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Octane number is a measure of gasoline’s ability to resist detonation and combustion in the cylinder; the higher the value, the
better the resistance to detonation. The accurate prediction of octane loss during gasoline refining could facilitate production
management and ensure gasoline octane. The backpropagation neural network is a traditional method adopted for the octane
loss prediction, but there exists the issues of low training accuracy and poor generalization in the traditional BP neural
network model caused by randomly generated weights and thresholds at input. In this paper, we propose a novel approach to
optimize the weights and thresholds for gasoline octane number prediction based on a self-adaptive genetic algorithm. The
experimental result shows that the proposed model outperforms in accuracy and generalization in the competition with the
traditional BP neural network. The coefficient of determination R2 of the performance index in the experiment is improved
from 0.81502 to 0.95628, and the average prediction error among 10 groups of experiments was reduced from 0.0061 to 0.0041.

1. Introduction

Octane number is one of the most important properties of
gasoline [1, 2], which directly affects the antiknock perfor-
mance, fuel consumption, and low-temperature start and
acceleration performances of automobiles. For product oil
industry, gasoline octane number is an important quality
index in the process of purchasing, storage, transportation,
and sales [3]. Currently, the ASTM-CFR standard is the
most commonly used standard octane test method; however,
this method is expensive, and the test dosage is large, time-
consuming, and complicated to operate [4]. In order to
make up for the defects and shortcomings of experimental
methods, theoretical prediction studies of octane number
of gasolines can be carried out to establish a reliable predic-
tion model since octane number of gasolines is closely
related to its chemical composition [5]. In recent years, with

the establishment of the Sinopec Sales Enterprise Laboratory
Information Management System, the accumulation and
sharing of quality data have been realized. Relying on the
massive physical and chemical index data of gasoline in the
database, it is possible to establish a gasoline octane number
prediction model using machine learning algorithms [6].
Predictive models can divided into two categories [7]: one
is linear models for predicting octane number, such as mul-
tiple linear regression analysis and partial least squares; the
other is nonlinear models for predicting octane number,
such as artificial neural network algorithms and support vec-
tor machine regression. A backpropagation (BP) neural net-
work, one of the most reliable and classical neural networks
among artificial neural networks, can be chosen as the base
model with convenient operation and powerful learning
ability [8–10]. However, the traditional BP neural network
training suffers from slow convergence and low prediction
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accuracy. To address these problems, a genetic algorithm is
used to optimize the parameter training of the model
[11–14].

In this paper, a BP neural network gasoline octane num-
ber prediction model is proposed based on self-adaptive
genetic algorithm optimization with gasoline physical and
chemical indexes as its independent variables and octane
number as its dependent variable. Comparative experiments
are further conducted to validate this model. The contribu-
tion in this work can be summarized as follows: (1) an opti-
mized BP neural network model is proposed to address the
issues existing in the traditional BP neural network while
dealing with the task of gasoline octane number prediction
and (2) a comprehensive experiment and analysis to validate
the proposed method are carried out. The rest of this paper
is organized as follows: the related work is introduced in Sec-
tion 2, the proposed BP-based algorithm is detailed in Sec-
tion 3, the experiment is detailed in Section 4, and Section
5 concludes the paper.

2. Related Work

2.1. Gasoline Octane Number Prediction. Octane number is a
measure of the gasoline’s ability to resist detonation in the
cylinder; the higher the value, the better the resistance to
detonation. The quantitative analysis models of octane value
are divided into linear and nonlinear models; linear models
include multivariate statistical analysis methods [15], Raman
spectral data combined with the partial least squares regres-
sion (PLS) algorithm [13], Raman spectrometer combined
with the PLS algorithm [16], momentary combined with
the local PLS algorithm (MC-PLS) [14], Fourier transform
spectroscopy combined with PLS [17], linear predictive cod-
ing combined with MLR [18], NIR spectroscopy based on
ANN, support vector machine (SVM) and multivariate sta-
tistical analysis [19], and the use of NIR spectroscopy. Most
of the nonlinear models used algorithms such as multiple
linear regression (MLR), Principal Component Regression
(PCR), and ANN [20], among which ANN is the most effec-
tive; [21] used short-wave NIR spectra with laser-induced
spectroscopy to develop an octane analysis model. Quantita-
tive octane analysis requires a large sample set and a high
level of model complexity. Linear and nonlinear models
are slightly simpler to construct compared to linear models
but are not as accurate as building complex nonlinear
models. The nonlinear model requires higher sample set
capacity and depends on the optimization of parameters
and extraction of features.

The prediction of quality indicators such as gasoline
octane number is usually modeled by combining nonlinear
models with intelligent algorithms. Since the actual octane
detection process often has the disadvantages of slow detec-
tion speed and large amount of pollutants emitted, NIR
spectroscopy gradually becomes the mainstream octane
detection method. The BP neural network is a very mature
multilayer feedforward network, which mainly contains
three parts: input, hidden, and output layers, and it is very
sensitive to the initial weights and has different convergence
speeds when given different initial values. The key to detect-

ing octane values by NIR spectroscopy is to build a mathe-
matical model, and BP neural networks are widely used in
octane prediction problems because of their strong general-
ization, self-adaptive capability, and ability to approximate
any nonlinear connectivity function with arbitrary accuracy.
Octane loss modeling using BP begins with preprocessing
the data to filter out some of the variables with the highest
correlation to octane values. The number of neurons of the
network directly affects the prediction results, and the BP
neural network is sensitive to the initial parameters, and
some optimization algorithms have been proposed by
scholars in order to accelerate its convergence [4, 22–25].

2.2. BP Neural Network. The BP neural network was firstly
proposed by Rumelhart and McClelland in 1986 [26]. This
algorithm mainly includes two calculation processes [15,
27–29]. The first is to propagate the output error through
the direction from input to output and, at the same time,
to continuously adjust the weights and thresholds according
to the training objectives of the network. If the actual output
is not consistent with the expected output, it is necessary to
switch to the second calculation stage, i.e., the error backpro-
pagation process. In the second process, the input layer is
retransmitted layer by layer to decrease the error, which
adjusts parameters along the gradient direction. Through
learning and training these two processes repeatedly, the
network weight and threshold corresponding to the mini-
mum error are determined, and the network model is cre-
ated, leading to the end of the model. The algorithm
pseudo-code is described in Algorithm 1.

The output of a neuron j on the output and hidden
layers of the BP neural network is formulated as follows:

Oj = f j Netj
� �

= f j 〠
l

i=1
wijxi + bj

 !
, ð1Þ

where xi denotes the individual input values of neuron j,
Oj denotes the output value of neuron j, wij denotes the
individual connection weights between the corresponding
input i and neuron j, f j denotes the activation function of
neuron j, the sigmoid function y = 1/ð1 + e−xÞ is commonly
used as the activation function, and bj denotes the threshold
value of neuron j.

The commonly used empirical formula for the number
of implicit layers is

h =
ffiffiffiffiffiffiffiffiffiffiffiffi
m + n

p
+ a: ð2Þ

Also, the loss function of the error is

F w, bð Þ = 1
2〠

M

i=1
di −Oi w, bð Þð Þ2, ð3Þ
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where w and b denote the weight and threshold, respec-
tively; M is the number of samples; di denotes the expected
result of the ith sample; Oi records the actual network output
of the ith sample; and f ðw, bÞ is the loss function.

2.3. Genetic Algorithm. In 1970, Professor Holland proposed
the genetic algorithm, which is a self-adaptive global optimi-
zation search algorithm. This algorithm is efficient, practical,
and robust and has been widely used in different fields
[30–33], such as machine learning, pattern recognition, neu-
ral networks, control system optimization, and social sci-
ences [34–38], by repeating three key operations on the
current population, that is, selection, crossover, and muta-
tion. To help the population gradually evolve to a state close
to the optimal solution, it uses population search techniques,
which can be realized through repeating three key opera-
tions (i.e., selection, crossover, and mutation) on the current
population [39–43]. The genetic algorithm is an encoding of
the problem parameters to be optimized, and its basic oper-
ations are as follows:

(i) The population initialization: randomly generate N
individuals as initialized populations to ensure suffi-
cient diversity in the population

(ii) The fitness function: it is the criterion to distinguish
the good and bad individuals in the population, and
the direction of increasing fitness function is in the
same direction as the change of the genetic algorithm

(iii) Selection arithmetic: application of the roulette
wheel selection method to select chromosomes into
the next generation according to their cumulative
probability

(iv) Crossover operation: randomly selecting two chro-
mosomes and then generating a random number
to produce two new individuals, which is crossed
over if it is less than the crossover rate

(v) The mutation operation randomly selects a chro-
mosome and generates a random number, which
mutates if it is less than the mutation rate, and then,
a new individual is produced

(vi) Population update: the selected solutions by genetic
manipulation are saved and finally an optimal pop-
ulation is obtained

The pseudo-code description of the genetic algorithm
[34] is shown in Algorithm 2.

BPBtrain(){
Initialize network’'s weights and thresholds;

While termination conditions are not met {
For each training sample X in the samples {

// Forward propagation of inputs
For Each cell j of the hidden or output layer {

I j∑jwijOj + θj ; ;
// The net input to the computational cell is relative to the previous layer i

Oj = 1/ð1 + e−I jÞ;
// Calculate the output of cell j. Choose the sigmod function as the activation function

}// Reverse propagation error
For each cell j of the output layer{

Errj =Ojð1 −OjÞðT j −OjÞ;// Calculate error
}
From the last to the first hidden layer, for each cell j of the hidden layer{

Errj =Ojð1 −OjÞ∑kErrkwkj;
// k is a neuron in the next layer of j
}

For each weight wij in the network {
ΔWijðlÞErrjOi;
// weighted value added, where is the learning rate

Wij =Wij + ΔWij;
// weight update

}
For each deviation in the network {

Δθj = ðlÞErrij// Value added deviation
θj = θj + Δθj;// Deviation update
}

}
}

}

Algorithm 1: BP neural network training algorithms.
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3. Optimized Neural Network Model

3.1. Establishment of the Neural Network Model

3.1.1. Building the BP Neural Network Model. The gasoline
octane number rationalization index contains 401 feature
data; thus, the input port neurons of the neural network
are 401 and the output port neuron is 1. According to the
best test results of the empirical formula, the number of neu-
rons in the hidden layer is set at 25. The neural network
model is constructed as shown in Figure 1, and the sigmoid
function is used for the activation function of the hidden
layer and the output layer.

There are still some shortcomings in the BP neural net-
work: (1) the learning rate of the neural network is deter-
mined by experimental experience, and it is difficult to find
the optimal value and (2) the initial weights and thresholds
of the neural network are randomly generated, which is easy
to obtain the local optimal values and affects the model pre-
diction performance. Therefore, the following improve-
ments are made to address these problematic topics: (1)
the learning rate is no longer set at a fixed rate, and the
self-adaptive learning rate is used to improve the learning
efficiency of the network and (2) the genetic algorithm is
very effective in finding optimal values, so it can be used to
find the optimal weights and thresholds, preventing the local
optima and improving the model prediction effect.

3.1.2. Learning Rate Optimization Based on the Self-Adaptive
Algorithm. Traditional neural networks are trained with a
fixed learning rate, which has a great impact on the train-
ing results. Unfortunately, it is uncertain about the learn-
ing rate. If the learning rate is too small, the more
training times are required and the network converges
are slower, while if the learning rate is too large, the stabil-
ity of the network structure is poor. Therefore, it is impor-
tant to examine the method of the self-adaptive learning
rate. The formula is as follows:

γt+1 =
e0:002 ∗ γt , ΔE < 0,
e−0:002 ∗ γt , ΔE ≥ 0,

(
ð4Þ

where yt is the learning rate used at the tth training,
γt+1 is the learning rate used at ðt + 1Þth, and ΔE is the
amount of variation in error.

3.2. BP Neural Network Model Optimized by the
Genetic Algorithm

3.2.1. Improvement of the Genetic Algorithm

(1) Initial population and individual codes. N individuals are
randomly generated as the initial population, considering
that the number of input nodes of the neural network is m,
the number of nodes of the hidden layer is h, and the num-
ber of nodes of the output layer is n. The following issues
should be noted when coding chromosomes: (1) the weight
matrix is a two-dimensional matrix, while chromosomes
are one-dimensional; (2) there are multiple weights and
thresholds, but a chromosome is fixed. Thus, the two-
dimensional matrix of weights is mapped into a one-
dimensional matrix, and multiple weights and thresholds
are spliced into chromosomes. Using real number encoding,
each chromosome is actually a string of real numbers, which
consists of connected weights and thresholds for each layer
of the network model. The formula to determine the length
of individual chromosomes is as follows:

L =m ∗ h + n ∗ h + n + h: ð5Þ

(2) Fitness function. The fitness function is a criterion to dis-
tinguish the good and bad individuals in the population. For
the randomly generated weights and thresholds, the result-
ing error is calculated, and the direction of the increasing fit-
ness function follows the same direction of the genetic
algorithm evolution. Here, the inverse of the loss function
is chosen as the fitness function:

Fit = 1
1/2∑M

i=1 di −Oj

� �2 , ð6Þ

where M denotes the number of training set samples, di
denotes the expected output of the ith training sample

Parents < - { Randomly generated populations }
While not (Termination condition)

Calculate the fitness of each parent in the population
Children < - ∅
While | Children| < |Parents|

Using fitness to select a mating pair of sires based on probability
The parents mated to produce offspring c1 and c2

Children < - Children{c1, c2}
Loop

Some offspring random mutation
Parents < - Children
Next Generation

Algorithm 2: Genetic algorithm.
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network, and Oi denotes the actual output of the ith training
sample network.

(3) Selection operation. The selection operation uses the rou-
lette wheel selection method, whereby chromosomes are
selected to produce populations with the same number of
individuals as N populations. In the selection process, there
may be duplicate individuals, and duplicate individuals are
irrelevant when crossover is performed. Therefore, duplicate
individuals are also eliminated during the selection process.

(4) Crossover operations. The crossover operation uses a
single-point crossover, in which two paired individuals are
selected from the initial population. During the process, a
random crossover point is set, and parts of the chromosomes
are swapped with the formation of two new individuals.

The purpose of the crossover operation is to generate
new population individuals to improve the population diver-
sity, and thus, the value of the crossover rate is of great
importance to the performance of the genetic algorithm.
Generally, the standard genetic algorithm uses a fixed cross-

over rate, which leads to problems such as premature algo-
rithm or slow convergence. If the crossover rate is too
small, it is difficult for the population to produce good indi-
viduals. If the crossover rate is too large, it is difficult to
retain the good individuals in the population in the later
stage of the algorithm. Therefore, the crossover rate used
in this paper is varied with the change of fitness value, and
the formula is as follows:

PC =
Pc1 −

Pc1 − Pc2ð Þ f ′ − f avg
� �

fmax − f avg
, f , ≥ f avg,

Pc1, f ,

8>><
>>: ð7Þ

where Pc1 = 0:99, Pc2 = 0:4, fmax is the largest fitness
value in the population, f avg is the average fitness value of

the population per generation, and f ′ is the larger fitness
value of the two individuals that will cross over.

(5) Mutation operations. Due to the long length of the chro-
mosome, it is not suitable to choose the traditional single-
point mutation operation. The number of mutation sites

25
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Figure 1: The structure of the neural network model.
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Figure 2: The flow chart of the specific GA-BP network model.
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changes, and the method of self-adaptive mutation sites is
used with the following equation:

L = L Lmax 1 − G
Gmax

� �	 

: ð8Þ

When the mutation operator mutates the kth gene of an
individual a with a certain probability. The mutation opera-
tion used is as follows:

ak ′ =
ak + amax − akð Þ ∗ r1 1 − G

Gmax

� �2
r2 > 0:5,

ak + amin − akð Þ ∗ r1 1 − G
Gmax

� �2
r2 ≤ 0:5,

8>>>><
>>>>:

ð9Þ

where ak denotes a mutation in the kth gene of an indi-
vidual a, ak ′ is the mutated individual, amax and amin are
the upper and lower bounds of individual gene values, G is
the current number of iterations, Gmax is the maximum
number of iterations, r1 and r2 are random numbers
between ½0, 1�, and Lmax is the predetermined maximum
number of mutated bits. The advantages of using this varia-
tion operation are as follows: (1) the setting of the random
number, r1, can influence the degree of variation; (2) the set-
ting of the random number, r2, can ensure that the gene
value increases or decreases with equal probability, while
the existence of the upper and lower bounds of the gene
value ensures an appropriate variation of the gene value;
and (3) the self-adaptive module used to adjust the number
of variance bits and take into account the balanced search
ability of the algorithm in both global and local. The degree
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Figure 3: The dataset (a) shows the NIR spectral analysis results of one group of gasoline samples and (b) shows the octane number of 60
groups of gasoline samples.

6 Mobile Information Systems



of variance decreases gradually with the increase in itera-
tions, which ensures the strong global search ability at the
beginning and the local search ability of the algorithm at
the later stage. It can greatly prompt the individual to con-
verge to the global optimal solution.

3.2.2. Optimization of Weights and Thresholds for the BP
Neural Network. The processes of building a BP neural net-
work (as described in Algorithm 1) based on the self-
adaptive genetic algorithm (as described in Algorithm 2)
optimization are as follows:

(1) Creating a BP neural network, randomly generating
initial weights and thresholds, initializing popula-
tions, coding with real numbers, and determining
the number of populations

(2) Calculating the fitness function and selecting the best
individuals according to the roulette selection method
and inserting them into the next-generation population

(3) Generating new individuals by crossover and muta-
tion in the new generation of populations

(4) Reinserting new individuals into the population and
calculating their fitness values

(5) Terminating the algorithm if a satisfactory individ-
ual can be found; otherwise, go back to step (2)

(6) After finding the optimal individual, the individual is
decoded to obtain the optimized weights and thresh-
olds, which are then used in the BP neural network

The flow chart of the specific GA-BP network model is
shown in Figure 2.

4. Experiment

4.1. Experimental Dataset. In the experiment, 60 groups of
gasoline samples were selected and analyzed by Fourier near
infrared spectroscopy (900-1700 nm). The wavelength point
was taken as an eigenvalue at an interval of 2 nm, and 401
eigenvalues were obtained to form the dataset (i.e., spec-
tra_data.mat), containing two sets of values, matrix NIR
and matrix octane. Among them, NIR stores the physico-
chemical data of gasoline collected by infrared spectroscopy.
Octane stores the real octane number corresponding to these
60 eigenvalues. Figure 3(a) shows the NIR spectral analysis
result of one specific group of gasoline samples, and
Figure 3(b) shows the octane number of a total of 60 groups
of gasoline samples.

In this experiment, the dataset is randomly split into two
parts, in which 50 ∗ 401 data are used as the training set and
the other 10 ∗ 401 data are used as the test set. Since the order
magnitude of each feature data of gasoline octane number is
inconsistent, this will affect the final mapping results. The
dataset needs to be normalized by the following formula:

t = t − tmin
tmax − tmin

, ð10Þ

where tmin is the minimum value for each column of data,
tmax is the maximum value for each column of data, and t is
the value to be normalized.

Further, the performance evaluation of the gasoline
octane number prediction model is divided into two parts:
the relative error E and the coefficient of determination R2,
which are defined as follows:
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Ei =
ŷi − yij j
yi

i, 2⋯ , nð Þ,

R2 =
l∑l

i=1ŷiyi −∑l
i=1ŷi∑

l
i=1yi

� �2
l∑l

i=1ŷi
2 − ∑l

i=1ŷi
� �2� �

l∑l
i=1yi

2 − ∑l
i=1yi

� �2� � ,

ð11Þ

where ŷi is the predicted value of the ith sample, yi is the
true value of the ith sample, and n is the number of samples.
It is clear that the smaller the relative error, the better the
performance of the model. The closer the coefficient of
determination to 1 in the range of [0,1], the better the per-
formance of the model. Conversely, the closer the coefficient
of determination tends to 0, the worse the performance of
the model.

4.2. Experimental Results and Simulation Analysis. The BP
neural network model uses the BP network described in Sec-
tion 3.1, with an initial learning rate of λ = 0:1, a maximum
number of iterations set to 2000, and a minimum acceptable
error set to 0.001. The training set was first applied to train
the constructed model, and then, the validation test of the
model was completed with the test set. Finally, the predicted
values of the model were compared with the real gasoline
octane number in the dataset, and the results were obtained
as shown in Figure 4. The model performance index R2 was
0.81502, which shows that the BP neural network model can
predict the gasoline octane number. Unfortunately, the lim-
itations of the traditional model lead to a low accuracy of the
prediction.

Based on the optimized BP neural network based on the
genetic algorithm designed in Section 3.2, the gasoline
octane number GA-BP model is established. In the genetic
algorithm, the population size is set to 100, and the maxi-
mum number of iterations is 500. In this model, the cross-
over rate is varied by self-adaptive, the variation rate is
0.09, the upper bound of the gene value is 1, the lower bound
of the gene value is -1, and the maximum number of varia-
tion bits is set to 10. The same comparative experiments
were used, and the experimental results are shown in
Figure 5. The model performance index R2 was 0.95628.
The results show that the accuracy of the optimized BP neu-
ral network for predicting the gasoline octane number is
improved by 14%.

In order to obtain accurate judgment of the experimental
results, the evaluation index was the average error of the loss
function through multiple experiments, resulting from the

Table 1: The comparison of the relative errors produced by 10
predictions for the two models.

No. BP GA-BP

1 0.0073 0.0035

2 0.0092 0.0061

3 0.0108 0.0040

4 0.0031 0.0024

5 0.0026 0.0071

6 0.0071 0.0035

7 0.0030 0.0065

8 0.0064 0.0045

9 0.0057 0.0034

10 0.0055 0.0063
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Figure 5: The results of the predicted values were compared with the real gasoline octane number in the GA-BP model.
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randomness of some parameters in the experiments. Each
set of data was summed and averaged the loss values
through the loss function. The data in Table 1 shows the
comparison of the relative errors produced by 10 predictions
for the two models, respectively.

It is notable in Table 1 that the average value of the rel-
ative error is 0.0061 in the traditional BP neural network,
while the average value of the relative error of the BP neural
network optimized by the self-adaptive genetic algorithm is
0.0047, which reduces the error value by 23%.

5. Conclusion

Octane number is an important metric describing gasoline’s
ability to resist detonation and combustion in the cylinder;
the higher the value, the better the resistance to detonation.
The accurate prediction of octane loss during gasoline refin-
ing could facilitate production management and ensure gas-
oline octane. A neural network, which is with excellent
performance in dealing with nonlinear system problems, is
widely used in a number of fields. However, there are still
some deficiencies. In this paper, we optimize the weights
and thresholds of the neural network by the self-adaptive
genetic algorithm and self-adaptively adjust the learning rate
to improve the accuracy and generalization ability of the
model. A novel GA-BP model was established, and this
model was used for gasoline octane number prediction.
Through the comparison of simulation results, the GA-BP
model has more accurate prediction ability and better gener-
alization ability than the traditional BP model. In one spe-
cific experiment, the model performance index decision
coefficient R2 was improved from 0.81502 to 0.95628, and
the 10-experiment average prediction error was reduced
from 0.0061 to 0.0041. In the future, we will work towards
further improving algorithm performance. The prediction
accuracy should be further improved; meanwhile, the error
value should not increase. Besides, other intelligent algo-
rithms (e.g., extreme gradient boosting) will be tested and
tailored for this industrial context.
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