Surface Construction Process.
,rough its one-dimensional definition method, it can be
deduced that when there is a known node (xi, yi), its two-
dimensional value is f(xi, yi), among
i � 1, 2, . . . , m; j � 1, 2, . . . , n. In this case, the Lagrange
interpolation polynomial is

L(x, y) � 􏽘

1≤ i≤m

1≤ j≤ n

f xi, yi( 􏼁Lij(x, y)

� 􏽘
n

j�1
􏽘

m

i�1
Mi(x)f xi, yi( 􏼁⎛⎝ ⎞⎠Nj.

(16)

In the calculation formula,

Mi(x) � 􏽙
m

r�1

r≠ i

x − xr

xi − xr

, (i � 1, 2, . . . , m);

Nj(y) � 􏽙

m

t�1

t≠ i

y − yt

yi − yt

, (j � 1, 2, . . . , n).

(17)

Get the point (x, y, z)
and save it Define space Define basis function

Extract isosurface Solving Poisson equation Select vector field

Generate target surface

Figure 5: Algorithm flow chart of constructing surface by Poisson.
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Figure 7: Local area of tunnel surface constructed by Poisson.

Figure 8: ,e full-section tunnel surface obtained by Poisson
construction.
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In order to facilitate calculation in practical application,
we can write it as a matrix.

L(x, y) �

N1(y)

N2(y)

. . .

Nn(y)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

f x1, y1( 􏼁 f x2, y1( 􏼁 . . . f xm, y1( 􏼁

f x1, y2( 􏼁 f x2, y2( 􏼁 . . . f xm, y2( 􏼁

. . . . . . . . . . . .

f x1, yn( 􏼁 f x2, yn( 􏼁 . . . f xm, yn( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M1(x)

M2(x)

. . .

Mm(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� N
T
(y) · F · M(x).

(18)

Suppose there are k× s points (xi
′, yj
′)(i � 1, 2, . . . , k; j �

1, 2, . . . , s) to be interpolated, the formula to be recon-
structed by interpolation can be expressed in the form of
matrix.

L �

L x1′, y1′( 􏼁 L x2′, y1′( 􏼁 . . . L xk
′, y1′( 􏼁

L x1′, y2′( 􏼁 L x2′, y2′( 􏼁 . . . L xk
′, y2′( 􏼁

. . . . . . · · · . . .

L x1′, yS
′( 􏼁 L x2′, yS

′( 􏼁 . . . L xk
′, yS
′( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

In the calculation formula, Nj � N(yj
′)(j � 1, 2, . . . , s);

Mi � M(xi
′)(i � 1, 2, . . . k).

At the same time in Lagrange interpolation recon-
struction using known points to interpolate a control point
because polynomial times will increase more calculation,
therefore, local interpolation can be performed by using the
known points adjacent to known points to be constructed, so
this gives us the formula [46]:

L(x, y) � 􏽘
i∈Φpx

􏽘
j∈Φqy

Mi(x)f xi, yi( 􏼁⎛⎜⎝ ⎞⎟⎠Nj(y). (20)

In the calculation formula,Φpx represents the abscissa
set of p points in the node whose abscissa is closest to X, and
Φqy represents the abscissa set of q points in the node whose
ordinate is closest to y. ,erefore, the above formula rep-
resents the interpolation construction of the p × q points by
using the known nodes closest to (x, y), where, because
lk(x) � 􏽑

n

j � 1
j≠ k

x − xj/xk − xj, (k � 1, . . . , n) is differen-

tiable to order n minus 1 with respect to x, so equation (13)
has a continuous derivative of order n-1, because Mi(x) �

􏽑
m

r � 1
r≠ i

x − xr/xi − xr has partial derivative with respect to

m minus 1 of x, so Nj(y) � 􏽑
m

t � 1
t≠ i

x − xt/xi − xt has n

minus 1 continuous partial derivatives with respect to y, so
L(x, y) has n− 1 andm− 1 partial derivatives with respect to
x and y, respectively. If Φpx is the abscissa set of p points
closest to the abscissa x of the interpolation point, and ifΦqy

is the set of x coordinates of q points closest to y of the
interpolation point, then Mi(x) and Nj(y) in formulas
(3)–(19) have continuous partial derivatives of order P − 1
and q − 1 with respect to x and y, respectively. So, the
surfaces obtained during interpolation have continuous
partial derivatives of order P − 1 and q − 1 with respect to x
and y, respectively. It follows that when p, q≥ 2, it can
guarantee the continuity of the surface.

6.3. Tunnel Surface Construction and Effect Analysis. ,e
calculation is realized based on MATLAB. ,e specific
method is as follows:

(1) First, we import point cloud data to obtain coor-
dinate values and form two-dimensional functions of
control points (X, Y) from X;

(2) ,e transpose matrix is obtained according to the
calculation of control points;

(3) determine the number of interpolation points to
form nodes and convert the nodes into matrices;

(4) Interpolating function is obtained by transposing
matrix and two-dimensional function.

According to the properties of Lagrange interpolation
method, Lagrange interpolation is polynomial in nature
and can fit a certain amount of point cloud data into a
polynomial function surface. According to this property,
multiple polynomial functions can be constructed from X
and Y. However, because of its characteristics, although the
surface fitting effect can be achieved in a certain local range,
the number of polynomial functions of multiple times
fluctuates greatly, which is easy to lead to excessive
calculation.

,is paper adopts Leica mountain tunnel point cloud
data to carry out surface interpolation for local range point
cloud. ,e data in this area have typical characteristics of
tunnels and is located in tunnel vault with large curvature.
,e surface can be observed after interpolation. After the
data of the experimental point cloud are processed, the
surface is constructed by Lagrange interpolation method, as
shown in Figures 9 and 10.

Analysis of Figures 9 and 10 shows that the tunnel
surface constructed by the Lagrange interpolation method
can reflect the overall contour of the tunnel surface and show
basic details of the tunnel surface in local areas. However, the
surface constructed by this method has poor smoothness
and a convex hull. ,e results show that the Lagrange in-
terpolationmethod has some shortcomings in tunnel surface
construction, such as low smoothness and partial convex
hull.
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6.4. Application Scope Analysis. ,e points in the Lagrange
interpolation surface point cloud are all on the surface, and
the high order is continuous, and the normal direction of the
surface will not change abruptly. ,erefore, the Lagrange
interpolation surface can be used as a fitting surface for
tunnel monitoring and measurement. However, considering
that it takes a long time to calculate, it should not be used as a
method for tunnel contour detection. If the point cloud is
thinned, the Lagrange interpolation surface can also achieve
a smoother effect because of its high-order continuous
characteristics, which can meet the requirements of the
reference surface for flatness detection.

7. Conclusion and Prospect

As an information sensing device, the 3D laser scanning
device can be used to build a 3D model after fitting the
measured point cloud. ,e 3D model can be combined with
5G, BIM, cloud computing, the Internet of things, and other
technologies to achieve precise positioning and intelligent
decision-making. In this way, precise tunnel excavation,
intelligent construction, and intelligent operation and
maintenance can be realized. Tunnel monitoring measure-
ment, contour detection, and flatness detection require
different fitting methods, and the abovementioned fitting
methods can be applied to tunnel 3D laser scanning de-
tection and monitoring to varying degrees.

(1) perform surface fitting first. In the data processing of
tunnel detection and monitoring, the information in

the three-dimensional laser scanning point cloud of
the tunnel can be extracted as much as possible to
overcome the shortcomings of scattered point clouds
and improve the detection and monitoring accuracy.

(2) ,e meshing method fits the curved surface and the
point cloud completely and can be used as a curved
surface fitting method for tunnel contour detection.
Because of its high-order discontinuity and the
sudden change of the normal line, it is generally not
suitable as a surface fitting method for tunnel
monitoring and measurement, but it can still be
considered as a surface fitting method for tunnel
monitoring andmeasurement after the point cloud is
encrypted. Considering the high-order discontinuity
of this method, this method is not used as a fitting
method for the data plane for tunnel flatness
detection.

(3) ,e fitting surface and the point cloud of the Poisson
reconstruction method are completely coincident
and can be used as a surface fitting method for tunnel
contour detection. However, this method will appear
redundant surfaces in the full-section fitting of the
tunnel, so the calculation efficiency is low, and it is
not recommended. It is used as a fitting surface
method for tunnel contour detection. Because the
method is highly continuous and the fitting surface is
stable, it is recommended to be used as the surface
fitting method for tunnel monitoring and mea-
surement. Considering the high-order continuity of
this method, it can be used as a datum surface fitting
method for tunnel flatness detection after the point
cloud is thinned.

(4) ,e Lagrange’s construction surface is completely
coincident with the point cloud and can be used as a
surface fitting method for tunnel contour detection.
However, this method has many iterations and takes
a long time, so it is not recommended as a surface
fitting method for tunnel contour detection. Because
the method is highly continuous and the fitting
surface is stable, it is recommended to be used as the
surface fitting method for tunnel monitoring and
measurement. Considering the high-order conti-
nuity of this method, it can be used as a datum
surface fitting method for tunnel flatness detection
after the point cloud is thinned.
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