
Research Article
YOLOv5-MGC: GUI Element Identification for Mobile
Applications Based on Improved YOLOv5

Jing Cheng,1 Dingmei Tan,1 Tao Zhang ,2 Aodi Wei,2 and Jingyi Chen2

1School of Computer Science and Engineering, Xi’an Technological University, Xi’an 710021, China
2School of Software, Northwestern Polytechnical University, Xi’an 710072, China

Correspondence should be addressed to Tao Zhang; tao_zhang@nwpu.edu.cn

Received 12 April 2022; Accepted 4 July 2022; Published 8 August 2022

Academic Editor: Ali Khattak Hasan

Copyright © 2022 Jing Cheng et al.  is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 e identi�cation of interface elements is the �rst step in mobile application automated testing and the key to smooth testing.
However, existing object detection algorithms have a low accuracy rate, and some tiny elements are missed in the recognition of
graphical user interface (GUI) elements. To address this limitation, this paper proposes the YOLOv5-MGC algorithm, a robot
vision-based interface element recognition algorithm for mobile applications.  e algorithm improves the network by using
K-means++ algorithm for target anchor box generation, applying the attention mechanism, adding a microscale detection layer,
and introducing the Ghost bottleneckmodule. e proposed approach enhances the recognition accuracy of the elements through
the target anchor box and attention mechanism. Moreover, it enhances the network’s ability to detect tiny elements, which
improves the shortcomings of the current target detection algorithm and is conducive to further promoting mobile application
robot testing and enhancing robot testing automation. Experimental results show that the YOLOv5-MGC algorithm is superior to
the YOLOv5 for object detection in the recognition of GUI elements, with the mean average precision (mAP_0.5) reaching 89.8%
and the recognition precision reaching 80.8%.

1. Introduction

In recent years, the demand for mobile applications has been
surging due to their portability and convenience, and
medical applications are also on the rise. To ensure the
quality of mobile applications and improve system reli-
ability, mobile application testing technology has become a
hot topic in the current research [1]. GUI provides the
medium for interaction between users and computers, of-
fering great convenience to users by transferring informa-
tion through graphics such as buttons, text boxes, and
windows [2].  erefore, GUI element identi�cation is a
critical issue in mobile application testing. With the rapid
development of Internet applications, especially in mobile
devices, the design and testing of GUI around various
businesses is becoming increasingly complex. Traditional
manual testing can no longer meet the needs of GUI testing
[3, 4]; hence, automated testing technology is necessary to
solve these problems.

Although many automatic testing frameworks and tools
are available at this stage [5–7], these testing tools require
investment in learning costs, high maintenance costs, and
harsh conditions of use, with strong restrictions on the
platform, device, and application under test. Robotic testing
is a new approach to mobile application automated testing.
It overcomes the ine¦ciency and high cost of traditional
manual testing, as well as the complexity and maintenance
di¦culties of general automated testing. Robot vision is an
important part of robotic automated testing. By using robot
vision, a GUI framework can be obtained, test scripts are
automatically generated, and the robotic arm is controlled to
perform the corresponding test actions, thereby laying the
foundation for subsequent robot testing. In comparison with
the testing method of acquiring a GUI framework for mobile
applications through scripts [8], the whole testing process
does not require manual writing of test scripts, and human
involvement is greatly reduced, which can e¨ectively im-
prove the automation degree of robotic testing.

Hindawi
Mobile Information Systems
Volume 2022, Article ID 8900734, 9 pages
https://doi.org/10.1155/2022/8900734

mailto:tao_zhang@nwpu.edu.cn
https://orcid.org/0000-0003-3695-8328
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8900734


At present, in the process of using robot vision for GUI
element identification for mobile application, the common
identification techniques can be divided into two categories:
traditional computer vision-based methods and deep learning-
based methods. Traditional computer vision methods [9–11]
locate interface elements through image matching or Canny
algorithm, which are simple and fast, but difficult to extract
complex combined elements accurately and have a low de-
tection rate. Deep learning methods [12–14] mainly identify
GUI elements by training the object detection algorithm to
improve the detection accuracy. As a representative one-stage
object detection algorithm, YOLOv5 has been widely adopted
due to its speed and accuracy [15]. However, when the current
YOLOv5 algorithm identifies GUI elements with complex
backgrounds, it can lead to poor accuracy of GUI element
recognition, false detection of some tiny elements, missed
detection, and repeated detection [16].

To solve the above problems, this paper proposes a de-
tection algorithm, YOLOv5-MGC, based on the improved
YOLOv5 to recognize GUI elements from the perspective of
robot vision. First, the K-means++ algorithm is used to gen-
erate target anchor frames instead of the K-means algorithm,
making the recognition algorithm more applicable to the
mobile application interface dataset. Second, the Convolutional
Block Attention Module (CBAM) is applied to the YOLOv5
backbone network to improve the accuracy of the recognition
algorithm. In the detection stage, to enhance the recognition
success rate of tiny elements, a microscale detection layer is
added to the network structure. Finally, the Ghost bottleneck
(G-Bneck)module is introduced to build a lightweight network
to reduce the degradation of the algorithm’s detection speed
because of the increase in network structure. *e experimental
results show that our algorithm is feasible. *e main contri-
butions of our work are as follows:

(a) We propose a YOLOv5-MGC algorithm for GUI
element identification, which improves the accuracy
of element recognition and reduces the rate of
missing tiny elements in GUI.

(b) We apply robot vision to object detection in an
attempt to combine object detection technology with
automated robotic testing. *e proposed approach
serves the automated testing of mobile applications
and improves the automation degree of mobile
application tests.

2. Related Works

Our work in this paper and the proposed approach therein
are related to object detection-based recognition of interface
elements. In recent years, the object detection algorithm for
an optimal trade-off between precision and speed has been a
popular research topic. *e two-stage and one-stage de-
tectors havemade great contributions to the improvement of
efficient network and better methodology [17].

Zhang [12] proposed a new mobile application element
recognition algorithm based on computer vision and object
detection techniques. He used mainstream object detection
algorithms, Faster R–CNN and RetinaNet, for training and

validation. *e experimental results show that the object de-
tection algorithm can be applied to element recognition with
good robustness and accuracy. Gallery [18] used Faster R–CNN
to determine the type, size, and location of GUI elements by
automatically collecting a library of 11 types of element using
screenshots of the application interface. Faster R–CNN is a
target detection technology based on a two-stage anchor box. In
this method, a generator region proposal network (RPN) was
used to generate the proposals, and the anchor was introduced
to cope with the different sizes of objects, such that detection
accuracy and speed were significantly improved. In addition,
improved Faster R–CNN networks, Cascade R–CNN [19], and
Mask R–CNN [20] were proposed to improve the accuracy of
tiny target detection. *ese two-stage object detection algo-
rithms have high accuracy, but high time complexity. *us,
applying them to real-time detection systems is difficult.

To improve object detection accuracy, Redmon et al. [21]
developed the real-time detector YOLO in 2016, laying the
foundation of one-stage object detection. *e one-stage object
detection model generates high-quality target proposal regions
through a dedicated RPN. In comparison with the two-stage
object detection, it provides faster detection. At the same time,
the one-stage object detection algorithm has obvious advan-
tages for dense and overlapping GUI elements.

White et al. [14] used YOLOv2 to achieve fast identification
and localization of elements when performing GUI automated
testing tasks, which improved the detection accuracy of GUI
elements. Subsequently, Redmon and Farhadi [22] proposed
the YOLOv3 network to improve the weak generalization
ability and low detection accuracy. In 2020, Wu et al. [23]
proposed the YOLOv5 model based on YOLOv4, which has
become one of the best algorithms in terms of detection ac-
curacy and speed performance, and has been widely used in
various industrial scenarios [24, 25]. However when faced with
GUI elements, YOLOv5 recognition algorithm still has some
problems. Given the inter-class similarity between GUI ele-
ments, element recognition errors, and low recognition ac-
curacy will exist. Conversely, as GUI elements are generally
small and dense, YOLOv5 may miss detection when recog-
nizing these tiny elements. However, the recognition of GUI
elements is the first step of mobile application testing, and it is
the key to smooth testing. *e shortcomings of existing al-
gorithms will affect the quality of later mobile application
testing. *erefore, we need to improve the existing network to
raise the recognition accuracy of GUI elements.

Generally, the recognition of GUI elements plays a
pivotal role in automated robotic test modeling.*e result of
the recognition directly affects the generation of test scripts
and the subsequent test execution of the robotic arm. Hence,
this paper investigates how to use robot vision to identify
mobile application interface elements accurately and effi-
ciently in the context of the above research.

3. Revisiting the Problem of GUI
Element Recognition

3.1. Classification of Interface Elements. GUI element clas-
sification is a prerequisite for element identification. Cur-
rently, GUI interface design has changed from the text-based

2 Mobile Information Systems



interface to the interface consisting of windows, icons,
menus, and toolbars [26]. *ese basic elements can con-
stitute different styles of GUI interfaces. To collect and label
GUI elements, we classify different GUI elements according
to the design semantics of mobile applications [27] as shown
in Table 1.

*is paper classifies GUI elements into the eight cate-
gories mentioned above. *e variety of elements is complex
and diverse. Moreover, there exist differences within cate-
gories and similarities between categories. *is complex and
unique feature brings challenges to GUI element
identification.

3.2. Problems of GUI Element Recognition. In real-time GUI
element recognition applications, the system needs to meet
several characteristics: acceptable element recognition ac-
curacy and fast response time. YOLOv5 has been widely
used in the industry for its fast recognition and high ac-
curacy, but two problems remain with the YOLOv5 algo-
rithm when it comes to mobile application interface
elements.

First, the recognition accuracy of GUI elements is not
high. As the style of GUI elements is not unified and many
similarities exist between classes, YOLOv5 may have poor
recognition accuracy and incorrect recognition when
recognizing GUI elements. Without a sufficient accuracy
guarantee, it will lead the subsequent robot automated test
to the wrong process and cannot meet the testing
requirements.

Second, some tiny elements are missing. As GUI ele-
ments are generally small and dense, YOLOv5 may miss the
detection of these tiny elements. For mobile application
robot automated testing, if an element is missed, it will not
be included in the subsequent test scripts. *us, the interface
element will not be clicked on by the robot at all.

*erefore, in this paper, the YOLOv5-MGC algorithm is
designed based on the improved YOLOv5 from the above
perspective.

4. Proposed Method

In this part, an improved YOLOv5 detection model based on
robot vision, YOLOv5-MGC algorithm, is proposed for GUI
element recognition. First, the K-means++ algorithm is used
to generate suitable target anchor frames according to the
mobile application interface dataset. Second, the attention
mechanism is applied to enhance the focus of the network,
and a microscale detection layer is added to identify tiny
elements that are easily missed. Finally, the G-Bneck module
is introduced to improve the recognition of GUI elements
without reducing the detection speed and accuracy. *e
structure of the YOLOv5-MGC network is shown in
Figure 1.

4.1. K-Means++ Clustering Algorithm. Faster R–CNN first
proposed the concept of the anchor box to detect multiple
objects in a grid unit [28]. *e YOLO algorithm takes this
idea and uses anchor boxes to match objects better. It uses
the K-means clustering algorithm to obtain the prior an-
chor box to predict each grid. Although the K-means al-
gorithm is simple and fast and the obtained anchor box
value matches better than the manual setting, there still
exist some drawbacks [29–31]. First, the number of
K-means clustering centers K needs to be given in advance;
however, in practice, the selection of K values is extremely
difficult. Second, the K-means algorithm needs to deter-
mine the initial clustering centers randomly. Different
initial clustering centers may lead to completely different
clustering results.

*e K-means++ algorithm can effectively solve the
randomness problem of the K-means algorithm. *e basic
principle of the K-means++ algorithm to choose the initial
clustering centers is that the initial clustering centers should
be as far away from each other as possible. *e idea of
selecting cluster centers is as follows: assume that n initial
cluster centers have been selected. *en, when selecting the
n + 1 cluster center point, the more distant the points from

Table 1: Categories and features of GUI elements.

Categories Features Example

Text Some descriptive text present in the interface

Image Rich and colourful, mostly used for people and landscape

Icon Single colour, simple, and clear patterns

Button With distinct bumps and a sharp border

Radio button Round icons with a clear blank circular hole in the center

Check box Blank rectangles or blank rectangles with checkmarks

Switch Rounded rectangles or rectangles with right angles, with shades of colour at the front and back

Others Other types of interface elements

Mobile Information Systems 3



the current n cluster centers are, the higher the probability of
being selected will be.

*e K-means++ algorithm is broken down as follows:

(a) Select a central point in the dataset randomly.
(b) First, calculate the Euclidean square distance

D(x) between each sampling point and the cur-
rently existing central point. *en calculate the
probability of each sampling point P(x) selected
as the next cluster center. Finally, select the next
cluster central point according to the roulette
wheel method. *e probability formula is as
follows:

P(x) �
D(x)

2

x∈XD(x)
2. (1)

(c) Repeat step (b) until K clustering centers have been
selected.

(d) Calculate the distance from each sampling point in
the dataset to each of the K cluster centers and
classify it into the class corresponding to the cluster
center with the smallest distance.

(e) For each category, recalculate its cluster center.

(f ) Repeat Steps (d) and (e) until the position of the
clustering center no longer changes.

4.2. Attention Mechanism Network. CBAM is one of the
representative works on attention mechanisms published by
Woo et al. in 2018 [32]. *e main network architecture of
CBAM is relatively simple; one is the channel attention
module, and the other is the spatial attention module, both
of which are independent of each other. Combining the
channel attention mechanism and the spatial attention
mechanism for feature extraction not only saves parameters
and computational power but also ensures that it is plug-
and-play and easy to integrate. *e CBAMmodule is shown
in Figure 2.

To improve the accuracy of GUI element recognition
algorithm and prevent category recognition errors,
YOLOv5-MGC adds the CBAM attention mechanisms after
the Bottleneck CSP module on Layers 5 and 7 of the
YOLOv5 backbone network. By using the attention mech-
anism to increase the expressiveness of the network, the
important features of the interface elements are focused on
and unnecessary features are suppressed. *ese features can
improve the recognition accuracy of GUI elements and
make the recognition results more accurate, thereby

Backbone

Conv

Conv

Conv

Conv
output

output

output

output

Neck (PANet) Head

Concat

Upsample

CBH

BottleneckCSP

Concat

Upsample

CBH

BottleneckCSP

Concat

Upsample

CBH

BottleneckCSP

CBH

Concat

BottleneckCSP

CBH

Concat

BottleneckCSP

CBH

Concat

BottleneckCSP

Focus

CBH

G-BneckS1

G-BneckS2

G-BneckS1×3

CBAM

G-BneckS2

G-BneckS1×3

CBAM

G-BneckS2

SPP

BottleneckCSP

Figure 1: YOLOv5-MGC network structure diagram. It consists of three main parts: backbone, neck, and head. *e red part represents the
microscale detection layer, the blue part is the attention mechanism, and the yellow part represents the modified Ghost Bottleneck module.

4 Mobile Information Systems



accurately correlating test behaviors and enabling precise
guidance of test execution.

4.3. Microscale Detection Layer. YOLOv5 continues the
design idea of YOLOv3 by detecting through three scales,
downsampling the dimensionality of the input image by 8,
16, and 32. However, this study found that relying only on
the three scales for training when recognizing GUI elements,
some elements were still missed. Most of these elements are
small icons located at the top left corner of the interface for
the backward function or at the bottom.

*erefore, to address the phenomenon of missing small
targets in the process of GUI element recognition, this paper
designs smaller-scale feature maps for tiny targets. On the
basis of the YOLOv5 network structure, a tiny detection
layer is added by downsampling the input image by a factor
of 64. *is microscale layer generates a feature map with a
smaller sense field by extracting lower spatial features and
fusing them with deeper semantic features, making the
detection network structure more extensive and detailed. It
also facilitates the prediction of smaller-sized targets and
reduces the occurrence of missed detection.

4.4. G-Bneck Module. To improve the accuracy of GUI el-
ement recognition and reduce the miss detection rate of
elements, an attention module and a microscale detection
layer are added to the network, which will inevitably reduce
the training and target detection speed of the network. To
better serve the fully automated testing of mobile applica-
tions and support the real-time operation of deep con-
volutional models, using lightweight convolutional model
architecture is a good solution.

In this paper, we consider adding the G-Bneckmodule to
the backbone network of YOLOv5 to reduce the overall size
of the model without increasing the network parameters.
*is method allows the network to understand the redun-
dant information better and faster, thereby improving the
model accuracy. *e G-Bneck has two structures [33],
namely, the bottleneck with Stride� 1 and Stride� 2, as
shown in Figure 3. In particular, the first Ghost module in
Stride� 1 is used as an extension layer, increasing the
number of channels. *e ratio of the number of output
channels to the number of input channels is called the
extension ratio. *e second Ghost module reduces the
number of channels to match the shortcut path.*e shortcut
is then used to connect the inputs and outputs of the two
Ghost modules. *e second Ghost module in the G-Bneck

module does not use ReLU. *e other layers apply batch
normalization and the ReLU activation function after each
layer. *e case corresponding to Stride� 2 acts as down-
sampling in this model and implements fast paths for
connectivity [34]. A G-Bneck module is used to replace part
of the YOLOv5 network structure to speed up network
training while ensuring recognition accuracy.

5. Experimental Analysis and Results

To evaluate the effectiveness and accuracy of the YOLOv5-
MGC algorithm proposed in this paper on the task of GUI
element recognition, this section compares the YOLOv5-
MGC algorithm with the YOLOv5 algorithm for experi-
ments. *e experimental environment is built using the
Python language under the Windows operating system. *e
relevant algorithm is also programmed based on the Pytorch
framework.

5.1. Dataset Preparation. *e research is based on the
publicly available Rico dataset, which contains over 93,000
mobile application design data in 27 categories. Each ap-
plication screenshot in the dataset contains a JSON file of the
view hierarchy of application interface elements. However,
as the JSON files are not annotated uniformly, the Rico
dataset must be cleaned and filtered to ensure sufficiently

channel attention (Mc) spatial attention (Ms)

Input feature map F output feature map FĐ

× ×

F′ F″

Figure 2: CBAM module.

Ghost module

DWConv S=2

Ghost module

add

BN+ReLU

BN

sh
or

tc
ut

Input

BN+ReLU

Input

Ghost module

Ghost module

add

BN+ReLU

BN

sh
or

tc
ut

G-BneckS1:Stride=1 G-BneckS2:Stride=2

Figure 3: G-Bneck module network structure.

Mobile Information Systems 5



rich and valid training samples for robot vision-based GUI
recognition.

*rough the analysis and statistics of the GUI element
categories, we classify the elements into eight categories:
Text, Image, Icon, Button, Radio Button, Check Box, Switch,
and Others. A total of 4,000 images are labeled and divided
into training, validation, and test sets in the ratio of 8 :1 :1.

5.2. Evaluation Indicators. Robotic visual recognition of
GUI elements is essentially a domain-specific object de-
tection task. Its common evaluation indicators include
precision, recall, F1-score, average precision (AP), and frame
per second (FPS). *e test results of the binary classification
model are represented in the data by the following four
categories: true positive (TP), false positive (FP), true
negative, and false negative (FN).

5.2.1. Precision. Precision rate refers to the percentage of
TPs in all samples where the model predicted positive. *e
calculation formula is as follows:

Precision �
TP

TP + FP
. (2)

5.2.2. Recall. Recall rate describes the success rate of pre-
diction for positive samples in the algorithmmodel, which is
the likelihood of a positive class being recalled.

Recall �
TP

TP + FN
. (3)

5.2.3. F1-Score. *e F1-score is the harmonic average of the
precision and recall rates and is generally inversely related to
each other. F1-score ranges from 0 to 1, with larger values
indicating better classification of the algorithm model.

F1 � 2
Precision × Recall
Precision + Recall

. (4)

5.2.4. AP. *e integral of the P–R curve is the area under the
P–R curve. *e P–R curve is a curve with recall as the
horizontal axis and precision as the vertical axis.

For a continuous P–R curve,

AP � 
1

0
PRdr. (5)

For a discrete P–R curve,

AP � 
n

k�1
P(k)Δr(k). (6)

5.2.5. FPS. FPS indicates the number of images that can be
processed by the algorithmmodel per second. It is often used
to evaluate the speed of the algorithm model.

6. Results and Discussion

*e experiments trained YOLOv5-MGC and YOLOv5
under the above dataset. For the YOLOv5 algorithm, we use
the idea of transfer learning and training under the officially
provided weight files. Conversely, the YOLOv5-MGC al-
gorithm changes the network structure and needs to be
trained from scratch. A total of 10,000 iterations are per-
formed throughout the training process, with a batch size of
16. *e learning rate is 0.01, the stochastic gradient descent
momentum value is 0.937, the weight decay is 0.0005, and
the rest of the settings are kept as default.

Table 2 shows the performance indicators of the mobile
application interface elements for both algorithms based on
the evaluation indicators defined above. *e data show that
the YOLOv5-MGC algorithm improves the AP by 0.006% in
the image category, 0.01% in the ico.con category, 0.03% in
the Radio Button category, and 0.071% in the Others cat-
egory compared with the YOLOv5 algorithm; whereas the
AP in the Button and Switch categories remained the same.
Overall, the YOLOv5-MGC algorithm proposed in this
paper improves the recognition precision, recall, and F1-
score in several categories, effectively demonstrating the
accuracy of the YOLOv5-MGC.

In the field of object detection, the more complex the
structure of the algorithm model is, the greater the weight of
the completed algorithm model after training will be. *is
condition results in a slower detection speed, which is not
conducive to engineering deployment and application. In
the YOLOv5-MGC algorithm model, a G-Bneck module is
introduced into the backbone network to mitigate the de-
tection speed degradation caused by the expansion of the
network structure. *e experimental data show that the
YOLOv5 algorithm model takes an average of 0.009 s to
detect an image, whereas the YOLOv5-MGC algorithm
model takes an average of 0.011 s. Table 3 shows a com-
parison of the FPS at recognition between the two algorithm
models.

As shown in Table 3, although the FPS of the YOLOv5-
MGC algorithm decreases somewhat compared with that of
the YOLOv5 algorithm, the detection speed of YOLOv5-
MGC can already meet the requirements of mobile appli-
cation robot testing for GUI element recognition.

After the above analysis, to see more intuitively the
difference in effectiveness between YOLOv5-MGC and
YOLOv5 when performing detection, Figure 4 shows the
comparison of the two algorithm models in GUI element
recognition.

Figure 4(a) shows that the recognition accuracy of using
YOLOv5-MGC for the Text, Image, and Button categories is
higher than that of using the YOLOv5 algorithm. In
Figure 4(b), the YOLOv5 algorithm is less effective in
predicting the bounding box for multiple images, and even
some of the bounding boxes overlap. Conversely, YOLOv5-
MGC is more accurate in predicting the bounding boxes.
Figure 4(c) shows multiple small images. *e YOLOv5 al-
gorithm incorrectly predicts the element located in the
upper-right part of the interface as the Icon category,
whereas the YOLOv5-MGC algorithm correctly predicts all

6 Mobile Information Systems



of them as the Image category. In Figure 4(d), a line of text
located in the middle of the interface is missed using the
YOLOv5 algorithm.

*e above experimental data and detection results show
that the YOLOv5-MGC algorithm proposed in this paper
can effectively improve the recognition accuracy of GUI
elements and reduce the missed recognition rate of tiny
elements. It has good performance in GUI element recog-
nition, which provides some help for the subsequent re-
search on mobile application automated testing.

7. Conclusions and Future Works

We propose a robot vision-based algorithm for GUI element
recognition, namely, YOLOv5-MGC. *is approach is ap-
plied to automated mobile application test modeling to
improve the accuracy of robot vision recognition. On the
basis of YOLOv5, we initially replace the K-means algorithm
with K-means++ for target anchor box generation to en-
hance the feature extraction capability of the network model.
*en, the attention mechanism and microscale detection

Table 2: GUI elements recognition results.

Category
Algorithm

YOLOv5-MGC (%) YOLOv5 (%)
AP Precision Recall F1 AP Precision Recall F1

Text 91.8 86.5 89.4 87.93 92.9 84.5 89.4 86.88
Image 91.5 70.6 78.6 74.39 90.9 66.1 81.1 72.84
Icon 77.6 72.7 91.5 81.02 76.6 71.1 93 80.59
Button 94.5 88 94.5 91.13 94.5 84.7 97.2 90.52
Radio button 98.2 83.3 99.3 90.6 95.2 78.1 97.3 86.65
Check box 98.2 95.7 98.5 97.08 99.5 94.1 97.5 95.77
Switch 99.5 80.8 99.2 89.06 99.5 70.5 99.1 82.39
Others 88.3 69 60.9 64.7 81.2 48.6 63.6 55.1

Table 3: FPS comparison.

Algorithm YOLOv5 YOLOv5-MGC
FPS 111 91

YO
LO

v5
YO

LO
v5

-M
G

C

(a) (b) (c) (d)

Figure 4: Comparison of YOLOv5 and YOLOv5-MGC detection results.

Mobile Information Systems 7



layer are added to the backbone network to improve the
element recognition accuracy and reduce the miss detection
rate of elements. Finally, the G-Bneck is introduced into the
network to reduce the training and detection speed due to
the increase of network modules, achieving the effect of
accelerating network training while ensuring recognition
accuracy.

In the experiment, the convolutional network model
YOLOv5 is used for training and testing. According to the
comparison of detection performance, the YOLOv5-MGC
network based on transfer learning proposed in this paper
performs better in terms of recognition accuracy and pre-
cision. *e mean AP (0.5) can reach 89.8%, and the rec-
ognition precision can reach 80.8%.

*e method proposed in this paper still has some lim-
itations. First, due to the continuous development and
updating of GUI, some of the GUI styles in the RICO dataset
used in this paper are already outdated and cannot meet the
current training data required. Second, in this paper, the
recognition categories are divided into eight categories,
among which the others category contains many categories
and is more complicated to recognize. Although the algo-
rithm proposed in this paper has been greatly improved for
the recognition of the others category, there still exists
considerable room for improvement. *us, we will continue
to mine the GUI element classification and consider
implementing unsupervised learning for GUI elements to
address these limitations in future work.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that there are no potential conflicts of
interest.

Acknowledgments

*is work is supported by the following projects: (1) Nature
Science Basic Research Plan in Shaanxi Province of China
(Grant nos. 2019JM-484). (2) Key Research and Develop-
ment Project in Shaanxi Province of China (No. 2022GY-
048). (3) Scientific Research Program Funded by Shaanxi
Province Education Department (No. 19JK0414). (4) Na-
tional Natural Science Foundation of China (No. 61901388,
62001386).

References

[1] C. Zhang, T. Shi, J. Ai, and W. Tian, “Construction of GUI
elements recognition model for AI testing based on deep
learning,” in Proceedings of the 8th International Conference
on Dependable Systems and 7eir Applications (DSA),
pp. 508–515, Yinchuan, China, December 2021.

[2] L. Mariani, M. Pezzè, V. Terragni, and D. Zuddas, “An
evolutionary approach to adapt tests across mobile apps,” in
Proceedings of the IEEE/ACM International Conference on

Automation of Software Test (AST), pp. 70–79, Madrid, Spain,
May 2021.

[3] X. Zhu, B. Zhou, J. Li, and Q. Gao, “A test automation solution
on gui functional test,” in Proceedings of the 2008 6th IEEE
International Conference on Industrial Informatics, pp. 1413–
1418, Daejeon, Korea (South), September 2008.

[4] R. Coppola, L. Ardito, andM. Torchiano, “Mobile testing: new
challenges and perceived difficulties from developers of the
Italian industry,” IT Professional, vol. 22, no. 5, pp. 32–39,
2020.

[5] S. Singh, R. Gadgil, and A. Chudgor, “Automated testing of
mobile applications using scripting technique: a study on
appium,” International Journal of Current Engineering and
Technology (IJCET), vol. 4, no. 5, pp. 3627–3630, 2014.

[6] S. Negara, N. Esfahani, and R. Buse, “Practical Android Test
Recording with Espresso Test Recorder,” in Proceedings of the
IEEE/ACM International Conference on Software Engineering:
Software Engineering in Practice Google LLC, Montreal, QC,
Canada, August 2019.

[7] XCTest, “UI Tests for Your Xcode Project,” https://developer.
apple.com/documentation/xctest.

[8] A. Gunduz, N. Kose, and G. Rigoll, “Real-time hand gesture
detection and classification using convolutional neural net-
works,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2613–2625, Lille, France,
May 2019.

[9] T. A. Nguyen and C. Csallner, “Reverse Engineering Mobile
Application User Interfaces with REMAUI,” in Proceedings of
the 2015 30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 248–259, NE, USA,
November 2015.

[10] K. Moran, C. Bernal-Cardenas, M. Curcio, R. Bonett, and
D. Poshyvanyk, “Machine learning-based prototyping of
graphical user interfaces for mobile apps,” IEEE Transactions
on Software Engineering, vol. 46, no. 2, pp. 196–221, 2020.

[11] S. C. Yu, C. R. Fang, and Y. Feng, “LIRAT:Layout and Image
Recognition Driving Automated Mobile Testing of Cross-
Platform,” in Proceedings of the 2019 34th IEEE/ACM In-
ternational Conference on Automated Software Engineering
(ASE), pp. 1066–1069, CA, USA, November 2019.

[12] W. Y. Zhang, “Mobile application control detection method
based on image recognition,” Computer Applications, vol. 40,
no. S1, pp. 157–160, 2020.

[13] T. Beltramelli, “Pix2code: generating code from a graphical
user interface screenshot,” in Proceedings of the EICS’18: ACM
SIGCHI Symposium on Engineering Interactive Computing
Systems ACM, NY, USA, June 2018.

[14] T. D. White, G. Fraser, and J. Guy, “Improving random GUI
testing with image-based widget detection,” in Proceedings of
the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 307–317, NY, USA, July 2019.

[15] H. Zhang, M. Tian, G. Shao, J. Cheng, and J. Liu, “Target
detection of forward-looking sonar image based on improved
YOLOv5,” IEEE Access, vol. 10, pp. 18023–18034, 2022.

[16] X. Zhang, F. Guo, Y. Liang, and X. Chen, “Summary of small
target detection algorithms based on deep learning,” Softw.
Guide, vol. 19, no. 05, pp. 276–280, 2020.

[17] Y. Li, S. Li, H. Du, L. Chen, D. Li, and Y. Li, “YOLO-ACN:
focusing on small target and occluded object detection,” IEEE
Access, vol. 8, pp. 227288–227303, 2020.

[18] C. Chen, S. Feng, Z. Xing, and L. Liu, “Gallery D. C. Design
search and knowledge discovery through auto-created GUI
component gallery,” in Proceedings of the ACM Hum-Comput
Interact, p. 22, NY, USA, November 2019.

8 Mobile Information Systems

https://developer.apple.com/documentation/xctest
https://developer.apple.com/documentation/xctest


[19] Z. Cai and N. Vasconcelos, “Cascade R-CNN: delving into
high quality object detection,” in Proceedings of the IEEE/CVF
Conf. Comput. Vis. Pattern Recognit, pp. 6154–6162, MD,
USA, June 2018.

[20] K. He, G. Gkioxari, P. Girshick, and R. Girshick, “Mask
R-CNN,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 42, no. 2, pp. 386–397, 2020.

[21] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified real-time object detection,” in Proceedings
of the IEEE Conference on Computer Vision Pattern Recog-
nition (CVPR), pp. 779–788, NV, USA, June 2016.

[22] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Im-
provement,” 2018, https://arxiv.org/abs/1804.02767.

[23] D. Wu, S. Lv, M. Song, and H. Song, “Using channel pruning-
based YOLO v4 deep learning algorithm for the real-time and
accurate detection of apple flowers in natural environments,”
Computers and Electronics in Agriculture, vol. 178, no. 5,
Article ID 105742, 2020.

[24] J. Zhao, X. Zhang, and J. Yan, “A wheat spike detection
method in UAV images based on improved YOLOv5,” Re-
mote Sensing, vol. 3095, no. 13, 2021.

[25] L. Zhu, X. Geng, Z. Li, and C. Liu, “Improving YOLOv5 with
attention mechanism for detecting boulders from planetary
images,” Remote Sensing, vol. 3776, no. 13, 2021.

[26] H. Shi, J. Li, and J. Mao, “Lateral Transfer Learning for
Multiagent Reinforcement Learning,” IEEE Transactions on
Cybernetics, 2021.

[27] T. F. Liu, Mark Craft, and Jason Situ, “Learning Design Se-
mantics for Mobile Apps,” in Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology,
pp. 569–579, NY, USA, October 2018.

[28] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R.-C. N. N.
Towards real-time object detection with region proposal
networks,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 39, pp. 1137–1149, 2016.

[29] Li Jingchen, S. Haobin, and H. Kao-Shing, “Using Fuzzy Logic
to Learn Abstract Policies in Large-Scale Multi-Agent Rein-
forcement Learning,” IEEE Transactions on Fuzzy Systems,
2022.

[30] S. Haobin, L. Jingchen, M. Jiahui, and H. Kao-Shing, “Lateral
Transfer Learning for Multi-Agent Reinforcement Learning,”
IEEE Transactions on Cybernetics, 2021.

[31] H. Shi, X. Li, K.-S. Hwang, W. Pan, and G Xu, “Decoupled
visual servoing with fuzzy Q-learning, decoupled visual ser-
voing with fuzzy,” IEEE Transactions on Industrial Infor-
matics, vol. 14, no. 1, pp. 241–252, 2018.

[32] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, “CBAM: con-
volutional block attention module,” Computer Vision-ECCV
2018, vol. 11211, pp. 3–19, 2018.

[33] K. Han, “GhostNet: more features from cheap operations,” in
Proceedings of the 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1577–1586, WA,
USA, June 2020.

[34] J. Li, H. Shi, and K. S. Hwang, “An explainable ensemble
feedforward method with Gaussian convolutional filter,”
Knowledge-Based Systems, vol. 225, Article ID 107103, 2021.

Mobile Information Systems 9

https://arxiv.org/abs/1804.02767

