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Particle swarm optimization (PSO), one of the classical path planning algorithms, has been considered for unmanned aerial vehicle
(UAV) path planning more frequently in recent years. A large amount of studies on UAV path planning based on modified PSO have
been reported.However,mostUAVpath planning algorithms still optimize only one kind terrain problemwhich ismountain terrain. At
the same time, many modified PSO algorithms also have some problems, such as insufficient convergence and unsatisfactory efficiency.
In this paper, six kinds of terrain functions of UAV path planning are proposed to simulate real-world application.*e terrain functions
contain city, village without houses, village with houses, mountainous area without houses, mountainous area with houses, and
mountainous area with a huge building. Inspired by CLPSO and BLPSO, we proposed a new double-dynamic biogeography-based
learning particle swarmoptimization (DDBLPSO) algorithm to solve these problems.*e double-dynamic biogeography-based learning
strategy replacing the traditional learningmechanism from the personal and global best particles is used to select the learning particles. In
this strategy, each particle will learn from the better one of two selected particles which are not worse than itself. However, one random
component of particle will replaced by corresponding component of other particle if all components of the particle only learn from itself.
In this way, particles sufficiently learn from better objects and maintain the ability of jumping out of local optimality. *e superiority of
our algorithm is verified with four relevant algorithms, a PSO variant, and a BBO variant on the benchmark suite of CEC2015. Real-
world application demonstrates that the algorithmwe proposed outperforms four relevant algorithms, a PSO variant, and a BBO variant
both in small-scale problems and large-scale problems. *is paper shows a good application of our novel algorithm.

1. Introduction

UAV path planning is designed in a space which represents
environment experienced by UAV during its flight. *e path
is a link formed by the combination of all the points and the
lines connecting them, and each path is a solution. Let
population X � [X1,X2, . . . ,XN], where N is population
size and Xi is the ith solution. Every path has m points, and it
does not include the starting and the end points.
Xi � [xi1, yi1, zi1; . . . ; xiy, yiy, ziy; . . . ; xim, yim, zim], where
(xiy, yiy, ziy) is the coordinate of the jth point of the ith
path. Solution is an m × 3 matrix, and population is an m ×

3 × N tensor. *e space is divided into m + 1 equal parts
along X axis which ensures that the flight path goes from the

starting point to the end point without forming a circle
during halfway.

UAV path planning is a multiobjective constraint
problem, which is described as follows:

minfi(X), i � 1, 2, . . . , m,

cj(X) ≤ 0, j � 1, 2, . . . , p,
(1)

where fi(X), i � 1, 2, . . . , m, are objective functions and
cj(X)≤ 0, j � 1, 2, . . . , p, are constraints. We transformed
the multiobjective constrained optimization into single-
objective unconstrained optimization in order to simplify
the problem. All objectives and constraints are multiplied by
a weight coefficient and then added. Finally, the objective
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cost function is defined as equation (2) aiming to minimize
the total cost.

F � 􏽘
m

i�1
Wi × fi + 􏽘

p

j�1
Wj+m × cj, (2)

where Wi(i � 1, 2, . . . , m + p) are weight coefficients. In this
paper, UAV aims to fly as short distance as possible, fly as
low as possible, try not to cross danger zones as possible, and
try not to cross the ground and buildings as possible. So,
three objectives and one constraint are selected which are
described as follows:

F � W1 × flength + W2 × faltitude

+ W3 × fdanger + W4 × ccollision,
(3)

where W1, W2, W3, W4 ∈ (0, 1] are weight coefficients,
flength is a path function penalizing the longer paths, faltitude
is an altitude function penalizing higher average altitudes,
fdanger is a danger function penalizing the paths going
through danger zones, and ccollision is a collision function
penalizing the paths colliding with ground or buildings.
flength, faltitude, fdanger are objective functions, and ccollision is
a constraint function.

Path function is used to penalize longer paths which are
modelled as equation (4) in this paper.

flength � 1 −
LP1P2

Ltraj
, (4)

where LP1P2 is the length of the line segment which connects
the starting point P1 and the end point P2 and Ltraj is the
actual length of the trajectory. *is means that Ltraj is the
length of a broken line connecting all points from the
starting point to the end point. It is easy to get that
flength ∈ (0, 1].

Altitude function is used to penalize higher average
altitudes which is modelled as equation (5) in this paper.

faltitude �
Atraj − Zmin

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Zmax − Zmin
, (5)

where Atraj is the average altitude and Zmin and Zmax are the
upper and lower limits of the elevation in the search space.
However, we usually choose a very low height rather than
zero as the optimal choice which means that Zmin is a small
positive number. It is easy to get faltitude ∈ (0, 1].

Danger function is used to penalize the paths going
through danger zones which is modelled as equation (6) in
this paper.

fdanger �
Ldanger

􏽐
n
i�1 di

, (6)

where Ldanger is the sum of the length of the subsections of
the trajectory which go through danger zones, di is the
diameter of the ith danger zone, and n is the number of
danger zones. In this paper, danger zone usually means
that radar can detect and is described as a hemispheric
region. If fdanger > 1, fdanger is set to be 1 to ensure
fdanger ∈ (0, 1].

Collision function is used to penalize the paths colliding
with ground or buildings which is modelled as follows:

ccollision �

0, Linfeasible � 0,

P +
Linfeasible

Ltraj
, Linfeasible ≠ 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

where Linfeasible is the total length of the subsections of the
trajectory which travels below the ground or buildings, P is
the penalty constant, and Ltraj is the length of the trajectory.
It is easy to say that ccollision ∈ 0{ }⋃ ​ [P, P + 1]. If cost
function F(Xi) is greater than P, it means that F(Xi) is an
infeasible solution.

*ere are many modified PSO algorithms, and some of
them have been applied to UAV path planning [1–10].
However, many PSO variants still have some problems like
insufficient convergence and accuracy and unsatisfactory
efficiency. In this paper, we proposed a novel double-dy-
namic biogeography-based learning particle swarm opti-
mization (DDBLPSO) algorithm to solve these problems.
*e algorithm not only considers the problem of insufficient
convergence and accuracy and unsatisfactory efficiency for
global optimization but also can be applied to UAV path
planning. *e main contributions of our paper are sum-
marized as follows.

(i) A novel double-dynamic biogeography-based
learning strategy replacing the traditional learning
mechanism is proposed. *is strategy makes the
utmost of the advantages of particles which only
learn from particles that are not worse than
themselves.

(ii) Six kinds of terrain functions are designed in UAV
path planning.

(iii) *e experiment results show that DDBLPSO
demonstrates the best performance on UAV path
planning with four other representative algorithms,
a PSO variant, and a BBO variant in CEC2015
benchmark functions and UAV path planning.

*e remainder of the paper is organized as follows.
Section 2 gives the literature review. Section 3 introduces
several existing algorithms such as PSO, BBO, CLPSO, and
BLPSO. Section 4 shows the details of the proposed algo-
rithm DDBLPSO. Section 5 presents simulation results for
global optimization. Application in UAV path planning is
elaborated in Section 6. Section 7 draws the conclusions.

2. Literature Review

Unmanned aerial vehicle (UAV) has been applied to many
areas with the rapid progress of science and technology.
Evolutionary algorithm-based methods solving the UAV
path planning problem are always a hot topic. In [1], the
authors proposed an evolutionary algorithm based on off-
line/online path planning for UAV navigation. Phase angle-
encoded and quantum-behaved particle swarm optimization
was proposed and applied to three-dimensional route
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planning for UAV [2]. Pehlivanoglu [3] introduced a new
vibrational genetic algorithm which was enhanced by
Voronoi diagram for path planning of autonomous UAV.
An improved constrained differential evolution algorithm
was introduced for UAV global route planning [4]. *e
algorithm demonstrates a good performance in terms of the
solution quality, robustness, and the constraint-handling
ability. A method was proposed to compare the planner
performance by jointly employing several general and
problem-specific quality indexes, which takes into account
the complexity and particularities of the problem [5]. In [6],
a novel predator-prey pigeon-inspired optimization
(PPPIO) was proposed to solve the three-dimension path
planning problem for unmanned combat air vehicle
(UCAV) in dynamic environment. *is algorithm mainly
focuses on optimizing the flight route considering different
types of constraints under complex combating environment.
*e modified wolf pack search (WPS) was applied to
compute the quasi-optimal trajectories for the rotor wing
UAVs in the complex three-dimensional (3D) spaces in-
cluding the real and fake 3D spaces [7]. In [8], the authors
proposed a constrained adaptive multiobjective differential
evolution algorithm for bistatic SAR path planning. It
generates multiple feasible paths for the UAV receiver with
different trade-offs between navigation for UAV and bistatic
SAR imaging performance. *e authors compared genetic
algorithm and particle swarm optimization for real-time
UAV path planning in [9].

Particle swarm optimization (PSO) [10] is one of the most
commonly used algorithms to solve the problems of UAV path
planning. In recent years, many improved PSO variants have
emerged one after another. In [11], the authors put forward an
adaptive particle swarm optimization (APSO) algorithm, in
which two main steps are conducted to adaptively adjust the
parameters when the swarm lies in a different evolutionary
state (exploration, exploitation, convergence, and jumping out)
in each generation. *en, an elitist learning strategy was used
when the evolutionary state was classified as convergence state.
Nickabadi et al.[12] studied on adaptive inertia weight and
introduced a novel particle swarm optimization algorithm.
Numerical experiments show that this algorithm is quite ef-
fective in adapting the value of w in the dynamic and static
environments. Li and Yao [13] presented a new cooperative
coevolving particle swarm optimization (CCPSO) algorithm to
scale up particle swarm optimization algorithms in solving
large-scale optimization problems (up to 2000 real-valued
variables). Comprehensive learning particle swarm optimiza-
tion (CLPSO) uses a learning strategy whereby all other
particles’ historical best information is used to update a par-
ticle’s velocity [14]. In [15], the authors proposed a novel
biogeography-based optimization algorithm with momentum
migration and taxonomic mutation to deal with problems
whose function values change dramatically or barely. In [16],
the authors proposed an enhanced particle swarm optimiza-
tion algorithm (pkPSO) by combining k-nearest neighbours
(k-NN) with pattern search (PS). At the same time, the co-
operative effect of k-NN and PS strategies was verified. A novel
particle swarm optimization algorithm was proposed for pa-
rameter determination and feature selection of support vector

machines [17]. A novel PSO-GA-based hybrid training
algorithm with Adam optimization which performs well in
training artificial neural networks was introduced by Yadav
and Anubhav [18]. In [19], the authors presented a cellular
learning automata-based bare bones PSO algorithm with
maximum likelihood rotated mutations. *e PSO technique
was used to identify the uncertain physical parameters of a real
vehicle ETC system [20]. In [21], the authors proposed a new
particle swarm optimization algorithm with simple PID-based
strategy, which has good global optimization ability. Bioge-
ography-based optimization (BBO) is an algorithm that sim-
ulates biological migration to search optimal solution [22].
Biogeography-based learning strategy is a nice method for
optimization. In [23], biogeography-based learning particle
swarm optimization (BLPSO) uses a learning strategy based on
migration of biogeography-based optimization and outper-
forms other representative algorithms. In [24], the authors
introduced a hybrid differential evolution with biogeography-
based optimization for global numerical optimization.

3. Relevant Algorithms

3.1. Particle Swarm Optimization (PSO). Particle swarm
optimization is a classical evolutionary computing technique
which was firstly proposed by Eberhart and Kennedy [10].
Inspired from the study of the predation behaviour of birds,
the main idea of PSO algorithm is sharing cooperation and
information among individuals to find the optimal solution.
PSO simulates birds in a flock by designing a massless
particle, which only has velocity and position. Velocity
represents how fast and which direction the particle moves
along. Position represents where the particle is. For each
particle, only the personal best experience and the global best
experience of the entire swarm can be learned. Let xi �

(xi1, xi2, . . . , xi D)T and vi � (vi1, vi2, . . . , vi D)T denote the
position and velocity of particle i(i � 1, 2, . . . , N{ }), re-
spectively, where D is dimension of the initial space and N is
population size. Let pbesti � (pbesti1, pbesti2, . . . , pbesti D)T

and gbest � (gbest1, gbest2, . . . , gbestD)T be the personal
best position of particle i and the global best position of the
whole swarm. *e update of velocity and position of the
particle is indicated as follows:

vid � w∗ vid + c1 ∗ rand1(0, 1)∗ pbestid − xid( 􏼁

+ c2 ∗ rand2(0, 1)∗ gbestd − xid( 􏼁,

xid � xid + vid,

(8)

where i � 1, 2, . . . , N; d � 1, 2, . . . , D; w is the inertia weight;
c1 and c2 are the acceleration coefficients; and rand1(0, 1)

and rand2(0, 1) ∈ [0, 1] are uniform random numbers. *e
algorithm sets the maximum velocity to prevent the velocity
from getting too large.*e particle will be set as the border of
initial region if it flies out of initial region.

3.2. Biogeography-Based Optimization (BBO). In [22], the
author proposed a new algorithm named biogeography-
based optimization which solves optimization problems by
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simulating biological migration. In BBO, solution is also
called as habitat, fitness of solution is called as habitat
suitability index (HSI), and component of solution is called
as suitable index variable (SIV). *e main body of BBO is
migration operation and mutation operation.

Each habitat xi(i � 1, 2, . . . , N) has two parameters to
describe the migration, which are an immigration rate λi and
an emigration rate μi. Both parameters are closely related to
HSI. For high HSI habitat, there will be a high trend of
outward migration. At this time, the emigration rate is high
and the immigration rate is low due to the pressure of species
competition. However, for low HSI habitat, the opposite is
true. Assuming habitat xi currently accommodates Si spe-
cies, Smax is the maximum number of species. Immigration
rate λi and emigration rate μi are usually described as
follows:

λi � I∗ 1 −
Si

Smax
􏼠 􏼡,

μi � E∗
Si

Smax
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

where I is the maximum immigration rate and E is maxi-
mum emigration rate. *e component xid(d � 1, 2, . . . , D)

of habitat xi will immigrate depend on immigration rate λi.
*e habitat xj is selected depending on emigration rate μj.

*e properties of the habitat such as HSI and the number
of species may changes due to unexpected events. At the
same time, mutation rate depends on species probability.
According to biogeography, when the number of species in
habitat is too large or too small, species probability is low.
When the number of species in habitat is moderate, species
probability is high. Mutation rate mi is described as follows:

mi � mmax ∗ 1 −
Pi

Pmax
􏼠 􏼡, (10)

where Pi is the species probability of xi decided by the
number of species Si, Pmax is the maximum species prob-
ability, and mmax is the maximum mutation rate.

3.3. Comprehensive Learning Particle Swarm Optimization
(CLPSO). Comprehensive learning particle swarm optimi-
zation [14] adopts the strategy of comprehensive learning to
select the objects to learn instead of learning from itself and
the global optimal individual. *e velocity updating equa-
tion in CLPSO is defined as follows:

vid � w∗ vid + c∗ rand(0, 1)∗ pbestfi(d),d − xid􏼐 􏼑, (11)

where fi defines which particles’ pbests that the particle i

should follow and rand(0, 1) ∈ [0, 1] is a uniform random
number. *e inertia weight w in CLPSO is a linear atten-
uation coefficient. CLPSO assigns a learning probability Pci

for each particle i using the following equation:

Pci � 0.05 + 0.45∗
exp(10(i − 1)/N − 1) − 1

exp(10) − 1
. (12)

For each solution xi, it will learn from many particles
instead of only two particles. Each component of particle i

learn from itself or other particle depending on learning
probability Pci. A random component of particle i will learn
from other particle if all its components learn from itself.*e
higher fitness value a solution has, the greater possibility that
particle will be learned.

3.4. Biogeography-Based Learning Particle SwarmOptimization
(BLPSO). Biogeography-based learning particle swarm op-
timization [23] adopts the strategy of migration operation of
BBO to select the objects to learn. Each component of
particle i learns from itself or a selected particle j depending
on immigration rate λi. *e selected particle j depends on
emigration rate μj. A random component of particle i will
learn from other particle if all components of particle i learn
from itself. *e higher the fitness value of a solution is, the
smaller the immigration rate and the greater the migration
rate of the particle are. It means that the better particle has
larger probability to be learned and the worse particle has the
larger probability to learn from others.*e velocity updating
equation in BLPSO is the same as equation (11).*e learning
probability Pci for particle i and the selected probability Psj

for particle j can be expressed as follows:

Pci � λi, (13)

Psj �
μj

􏽐
N
k�1 μk

, (14)

It should be noted that learning probability Pc is
different from selected probability Ps. Particle i has a
probability of learning probability Pci to learn from other
particles. At the same time, particle j has a selected prob-
ability Psij to be selected as an object which particle i learn
from. *e relationship between learning probability and
selected probability is shown in Figure 1.

It is worth mentioning that it uses the quadratic mi-
gration model instead of the linear migration model. *e
quadratic migration model is as follows:

λi � I∗ 1 −
Si

Smax
􏼠 􏼡

2

,

μi � E∗
Si

Smax
􏼠 􏼡

2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(15)

*e differences of CLPSO and BLPSO are learning
probability and the selection strategy of the learning particle.

4. Double-Dynamic Biogeography-Based
Learning Particle Swarm
Optimization (DDBLPSO)

Although many promising PSO variants have emerged, they
still have some problems like insufficient convergence and
accuracy and unsatisfactory efficiency. *ese cause them to
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perform poorly on some complicated functions such as
multimodal functions, hybrid functions, composition func-
tions, and real-world problems. Regardless of CLPSO or
BLPSO, there is a probability that particle learns from those
particles with smaller fitness than itself. *ese strategies lead
some superior particles are not taken full advantage of their
superiority and result a low convergence. A double-dynamic
selection strategy based on biogeography-based learning is
proposed in this paper, in which particles learn from the better
one of two dynamic roulette winners. *is strategy guides the
particle to learn from others that are not worse than itself. In
this way, the advantages of the superior particles will be greatly
exploited.

4.1. Dynamic Biogeography-Based Learning. Original bio-
geography-based learning strategy guides particles to learn
from the promising particles. However, most particles still
have a certain probabilities of learning from worse particles.
For each particle, dynamic biogeography-based learning
strategy only guides it to learn from other particles not worse
than itself. All the particles are sorted in ascending order
based on fitness. Particle i will learn from a selected particle
if a uniform random number generated in [0,1] is smaller
than predefined λi. *e selected probability Psij of particle j

being selected by particle i is defined as follows:

Psij �
μj

􏽐
N
k�i μk

, (16)

where j≥ i.*e greater the index number is, the higher fitness
the particle has.*e learning object particle j is selected with a
dynamic roulette which constitutes even more competitive
individuals μi, μi+1, . . . , μN. In this way, particle will not learn
from the worse particles which can reduce the possibility for
the particles getting worse and worse. Generally speaking, on
the one hand, dynamic biogeography-based learning strategy
keeps the worse particles larger exploration abilities to learn
from others. On the other hand, the strategy gives the better
particles fewer objectives to learn from. It should be pointed
out that the best solution only can learn from itself.

4.2. Double-Dynamic Biogeography-Based Learning.
Original biogeography-based learning strategy only has one
selected particle to learn while original comprehensive

learning strategy has two selected particles and then chooses
the better one. *e strategy has two selected particles, which
has a greater possibility to have a high fitness offspring than
other strategy only has one selected particle. Inspired by
comprehensive learning strategy, double-dynamic bioge-
ography-based learning also has two selected particles and
leaves the better one to ensure the high rate of convergence.
*is strategy allows particles to adequately learn from better
particles. For each component xid, the learning objective
xLi,d is selected by using the following equation:

xLi,d �
xad, if fitness of xa is greater than fitness of xb,

xbd, if fitness of xa is smaller than fitness of xb,
􏼨

(17)

where xa and xb are two particles which are selected by
dynamic roulette and xad and xbd represent the dth com-
ponent of xa and xb, respectively.

4.3. Mutation. According to above strategies, although the
particles will fly to a better area, particles are easy to fall into
local optimum. One random component of particle will be
replaced by other particle’s component if the particle only
learns from itself. Only high fitness particles have large
probability to learn from themselves. *ere are two reasons
for this phenomenon. One is that a high fitness particle has a
larger immigration rate. *e other is that a high fitness
particle only has few particles better than itself. *is strategy
helps particles to jump out of local optimum. If all com-
ponents of xi only learn from themselves, the learning
objective xLi is set as follows:

xLi,j � xl,j, if xLi �� xi, (18)

where j and l are random numbers and
l ∈ 1, 2, . . . , i − 1, i + 1, . . . , N{ }, j ∈ 1, 2, . . . , D{ }.

In the early stage of DDBLPSO, the algorithmic search
area is large because initial particles evenly distribute in the
search area. In the last stage of DDBLPSO, the algorithmic
search area becomes smaller and smaller because most
particles tend to be very close together. However, the better
particle will have the greater probability to learn from other
particle's past optimal position because of the mutation
mechanism. It prevents the algorithm from falling into local
optimum.

4.4. Algorithm Process. Double-dynamic biogeography-
based learning particle swarm optimization is proposed
based on above strategies. *e process of DDBLPSO is
described in Algorithm 1.

DDBLPSO, CLPSO, and BLPSO have some common-
alities and differences. It is necessary to illustrate the dif-
ferences among them. Twomain differences are summarized
as follows.

(i) In CLPSO, learning objective is selected uniformly
and randomly. In BLPSO, learning objective is se-
lected by roulette based on equation (14). In

particle 1

particle j

particle N

particle i

Pci

1 - Pci

particle i

PsiN

Psij

Psi1

…
…

Figure 1: Relationship between learning probability and selected
probability.
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DDBLPSO, learning objective is selected by the
dynamic roulette based on equation (16).

(ii) In BLPSO, each component of a particle only has one
learning objective. However, in CLPSO and
DDBLPSO, each component of a particle has two
learning objectives and then selects the better one.

5. Numerical Simulations for
Global Optimization

5.1. Test Functions and Parameter Settings. CEC2015 [25]
benchmark functions are used to verify the performance of
DDBLPSO. CEC2015 benchmark suite is simply introduced
as follows. f1 and f2 are unimodal functions, f3 − 5 are
multimodal functions, f6 − 8 are hybrid functions and f9 −

15 are composition functions.
CLPSO [14] is a classical algorithm proposed based on

PSO [10], and BLPSO [23] is an algorithm proposed based
on BBO [22] and PSO. Inspired by CLPSO and BLPSO, we
proposed DDBLPSO. DDBLPSO has an obvious relation-
ship with BBO, PSO, CLPSO, and BLPSO, so we selected
these four algorithms for comparison experiments. At the
same time, we also selected two other representative algo-
rithms which are PBSPSO [21] and DEBBO [24] for

comparison experiments. We conducted four sets of nu-
merical experiments which are labelled as experiment one,
experiment two, experiment three, and experiment four.
DDBLPSO is compared with four relevant algorithms (PSO,
BBO, CLPSO, and BLSPSO), a PSO variant (PBSPSO), and a
BBO variant (DEBBO). Design of the four experiments is
shown in Table 1. *e maximal number of function eval-
uations (maxFES) is set as 10000∗D. Search range is
[−100, 100]D, and 30 independent runs are conducted in
MATLAB 2017b. Other parameters are shown in Table 2.

5.2. Experimental Results and Discussion. Results of exper-
iment one, experiment two, experiment three, and experi-
ment four are statistically shown in Tables 3–6, respectively.
Tables 7–10 show the ranks of five algorithms according to
the Friedman test of experiment one, experiment two, ex-
periment three, and experiment four, respectively. Min,
Mean, Median, and Std indicate the minimum function
error value, the mean function error value, the median
function error value, and the standard deviation of error
values, respectively. In order to exhibit the evolution trend of
five algorithms more vividly, converging curves of the av-
erage best fitness of functions in experiment one and ex-
periment three are shown in Figures 2 and 3.*e converging

(1) Initial maximum velocity vmax, upper bound xmax and lower bound xmin of the initial region, population x, velocity v, inertia
weight w, acceleration coefficient c, the maximal number of function evaluations maxFES;

(2) Record personal best position pbest and global best position gbest;
(3) while FES<maxFES do
(4) Sort solutions in ascending order based on fitness;
(5) Calculate immigration rate λi and emigration rate μi(i � 1, 2, . . . , N), update inertia weight w, and let learning population

xL � zeros(size(x));
(6) for i � 1 to N

(7) for d � 1 to D

(8) If rand< λi

(9) Select pbesta and pbestb(a, b ∈ 1, 2, . . . , N{ }) with a dynamic roulette;
(10) if fitness of xa is greater than fitness of xb

(11) xLid � pbestad;
(12) else
(13) xLid � pbestbd;
(14) end if
(15) else
(16) xLid � pbestid
(17) end if
(18) end for
(19) if all(xLi �� pbesti)
(20) Randomly select j≠ i(j ∈ 1, 2, . . . , N{ }) and l(l ∈ 1, 2, . . . , D{ });
(21) xLid � pbestid;
(22) end if
(23) end for
(24) v � w∗ v + c∗ rand(size(x)).∗ (xL − x).;
(25) v(v> vmax) � vmax; v(v< − vmax) � −vmax;
(26) x � x + v;
(27) x(x>xmax) � xmax; x(x<xmin) � xmin;
(28) Update personal best position pbest and global best position gbest;
(29) end while
(30) Output the final result.

ALGORITHM 1: Double-dynamic biogeography-based learning particle swarm optimization (DDBLPSO).
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Table 2: Parameters of seven comparison algorithms.

Algorithm Parameters
PSO Inertia weight w � 0.55, acceleration coefficient c1 � c2 � 2.0, maximum velocity vmax � 5.0
BBO Maximum immigration rate I � 1, maximum emigration rate E � 1, maximum mutation rate mmax � 0.005
CLPSO Inertia weight w is linearly decrease from 0.9 to 0.2, acceleration coefficient c � 2.0, maximum velocity vmax � 5.0

BLPSO Inertia weight w is linearly decrease from 0.9 to 0.2, acceleration coefficient c � 2.0, maximum velocity vmax � 5.0, maximum
immigration rate I � 1, maximum emigration rate E � 1

PBSPSO Inertia weight w � 0.55, acceleration coefficient c � 2.0, maximum velocity vmax � 5.0, decay term α � 0.9, the weight of the
derivative term Kd � 0.03

DEPSO Maximum immigration rate I � 1, maximum emigration rate E � 1, maximum mutation rate mmax � 0.005, crossover rate
CR � 0.5, difference coefficient FX � 0.7

DDBLPSO Inertia weight w is linearly decrease from 0.9 to 0.2, acceleration coefficient c � 2.0, maximum velocity vmax � 5.0, maximum
immigration rate $I� 1$, maximum emigration rate E � 1

Table 3: Performance comparison of five algorithms in experiment one.

BBO PSO CLPSO BLPSO DDBLPSO
f1(x)

Min 1.6583 E+06 1.7321 E+06 7.7577 E+05 5.6816 E+05 2.0171 E+059
Mean 4.1619 E+06 1.1235 E+07 1.5641 E+06 1.3061 E+06 .9974 E+058
Median 4.2666 E+06 9.4901 E+06 1.5160 E+06 1.0850 E+06 0404E+05
Std 1.2125 E+06 8.1069 E+06 3.9988 E+05 6.4276 E+05 7.7346 E+05

f2(x)

Min 5.9570 E+07 2.1247 E+06 8.6937 E+04 1.0573 E+03 2.0057 E+02

Mean 1.0746 E+08 6.4067 E+06 4.1390 E+05 7.6477 E+03 3.0520 E+03
Median 1.0441 E+08 5.5692 E+06 3.5350 E+05 6.7947 E+03 1.3179 E+03
Std 2.2645 E+07 3.1246 E+06 2.9045 E+05 5.3207 E+03 4.2472 E+03

f3(x)

Min 3.2033E+02 3.2014E+02 3.2118 E+02 3.2109 E+02 3.2104 E+02
Mean 3.2093E+02 3.2026E+02 3.2134 E+02 3.2131 E+02 3.2128 E+02
Median 3.2092E+02 3.2026E+02 3.2135 E+02 3.2131 E+02 3.2129 E+02
Std 3.1412E−01 6.9821E-02 7.9537E-02 9.3207E-02 1.1575E-01

f4(x)

Min 5.5276 E+02 4.3839 E+02 4.1498 E+02 4.1592 E+02 4.0995 E+02
Mean 5.8999 E+02 4.5826 E+02 4.2232 E+02 4.2498 E+02 4.1878 E+02
Median 5.8819 E+02 4.5863 E+02 4.2201 E+02 4.2388 E+02 4.1840 E+02
Std 2.3338 E+01 1.1451 E+01 4.1135 E+00 6.1503 E+00 5.2623 E+00

f5(x)

Min 2.7940 E+03 1.8947 E+03 1.2380 E+03 1.2387 E+03 1.3481 E+03
Mean 4.2481 E+03 2.6178 E+03 1.9363 E+03 1.6544 E+03 1.7612 E+03
Median 4.1462 E+03 2.5958 E+03 1.9451 E+03 1.5976 E+03 1.7362 E+03
Std 7.4098 E+02 4.0091 E+02 3.1450 E+02 2.9163 E+02 2.5296 E+02

f6(x)

Min 8.5892 E+04 4.7158 E+05 1.3661 E+05 3.4194 E+04 2.7682 E+04
Mean 3.3191 E+05 5.7133 E+06 3.0127 E+05 1.5594 E+05 1.1685 E+05
Median 2.8357 E+05 5.4783 E+06 2.7053 E+05 1.5365 E+05 9.0779 E+04
Std 1.8363 E+05 3.7012 E+06 1.1982E+05 8.9082 E+04 8.6045 E+04

f7(x)

Min 7.0813 E+02 7.0836 E+02 7.0626 E+02 7.0570 E+02 7.0517 E+02
Mean 7.1215 E+02 7.1799 E+02 7.1138 E+02 7.0934 E+02 7.0754 E+02

Table 1: Design of experiment one, experiment two, experiment three, and experiment four.

Experiment Population size N Points number mp Comparison algorithm
Experiment one 30 30 PSO, BBO, CLPSO, BLSPSO
Experiment two 100 100 PSO, BBO, CLPSO, BLSPSO
Experiment three 30 30 PBSPSO, DEBBO
Experiment four 100 100 PBSPSO, DEBBO
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curves of functions in experiment two and experiment four
are not shown due to their similarities with experiment one
and experiment three, respectively. *e boldface in Tables
3–6 indicates the best experimental results in experiment
one to four, respectively.

Unimodal functions are used to explore the conver-
gence rate of the optimization problem. Multimodal
functions are used to explore the ability to jump out of local
optimum. Hybrid functions consider that in the real-world
optimization problems, different subcomponents of the
variables may have different properties. Composition
functions consider that in the real-world optimization
problems, different simple problems composite a more
complex problem. *is is a challenge for algorithmic

convergence rate. Most of the multimodal functions
contain a number of local optima, which may lead to
premature convergence of traditional algorithms. It is
difficult for traditional algorithms to locate the global
optimum for these functions.

It is easy to observe that DDBLPSO shows its domi-
nance over other competitors on unimodal functions and
hybrid functions from Table 3. However, DDBLPSO per-
forms less on multimodal functions and composition
functions. *is means that DDBLPSO has much greater
convergence rate than its competitors and performs slightly
better than its competitors in jumping out of local opti-
mum. *e double-dynamic biogeography-based learning
strategy is the main reason for this phenomenon. *is

Table 3: Continued.

BBO PSO CLPSO BLPSO DDBLPSO
Median 7.1023 E+02 7.1372 E+02 7.1242 E+02 7.0795 E+02 7.0586 E+02
Std 4.0321 E+00 1.7801 E+01 2.8718 E+00 3.1576 E+00 2.8994 E+00

f8(x)

Min 2.9403 E+04 3.7955 E+04 2.1194 E+04 1.1270 E+04 1.1820 E+04
Mean 1.1430 E+05 1.5521 E+06 6.0038 E+04 4.7864 E+04 4.5841 E+04
Median 9.0699 E+04 1.1775 E+06 5.8822 E+04 4.5294 E+04 3.1882 E+04
Std 9.6038 E+04 1.4589 E+06 2.6934 E+04 2.8916 E+04 3.5138 E+04

f9(x)

Min 1.0045 E+03 1.0046 E+03 1.0033 E+03 1.0032 E+03 1.0024 E+03
Mean 1.0740 E+03 1.0059 E+03 1.0040 E+03 1.0076 E+03 1.0037 E+03
Median 1.0064 E+03 1.0058 E+03 1.0040 E+03 1.0038 E+03 1.0037 E+03
Std 1.3863 E+02 7.2713E−01 2.7210E−01 2.0779 E+01 5.1535E−01

f10(x)

Min 2.0119 E+04 4.0609 E+05 7.5343 E+04 2.9240 E+04 2.1702 E+04
Mean 5.0981 E+05 2.5287 E+06 2.0769 E+05 2.0526 E+05 1.0437 E+05
Median 7.9737 E+04 1.7787 E+06 2.1072 E+05 1.1130 E+05 7.1822 E+04
Std 9.4063 E+05 2.2614 E+06 7.6381 E+04 4.0970 E+05 1.0132 E+05

f11(x)

Min 1.4042 E+03 1.8057 E+03 1.4035 E+03 1.4015 E+03 1.4013 E+03
Mean 1.6772 E+03 1.9459 E+03 1.4617 E+03 1.5100 E+03 1.4753 E+03
Median 1.4285 E+03 1.9471 E+03 1.4056 E+03 1.4031 E+03 1.4021 E+03
Std 3.1792 E+02 6.2006E+01 1.1830 E+02 1.5473 E+02 1.1947E+02

f12(x)

Min 1.3100 E+03 1.3084 E+03 1.3040 E+03 1.3049 E+03 1.3040 E+03
Mean 1.3214 E+03 1.3111 E+03 1.3058 E+03 1.3066 E+03 1.3071 E+03
Median 1.3139 E+03 1.3110 E+03 1.3055 E+03 1.3064 E+03 1.3075 E+03
Std 2.1131 E+01 1.5834 E+00 9.8335E-01 1.1492 E+00 1.4291 E+00

f13(x)

Min 1.4175 E+03 1.3933 E+03 1.4352 E+03 1.4144 E+03 1.3995 E+03
Mean 1.4252 E+03 1.4078 E+03 1.4420 E+03 1.4259 E+03 1.4173 E+03
Median 1.4244 E+03 1.4086 E+03 1.4416 E+03 1.4254 E+03 1.4164 E+03
Std 4.8717 E+00 6.6629 E+00 3.4109 E+00 6.0813 E+00 7.2068E+00

f14(x)

Min 3.7298 E+03 3.2799 E+04 3.2503 E+04 3.2503 E+04 1.5000 E+03
Mean 3.7381 E+04 3.4675 E+04 3.3058 E+04 3.3235 E+04 3.2591 E+04
Median 3.8788 E+04 3.4793 E+04 3.2651 E+04 3.2651 E+04 3.3648 E+04
Std 1.0738 E+04 9.1682 E+02 7.4020 E+02 1.0085 E+03 5.9283 E+03

f15(x)

Min 1.6042 E+03 1.6007 E+03 1.6000 E+03 1.6000 E+03 1.6000 E+03
Mean 1.6105 E+03 1.6012 E+03 1.6001 E+03 1.6000 E+03 1.6004 E+03
Median 1.6127 E+03 1.6011 E+03 1.6001 E+03 1.6000 E+03 1.6000 E+03
Std 5.5047 E+00 1.9659E-01 3.2672E-02 4.7803E-03 2.3806 E+00
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Table 4: Performance comparison of five algorithms in experiment two.

BBO PSO CLPSO BLPSO DDBLPSO
f1(x)

Min 1.6872 E+07 1.2995 E+07 1.2592 E+07 9.6047 E+06 8.8196 E+06
Mean 3.3932 E+07 2.4028 E+07 2.0317 E+07 1.2281 E+07 1.1151 E+07
Median 3.3742 E+07 2.3245 E+07 2.0301 E+07 1.2062E+07 1.1181 E+07
Std 5.2575 E+06 6.4139 E+06 2.7277 E+06 1.4734 E+06 1.0671 E+06

f2(x)

Min 5.5282 E+08 1.3908 E + 06 2.1847 E+08 9.6042 E+07 2.3631 E+07
Mean 6.4517 E+08 2.2934 E + 06 2.5524 E+08 1.2074E+08 3.2844 E+07
Median 6.3717 E+08 2.1154 E + 06 2.5419 E+08 1.2030E+08 3.2473 E+07
Std 5.2834 E+07 5.7400 E + 05 1.7095 E+07 1.3223 E+07 4.2897 E+06

f3(x)

Min 3.2133 E+02 3.2079E + 02 3.2134 E+02 3.2139 E+02 3.2136 E+02
Mean 3.2145 E+02 3.2085E + 02 3.2148 E+02 3.2146 E+02 3.2145 E+02
Median 3.2147 E+02 3.2086E + 02 3.2148 E+02 3.2145 E+02 3.2145 E+02
Std 5.8776E-02 3.7493 E - 02 3.9590E-02 4.0692E-02 3.9328E-02

f4(x)

Min 9.1048 E+02 5.0448 E+02 5.9808 E+02 5.2056E+02 4.8020 E+02
Mean 1.0131 E+03 7.5271 E+02 6.2837 E+02 5.4878 E+02 5.0111 E+02
Median 1.0112 E+03 8.3702 E+02 6.2944 E+02 5.4789 E+02 4.9888 E+02
Std 4.6330 E+01 1.5583 E+02 1.3892 E+01 1.3776 E+01 1.0271 E+01

f5(x)

Min 1.2581 E+04 1.7639 E+04 8.4258 E+03 5.5564 E+03 4.7234 E+03
Mean 1.4282 E+04 1.9160 E+04 9.5008 E+03 7.1715 E+03 5.5794 E+03
Median 1.4090 E+04 1.9176 E+04 9.3825 E+03 7.2019E+03 5.3980 E+03
Std 9.6948 E+02 8.2684 E+02 6.2791 E+02 6.5159 E+02 6.1390 E+02

f6(x)

Min 1.8440 E+06 7.3864 E+06 2.3964 E+06 1.6318 E+06 1.3833 E+06
Mean 3.7058 E+06 1.3158 E+07 3.3193 E+06 2.1834 E+06 1.9272 E +06
Median 3.6446 E+06 1.2457 E+07 3.2200 E+06 2.2014E+06 1.9522 E+06
Std 9.8093 E+05 4.1777 E+06 5.9871 E+05 3.0671 E+05 2.6129 E+05

f7(x)

Min 7.3969 E+02 8.1342 E+02 7.9195 E+02 7.3534 E+02 7.3350 E+02
Mean 7.8438 E+02 8.4624 E+02 8.2456 E+02 7.9700 E+02 8.0765 E+02
Median 7.7023 E+02 8.5004 E+02 8.2193 E+02 8.0104 E+02 8.0020 E+02
Std 4.1385 E+01 2.0194 E+01 1.8298 E+01 3.2732 E+01 2.8476 E+01

f8(x)

Min 1.2878 E+06 4.1243 E+06 1.1840 E+06 5.0520 E+05 5.1323 E+05
Mean 1.9175 E+06 1.0590 E+07 1.9332 E+06 8.9139 E+05 6.9234 E+05
Median 1.8616 E+06 1.0212 E+07 1.9618 E+06 8.9816 E+05 6.8432 E+05
Std 3.7847 E+05 3.8045 E+06 3.2658 E+05 2.2895 E+05 1.3364 E+05

f9(x)

Min 1.0125 E+03 1.0110 E+03 1.0072 E+03 1.0069 E+03 1.0068 E+03
Mean 1.1742 E+03 1.0138 E+03 1.0079 E+03 1.0079 E+03 1.0077 E+03
Median 1.0414 E+03 1.0138 E+03 1.0078 E+03 1.0079 E+03 1.0076 E+03
Std 2.8267 E+02 1.2870 E+00 5.2094E-01 5.5162E-01 5.2679E-01

f10(x)

Min 2.0038 E+06 2.1053 E+06 2.7821 E+05 4.7205 E+04 1.4355 E+04
Mean 3.8010 E+06 3.7765 E+06 4.9280 E+05 5.5835 E+04 1.6831 E+04
Median 3.5081 E+06 3.3635 E+06 4.9422 E+05 5.6250 E+04 1.6362 E+04
Std 1.5857 E+06 1.2352 E+06 9.5961 E+04 5.1752 E+03 2.1156 E+03

f11(x)

Min 1.4231 E+03 2.5629 E+03 1.4173 E+03 1.4100 E+03 1.4102 E+03
Mean 2.1106 E+03 2.8176 E+03 1.7756 E+03 1.4136 E+03 1.6127 E+03
Median 1.4395 E+03 2.8267 E+03 1.4220 E+03 1.4139 E+03 1.4126 E+03
Std 7.9489 E+02 1.1589 E+02 6.5399 E+02 1.5746 E+00 4.5786 E+02

f12(x)

Min 1.3561 E+03 1.3177 E+03 1.3137 E+03 1.3126 E+03 1.3111 E+03
Mean 1.3821 E+03 1.3202 E+03 1.3154 E+03 1.3153 E+03 1.3147 E+03
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Table 4: Continued.

BBO PSO CLPSO BLPSO DDBLPSO
Median 1.3811 E+03 1.3202 E+03 1.3155 E+03 1.3154 E+03 1.3149 E+03
Std 1.3010 E+01 1.1930E+00 8.0780E-01 1.1071 E+00 1.3710 E+00

f13(x)

Min 1.7453 E+03 1.6946 E+03 1.7725 E+03 1.7411 E+03 1.7344 E+03
Mean 1.7600 E+03 1.7135 E+03 1.7825 E+03 1.7534 E+03 1.7481 E+03
Median 1.7602 E+03 1.7137 E+03 1.7833 E+03 1.7540 E+03 1.7487 E+03
Std 7.6554 E+00 7.6113 E+00 5.0447 E+00 5.9510 E+00 6.3159 E+00

f14(x)

Min 1.5092 E+04 1.1046 E+05 1.1030 E+05 5.0142 E+03 3.1265 E+03
Mean 1.5690 E+05 1.1051 E+05 1.1094 E+05 3.2405 E+04 1.1036 E+05
Median 1.5755 E+05 1.1051 E+05 1.1032 E+05 5.5990 E+03 1.1770 E+05
Std 4.4260 E+04 4.0365 E+01 1.8805 E+03 4.7720 E+04 2.9479 E+04

f15(x)

Min 1.6086 E+03 1.6010 E+03 1.6063 E+03 1.6048 E+03 1.6031 E+03
Mean 1.6159 E+03 1.6041 E+03 1.6066 E+03 1.6052 E+03 1.6037 E+03
Median 1.6157 E+03 1.6042 E+03 1.6066 E+03 1.6052 E+03 1.6038 E+03
Std 3.5097 E+00 1.6093 E+00 1.4693E−01 1.9835E−01 3.1219E−01

Table 5: Performance comparison of three algorithms in experiment three.

PBSPSO DEBBO DDBLPSO
f1(x)

Min 1.8592 E+06 4.6232 E+05 2.0171 E+05
Mean 4.0977 E+06 2.0454 E+06 9.9974 E+05
Median 3.8062 E+06 1.6998 E+06 8.0404 E+05
Std 1.4323 E+06 1.3320 E+06 7.7346 E+05

f2(x)

Min 8.0625 E+07 2.0358 E+02 2.0057 E+02
Mean 1.2518 E+08 4.0561 E+03 3.0520 E+03
Median 1.3096 E+08 1.1378 E+03 1.3179 E+03
Std 2.6223 E+07 4.5224 E+03 4.2472 E+03

f3(x)

Min 3.2058E+02 3.2026E+02 3.2104 E+02
Mean 3.2103 E+02 3.2034E+02 3.2128 E+02
Median 3.2106 E+02 3.2035E+02 3.2129 E+02
Std 2.5954E−01 4.7224E-02 1.1575E−01

f4(x)

Min 5.3829 E+02 4.2006E+02 4.0995 E+02
Mean 5.9001 E+02 4.3346 E+02 4.1878 E+02
Median 5.9107 E+02 4.3369 E+02 4.1840 E+02
Std 2.6829 E+01 7.5401 E+00 5.2623 E+00

f5(x)

Min 3.2276 E+03 2.4576 E+03 1.3481 E+03
Mean 4.1617 E+03 3.1351 E+03 1.7612 E+03
Median 4.1973E+03 3.1853 E+03 1.7362 E+03
Std 5.1598 E+02 3.1687 E+02 2.5296 E+02

f6(x)

Min 9.2791 E+04 1.1225 E+05 2.7682 E+04
Mean 3.3549 E+05 3.7463 E+05 1.1685 E+05
Median 3.1758 E+05 2.9917 E+05 9.0779 E+04
Std 1.8022 E+05 2.4642 E+05 8.6045 E+04

f7(x)

Min 7.0838 E+02 7.0717 E+02 7.0517 E+02
Mean 7.1403 E+02 7.1034 E+02 7.0754 E+02
Median 7.1384 E+02 7.1015 E+02 7.0586 E+02
Std 4.4317 E+00 1.6748E+00 2.8994 E+00
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strategy guides particle to learn from other particles not
worse than itself, which leads a greater convergence rate of
DDBLPSO. At the same time, DDBLPSO has a slightly
better ability of jumping out of local optimum than other
competitors because of simple mutation and complexity of
functions. One the other hand, learning from the better
particles means that the exploration ability of algorithm
will be reduced slightly. For this reason, DDBLPSO does
not have such eye-catching performance on multimodal
functions and composition functions. Table 7 shows that
DDBLPSO attains the best rank, BLPSO attains the second,
and CLPSO attains the third, followed by BBO and PSO. It
is obvious that DDBLPSO is the most competitive algo-
rithm in this group of experimental comparison.

Table 4 reveals that DDBLPSO performs much better
than other four algorithms on f1, f4, f5, f6, f8, f9, f10,

and f12. DDBLPSO cannot achieve obvious dominance on
each kind of functions due to the problems of being different
types and large scale. On the whole, DDBLPSO still performs
best. Table 8 presents the same ranking result as Table 7.
Figure 2 shows that DDBLPSO has the strongest evolving
trend on f1, f2, f4, f6, f7, f8, f10, and f14. DDBLPSO
is also the most competitive algorithm in this group of
experimental comparison with relatively large-scale
problems.

Generally speaking, it is observed from Tables 3, 4, 7 and
9 and Figure 2 that DDBLPSO achieves the best performance
compared with its competitors.

Table 5 shows that DDBLPSO beats PBSPSO and
DEBBO on most functions, and Table 9 shows that
DDBLPSO attains the best rank, DEBBO attains the second,
and PBSPSO attains the third. Table 6 reveals that DDBLPSO

Table 5: Continued.

PBSPSO DEBBO DDBLPSO
f8(x)

Min 3.1112 E+04 5.3259E+03 1.1820 E+04
Mean 1.4377 E+05 7.7449 E+04 4.5841 E+04
Median 1.1602 E+05 4.8418 E+04 3.1882 E+04
Std 1.0130 E+05 1.0253 E+05 3.5138 E+04

f9(x)

Min 1.0043 E+03 1.0022E+03 1.0024 E+03
Mean 1.0677 E+03 1.0031 E+03 1.0037 E+03
Median 1.0061 E+03 1.0025E+03 1.0037 E+03
Std 1.2610 E+02 2.0847 E+00 5.1535E-01

f10(x)

Min 2.0553 E+04 1.1722 E+04 2.1702 E+04
Mean 1.6465 E+05 1.2081E+05 1.0437 E+05
Median 1.1912E+05 8.6437 E+04 7.1822 E+04
Std 1.3543 E+05 1.0541 E+05 1.0132 E+05

f11(x)

Min 1.4049 E+03 1.5319 E+03 1.4013 E+03
Mean 1.6647 E+03 1.6533 E+03 1.4753 E+03
Median 1.4082 E+03 1.6380 E+03 1.4021 E+03
Std 3.0497 E+02 6.1809 E+01 1.1947E+02

f12(x)

Min 1.3108 E+03 1.3052 E+03 1.3040 E+03
Mean 1.3152 E+03 1.3061 E+03 1.3071 E+03
Median 1.3139 E+03 1.3058E+03 1.3075 E+03
Std 4.6593 E+00 1.1863 E+00 1.4291 E+00

f13(x)

Min 1.4153 E+03 1.3928E+03 1.3995 E+03
Mean 1.4281 E+03 1.3999 E +03 1.4173 E+03
Median 1.4289 E+03 1.3996E+03 1.4164 E+03
Std 5.1713 E+00 4.3428E+00 7.2068E+00

f14(x)

Min 3.2641 E+04 3.2795 E+04 1.5000 E+03
Mean 3.6568 E+04 3.5561 E+04 3.2591 E+04
Median 3.7333 E+04 3.5346 E+04 3.3648 E+04
Std 2.0662 E+03 9.2865E+02 5.9283 E+03

f15(x)

Min 1.6034 E+03 1.6000E+03 1.6000 E+03
Mean 1.6076 E+03 1.6000E+03 1.6004 E+03
Median 1.6048 E+03 1.6000E+03 1.6000 E+03
Std 4.8441 E+00 1.0394E-02 2.3806 E+00
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Table 6: Performance comparison of three algorithms in experiment four.

PBSPSO DEBBO DDBLPSO
f1(x)

Min 2.8403 E+07 1.2931 E+08 8.8196 E+06
Mean 3.5153 E+07 1.7284 E+08 1.1151 E+07
Median 3.4872 E+07 1.7385 E+08 1.1181 E+07
Std 4.0420 E+06 2.4193 E+07 1.0671 E+06

f2(x)

Min 5.3463 E+08 2.0005 E+02 2.3631 E+07
Mean 1.2518 E+08 1.6110 E+03 3.2844 E+07
Median 1.3096 E+08 1.0518 E+03 3.2473 E+07
Std 2.6223 E+07 1.6068 E+03 4.2897 E+06

f3(x)

Min 3.2131 E+02 3.2073E+02 3.2136 E+0
Mean 3.2144 E+02 3.2080E+02 3.2145 E+02
Median 3.2144 E+02 3.2083E+02 3.2145 E+02
Std 6.3151E−02 4.2976E−02 3.9328 E−02

f4(x)

Min 9.1895 E+02 7.2243 E+02 4.8020 E+02
Mean 1.0124 E+03 7.6390 E+02 5.0111 E+02
Median 1.0051 E+03 7.5774 E+02 4.9888 E+02
Std 4.9600 E+01 2.5379 E+01 1.0271 E+01

f5(x)

Min 1.2411 E+04 1.6916 E+04 4.7234 E+03
Mean 1.4988 E+04 1.7798 E+04 5.5794 E+03
Median 1.4942 E+04 1.7938 E+04 5.3980 E+03
Std 1.2888 E+03 7.2976 E+02 6.1390 E+02

f6(x)

Min 2.1414 E+06 2.3652 E+07 1.3833 E+06
Mean 3.6713 E+06 3.3346 E+07 1.9272 E+06
Median 3.5486 E+06 3.4022 E+07 1.9522 E+06
Std 9.3569 E+05 5.1752 E+06 2.6129 E+05

f7(x)

Min 7.4025 E+02 8.4813 E+02 7.3350 E+02
Mean 7.8440 E+02 8.4978 E+02 8.0765 E+02
Median 7.7255 E+02 8.4967 E+02 8.0020 E+02
Std 3.6466 E+01 8.3256E−01 2.8476 E+01

f8(x)

Min 1.2536 E+06 1.0239 E+07 5.1323 E+05
Mean 1.9625 E+06 1.7527 E+07 6.9234 E+05
Median 1.9220 E+06 1.7616 E+07 6.8432 E+05
Std 3.8544 E+05 4.3476 E+06 1.3364 E+05

f9(x)

Min 1.0124 E+03 1.0073 E+03 1.0068 E+03
Mean 1.2043E+03 1.0176 E+03 1.0077 E+03
Median 1.0155 E+03 1.0175 E+03 1.0076 E+03
Std 3.1718 E+02 2.2394E−01 5.2679E−01

f10(x)

Min 1.6908 E+06 5.3905 E+03 1.4355 E+04
Mean 3.7009 E+06 6.7693 E+03 1.6831 E+04
Median 3.3489 E+06 6.4983 E+03 1.6362 E+04
Std 1.7822 E+06 1.0052 E+03 2.1156 E+03

f11(x)

Min 1.4281 E+03 1.7210 E+03 1.4102 E+03
Mean 2.1024 E+03 2.8620 E+03 1.6127 E+03
Median 1.4369 E+03 3.1818 E+03 1.4126 E+03
Std 8.3776 E+02 7.4285 E+02 4.5786 E+02

f12(x)

Min 1.3512 E+03 1.3172 E+03 1.3111 E+03
Mean 1.3720 E+03 1.3176 E+03 1.3147 E+03
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Table 6: Continued.

PBSPSO DEBBO DDBLPSO
Median 1.3688 E+03 1.3176 E+03 1.3149 E+03
Std 1.6991 E+01 2.6835E−01 1.3710 E+00

f13(x)

Min 1.7474 E+03 1.6929 E+03 1.7344 E+03
Mean 1.7625 E+03 1.7138 E+03 1.7481 E+03
Median 1.7631 E+03 1.7158 E+03 1.7487 E+03
Std 7.3313 E+00 7.9928 E+00 6.3159 E+00
f14(x)

Min 1.5392 E+04 1.1024 E+05 3.1265 E+03
Mean 1.4095 E+05 1.1027 E+05 1.1036 E+05
Median 1.4401 E+05 1.1027 E+05 1.1770 E+05
Std 2.7916 E+04 1.9162 E+01 2.9479 E+04

f15(x)

Min 1.6084 E+03 1.6000 E+03 1.6031 E+03
Mean 1.6140 E+03 1.6000 E+03 1.6037 E+03
Median 1.6138 E+03 1.6000 E+03 1.6038 E+03
Std 3.8763 E+00 2.3967E−02 3.1219E−01

Table 7: Ranks of five algorithms according to Friedman test in experiment one.

PSO BBO CLPSO BLPSO DDBLPSO
Friedman rank 4.15 3.93 2.63 2.44 1.85
Final rank 5 4 3 2 1

Table 8: Ranks of five algorithms according to Friedman test in experiment two.

PSO BBO CLPSO BLPSO DDBLPSO
Friedman rank 4.29 3.48 3.21 2.37 1.65
Final rank 5 4 3 2 1

Table 9: Ranks of three algorithms according to Friedman test in experiment three.

PBSPSO DEBBO DDBLPSO
Friedman rank 2.78 1.73 1.48
Final rank 3 2 1

Table 10: Ranks of three algorithms according to Friedman test in experiment four.

PBSPSO DEBBO DDBLPSO
Friedman rank 2.52 1.95 1.53
Final rank 3 2 1

Table 11: Design of experiment five, experiment six, experiment seven, and experiment eight.

Experiment Population size N Points number mp Comparison algorithm
Experiment five 30 14 PSO, BBO, CLPSO, BLSPSO
Experiment six 100 49 PSO, BBO, CLPSO, BLSPSO
Experiment seven 30 14 PBSPSO, DEBBO
Experiment eight 100 49 PBSPSO, DEBBO
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Figure 2: Continued.
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performs much better than other two algorithms on
f1, f4, f5, f6, f8, f11, andf12. Table 10 presents the same
ranking result as Table 9. Figure 3 shows that DDBLPSO has
the strongest evolving trend on f1, f2, f4, f5, f6, f7,

f8, f10, f11, and f14. Generally speaking, it is observed
from Tables 5, 6, 9 and 10 and Figure 3 that DDBLPSO beats
a PSO variant and a BBO variant.

6. Applications in UAV Path Planning

6.1. Six Kinds of Terrain Functions. City, village without
houses, village with houses, mountainous area without
houses, mountainous area with houses, and mountainous
area with a huge building are the most common terrains in
UAV path planning. Six kinds of terrain functions are
designed depending on these conditions. City has flat ground
and tall buildings. Village without houses means uneven
ground. Village with houses means uneven ground and low
buildings. Mountainous area without houses means uneven
ground and mountains. Mountainous area with houses has
uneven ground, mountains, and low buildings. Mountainous
area with a huge building has uneven ground, mountains, and
a huge building. (x′, y′) is the coordinate of any point on the
plane. *e details of six terrain functions are as follows.

*e terrain function of city fterrain1 is defined as follows:

fterrain1 �
Ti, if x′, y′( 􏼁 ∈ Ωi, i � 1, 2, . . . , T,

0, if x′, y′( 􏼁 ∈ Ωi, i � 1, 2, . . . , T,

⎧⎨

⎩ (19)

where Ti is the height of the tall building i, Ωi is the area
occupied by the tall building i, and T is the number of tall
buildings.

*e terrain function of village without houses fterrain2 is
defined as follows:

fterrain2 � sin x′ + a1( 􏼁 + a2 ∗ sin y′( 􏼁 + cos y′ + a3( 􏼁

+ a4 ∗ cos x′( 􏼁

+ sin
�������

x′
2

+ y′
2

􏽱

+ a5􏼒 􏼓 + a6 ∗ cos a6 ∗
�������

x′
2

+ y′
2

􏽱

􏼒 􏼓,

(20)

where a1, a2, a3, a4, a5, and a6 are terrain parameters, which
decide the uneven degree of the terrain.

*e terrain function of village with houses fterrain3 is
defined as follows:

fterrain3 �
max Si, fterrain2􏼈 􏼉, if x′, y′( 􏼁 ∈ Γi, i � 1, 2, . . . , S,

fterrain2, if x′, y′( 􏼁 ∉ Γi, i � 1, 2, . . . , S,

⎧⎨

⎩

(21)
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Figure 2: Converging curves of the average best fitness in experiment one.
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Comparison among algorithms on f5 with 30 runs
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Comparison among algorithms on f7 with 30 runs
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Figure 3: Continued.
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Comparison among algorithms on f13 with 30 runs
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Figure 3: Converging curves of the average best fitness in experiment three.

Table 12: Performance comparison of five algorithms in experiment five.

BBO PSO CLPSO BLPSO DDBLPSO
costfun1
Min 0.333786 0.361611 0.333033 0.333038 0.332735
Mean 0.354893 0.408034 0.348755 0.347850 0.338909
Median 0.348119 0.401855 0.346445 0.340743 0.335515
Std 0.020209 0.035911 0.019765 0.020109 0.005750

costfun2
Min 0.333514 0.358298 0.332679 0.332662 0.332363
Mean 0.338082 0.400207 0.333074 0.333387 0.332846
Median 0.336249 0.392837 0.333044 0.333043 0.332717
Std 0.005453 0.030524 0.000334 0.000680 0.000376

costfun3
Min 0.333434 0.363159 0.332662 0.332662 0.332470
Mean 0.338407 0.396183 0.333221 0.333186 0.332957
Median 0.336943 0.385252 0.333044 0.333043 0.332687
Std 0.004669 0.028417 0.000525 0.000418 0.001214

costfun4
Min 0.333579 0.354768 0.332679 0.332679 0.332454
Mean 0.336364 0.400745 0.333237 0.333581 0.333045
Median 0.335141 0.396060 0.333043 0.333043 0.332773
Std 0.003654 0.032782 0.001182 0.001667 0.001155

costfun5
Min 0.333159 0.358298 0.332679 0.332662 0.332422
Mean 0.337872 0.399360 0.333108 0.333139 0.332759
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where Si is the height of the low building i, Γi is the area
occupied by the low building i, and S is the number of low
buildings.

*e terrain function of mountainous area without
houses fterrain4 is defined as follows:

Mi � Ri ∗ exp −
x′ − Pi

Ki

􏼠 􏼡

2

−
y′ − Qi

Ki

􏼠 􏼡

2
⎡⎣ ⎤⎦, i � 1, 2, . . . , M,

fterrain4 � max Mi, fterrain2􏼈 􏼉,

(22)

where Mi is the mountain function, Ri, Ri, Qi, and Ki de-
scribe the position and the shape of mountain i, and M is the
number of mountains.

*e terrain function of mountainous area with houses
fterrain5 is defined as follows:

fterrain5 �
max Si, fterrain4􏼈 􏼉, if x′, y′( 􏼁 ∈ Γi, i � 1, 2, . . . , S,

fterrain4, if x′, y′( 􏼁 ∉ Γi, i � 1, 2, . . . , S,

⎧⎨

⎩

(23)

where Si is the height of the low building i, Γi is the area
occupied by the low building i, and S is the number of low
buildings.

*e terrain function of mountainous area with a huge
building fterrain6 is defined as follows:

fterrain6 �
max Huge, fterrain4􏼈 􏼉, if x′, y′( 􏼁 ∈ Ω′,

fterrain4, if x′, y′( 􏼁 ∉ Ω′,

⎧⎨

⎩ (24)

Table 12: Continued.

BBO PSO CLPSO BLPSO DDBLPSO
Median 0.336249 0.391714 0.333043 0.333043 0.332678
Std 0.005734 0.030770 0.000442 0.000558 0.000374

costfun6
Min 0.334377 0.362532 0.332445 0.332692 0.332414
Mean 0.340639 0.395483 0.333808 0.333623 0.333442
Median 0.337852 0.386125 0.334080 0.333738 0.333598
Std 0.008596 0.026440 0.000625 0.000484 0.000673

Table 13: Performance comparison of five algorithms in experiment six.

BBO PSO CLPSO BLPSO DDBLPSO
costfun1
Min 0.409522 0.452563 0.407823 0.390225 0.384962
Mean 0.485857 0.539211 0.423850 0.417825 0.417211
Median 0.478369 0.545726 0.414287 0.407063 0.394661
Std 0.047892 0.037861 0.020093 0.026866 0.037308

costfun2
Min 0.380857 0.464534 0.375254 0.366452 0.363554
Mean 0.388581 0.529762 0.380145 0.371376 0.368538
Median 0.388856 0.531348 0.380259 0.371162 0.368096
Std 0.003426 0.035597 0.002097 0.002428 0.002839

costfun3
Min 0.380579 0.464561 0.376183 0.366838 0.363259
Mean 0.390465 0.530220 0.380478 0.370835 0.369487
Median 0.389378 0.526718 0.381116 0.370512 0.368922
Std 0.004844 0.042232 0.003074 0.001831 0.003726

costfun4
Min 0.382432 0.472434 0.374150 0.367105 0.362359
Mean 0.390443 0.523642 0.380130 0.370614 0.368372
Median 0.390181 0.522455 0.380235 0.370568 0.368463
Std 0.003990 0.030173 0.002600 0.001943 0.002333

costfun5
Min 0.381921 0.436542 0.375358 0.367693 0.364425
Mean 0.389006 0.524626 0.380941 0.371797 0.368500
Median 0.389857 0.531651 0.380743 0.371605 0.367672
Std 0.003858 0.031882 0.002198 0.003142 0.003034

costfun6
Min 0.382586 0.459559 0.377788 0.368291 0.363963
Mean 0.392547 0.517871 0.383203 0.372213 0.369134
Median 0.391984 0.523437 0.383597 0.371327 0.369174
Std 0.006611 0.033132 0.003701 0.002866 0.002664
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where Huge is the height of the huge building and Ω′ is the
area occupied by the huge building.

6.2. Parameter Settings. Cost functions with city, village
without houses, village with houses, mountainous area
without houses, mountainous area with houses, and moun-
tainous area with a huge building are labelled as
costfun1 − costfun6. Four sets of UAV path planning ex-
periments are conducted which are labelled as experiment
five, experiment six, experiment seven, and experiment eight.
Design of the four experiments are shown in Table 11. *e
boldface in Tables 12–15 indicates the best experimental
results in experiment five to eight, respectively. Points
number means the number of points in each path without
starting point and end point. Dimension is equal to twice the
point number. *e path is divided into mp + 1 small lines by
mp points from the starting point to the end point. To
simplify the calculation, if a point is in the danger zone, it is
assumed that the halves of both small lines before and after
and adjacent to the point are also in the danger zone. It is the
same for a point under the ground or under a building. UAV
search space is [−50, 50]∗[−50, 50]∗[0, 25], terrain param-
eters a1 � 10, a2 � 1, a3 � 20, a4 � 0.8, a5 � 30, a6 � 0.9,
weight coefficients W1 � W2 � W3 � W4 � 1, penalty con-
stant P � 3, and a small positive number Zmin � 0.1. Starting

point and end point coordinates are (−50,−50, 0.1) and (50,
50, 0.1), respectively. *e maximum velocity along Y axis and
Z axis is 2.5 and 0.625, respectively.*e details of tall, low, and
huge buildings are given in Table 16. *e detailed parameter
settings of mountains are given in Table 17. Danger areas are
designed as equation (25). Other parameter settings of al-
gorithms are the same as in Section 5.

x′ + 25( 􏼁
2

+ y′ + 25( 􏼁
2

+ z′
2

� 102,

x′ − 25( 􏼁
2

+ y′ − 25( 􏼁
2

+ z′
2

� 102.
(25)

6.3. Results and Discussion of UAV Path Planning. Tables
12–15 show the UAV path planning results of six kinds of
terrains in experiment five, experiment six, experiment
seven, and experiment eight, respectively. *e ranks of five
algorithms according to Friedman test of experiment three
and experiment four are shown in Tables 18–21, respectively.
Min, Mean, Median, and Std indicate theminimum function
error value, the mean function error value, the median
function error value, and the standard deviation of error
values, respectively. In order to exhibit the evolution trend of
five algorithms more vividly, the converging curves of the
average best fitness in experiment five and experiment seven

Table 14: Performance comparison of three algorithms in experiment seven.

PBSPSO DEBBO DDBLPSO
costfun1
Min 0.333917 0.332859 0.332735
Mean 0.351685 0.341414 0.338909
Median 0.340660 0.335595 0.335515
Std 0.025157 0.010353 0.005750

costfun2
Min 0.333801 0.332310 0.332363
Mean 0.338538 0.339693 0.332846
Median 0.337244 0.339361 0.332717
Std 0.004749 0.007640 0.000376

costfun3
Min 0.333631 0.332355 0.332470
Mean 0.335685 0.340312 0.332957
Median 0.334800 0.338883 0.332687
Std 0.002172 0.006869 0.001214

costfun4
Min 0.333443 0.332611 0.332454
Mean 0.336772 0.339582 0.333045
Median 0.334911 0.336338 0.332773
Std 0.005649 0.010488 0.001155

Costfun5
Min 0.333852 0.332310 0.332422
Mean 0.338636 0.339687 0.332759
Median 0.337244 0.339196 0.332678
Std 0.004892 0.007473 0.000374

costfun6
Min 0.334083 0.333078 0.332414
Mean 0.337138 0.342282 0.333442
Median 0.336396 0.339118 0.333598
Std 0.002739 0.012053 0.000673
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are shown in Figures 4 and 5, respectively. *e converging
curves of six kinds of terrain functions in experiment six and
experiment eight are not shown due to the similar con-
verging behaviours with experiment five and experiment
seven, respectively.

Table 12 shows that DDBLPSO is the most competitive
algorithm for the relatively small-scale problems with 14
points. It is easy to see that DDBLPSO attains the best rank
and BLPSO is the second, followed by CLPSO, PSO, and
BBO in Table 18. For the relatively large-scale problems

with 49 points, Tables 13 and 19 reveal that DDBLPSO
achieves the best results in experiment six. Table 19 shows
that DDBLPSO attains the best rank, BLPSO is the second,
and CLPSO is the third, followed by PSO and BBO. Fur-
thermore, the experimental results indicate that it is much
better than other competitors. However, Tables 12 and 13
show that DDBLPSO has relatively larger Std, which in-
dicates a possible enhancement on the convergence ca-
pability of DDBLPSO. Figure 4 shows that DDBLPSO has
the strongest evolving trend on all the terrain functions for

Table 15: Performance comparison of three algorithms in experiment eight.

PBSPSO DEBBO DDBLPSO
costfun1
Min 0.408638 0.740178 0.384962
Mean 0.507099 0.855135 0.417211
Median 0.500030 0.857994 0.394661
Std 0.057598 0.031987 0.037308

costfun2
Min 0.383974 0.373691 0.363554
Mean 0.392406 0.400978 0.368538
Median 0.392086 0.398095 0.368096
Std 0.005132 0.016330 0.002839

costfun3
Min 0.383351 0.362185 0.363259
Mean 0.394280 0.402638 0.369487
Median 0.393606 0.402676 0.368922
Std 0.004780 0.020725 0.003726

costfun4
Min 0.384865 0.368213 0.362359
Mean 0.393153 0.407062 0.368372
Median 0.392543 0.406902 0.368463
Std 0.005216 0.020424 0.002333

costfun5
Min 0.385425 0.363051 0.364425
Mean 0.392956 0.409671 0.368500
Median 0.393330 0.414376 0.367672
Std 0.004038 0.019970 0.003034

costfun6
Min 0.386878 0.379041 0.363963
Mean 0.393760 0.407583 0.369134
Median 0.394691 0.408277 0.369174
Std 0.003657 0.016136 0.002664

Table 16: Parameter settings of tall, short, and huge buildings.

Tall buildings [−20,−10]∗ [5,15]∗ [0,16] [10,20]∗ [5,15]∗ [0,15] [−15,−6]∗ [−8,3]∗ [0,15]
[6,15]∗ [−8,3]∗ [0,14] [−14,-3]∗ [−20,-10]∗ [0,14] [3,14]∗ [−2,−10]∗ [0,16]

Short buildings [−20,−10]∗ [5,15]∗ [0,6] [10,20]∗ [5,15]∗ [0,5] [−15,−6]∗ [−8,3]∗ [0,5]
[6,15]∗ [−8,3]∗ [0,4] [−14,−3]∗ [−20,−10]∗ [0,4] [3,14]∗ [−20,−10]∗ [0,6]

Huge building [−45,45]∗ [−45,45]∗ [0,20]

Table 17: Parameter settings of tall, short, and huge buildings.

Mountains R1 � 20, P1 � 0, Q1 � 30, K1 � 5 R2 � 18, P2 � 0, Q2 � − 30, K2 � 2
R3 � 21, P3 � 30, Q3 � 0, K3 � 3 R4 � 19, P4 � − 30, Q4 � 0, K4 � 4
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Table 18: Ranks of five algorithms according to Friedman test in experiment five.

PSO BBO CLPSO BLPSO DDBLPSO
Friedman rank 4.00 5.00 2.42 2.38 1.21
Final rank 4 5 3 2 1

Table 19: Ranks of five algorithms according to Friedman test in experiment six.

PSO BBO CLPSO BLPSO DDBLPSO
Friedman rank 4.04 4.96 2.71 1.96 1.33
Final rank 4 5 3 2 1

Table 20: Ranks of three algorithms according to Friedman test in experiment seven.

PBSPSO DEBBO DDBLPSO
Friedman rank 2.38 2.50 1.13
Final rank 2 3 1

Table 21: Ranks of three algorithms according to Friedman test in experiment eight.

PBSPSO DEBBO DDBLPSO
Friedman rank 2.25 2.63 1.13
Final rank 2 3 1
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Figure 4: Converging curves of different terrain functions in experiment five.
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the relatively large-scale problem in experiment five.
Generally speaking, it can be observed from Tables 12, 13,
18, 19 and Figure 4 that DDBLPSO performs very en-
couraging in UAV path planning, but there is still room for
improvement in terms of Std.

It is easy to see that DDBLPSO beats DEBBO and
PBSPSO for the relatively small-scale problems with 14
points in Table 14. Table 15 shows that DDBLPSO attains the
best rank, DEBBO is the second, and PBSPSO is the third in
small-scale problems of UAV path planning. Figure 5 shows
that DDBLPSO has the stronger evolving trend on all the
terrain functions than DEBBO and PBSPSO in experiment
seven. Tables 17 and 21 reveal the same results in large-scale
problems.

7. Conclusions

*is paper presents a novel UAV path planning algorithm
based on double-dynamic biogeography-based learning
particle swarm optimization. DDBLPSO adopts double-
dynamic biogeography-based learning strategy. Under this
strategy, particle only learns from itself or other even better
individuals. Six terrain functions are presented to simulate
the most six common terrains in UAV path planning.
Computational experiments and simulations demonstrate
the performance advantages of the algorithm both in global

optimization and UAV path planning. Especially for the
relatively large-scale problems, it performs even more
competitive.

Our algorithm has the potential to be applied to other
problems such as oil exploration, scheduling, and deep
learning. *e UAV path planning problem also can be
extended to multiobjective or constrained optimization
problems to be suitable for more complex situations.

Data Availability

*e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this article.

Authors’ Contributions

Yisheng Ji was responsible for novelty construction and
verification, simulation design, and manuscript writing.
Xinchao Zhao was responsible for research motivation,
simulation design, and analysis. Junling Hao read through
the manuscript and gave some suggestions on structure and
representation.

Comparison among algorithms on
costfun1 with 30 runs

A
ve

ra
ge

 F
un

ct
io

n 
V

al
ue

s

0 0.5 1 1.5 2 2.5 3
Function Evaluations

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

×105

PBSPSO
DEBBO
DDBLPSO

Comparison among algorithms on
costfun2 with 30 runs

A
ve

ra
ge

 F
un

ct
io

n 
V

al
ue

s

0 0.5 1 1.5 2 2.5 3
Function Evaluations

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

×105

PBSPSO
DEBBO
DDBLPSO

Comparison among algorithms on
costfun3 with 30 runs

A
ve

ra
ge

 F
un

ct
io

n 
V

al
ue

s

0 0.5 1 1.5 2 2.5 3
Function Evaluations

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

×105

PBSPSO
DEBBO
DDBLPSO

Comparison among algorithms on
costfun4 with 30 runs

A
ve

ra
ge

 F
un

ct
io

n 
V

al
ue

s

0 0.5 1 1.5 2 2.5 3
Function Evaluations

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

×105

PBSPSO
DEBBO
DDBLPSO

Comparison among algorithms on
costfun5 with 30 runs

A
ve

ra
ge

 F
un

ct
io

n 
V

al
ue

s

0 0.5 1 1.5 2 2.5 3
Function Evaluations

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

×105

PBSPSO
DEBBO
DDBLPSO

Comparison among algorithms on
costfun6 with 30 runs

A
ve

ra
ge

 F
un

ct
io

n 
V

al
ue

s

0 0.5 1 1.5 2 2.5 3
Function Evaluations

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

×105

PBSPSO
DEBBO
DDBLPSO

Figure 5: Converging curves of different terrain functions in experiment seven.
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