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Breast cancer is the most common form of cancer in women. Its aggressive nature has made it one of the chief factors of high
female mortality. �erefore, this has motivated research to achieve early diagnosis since it is the best strategy for patient survival.
Currently, mammography is the gold standard for detecting breast cancer. However, it is expensive, unsuitable for dense breasts,
and an invasive process that exposes the patient to radiation. Infrared thermography is gaining popularity as a screening modality
for the early detection of breast cancer. It is a noninvasive and cost-e�ective modality that allows health practitioners to observe
the temperature pro�le of the breast region for signs of cancerous tumors. Deep learning has emerged as a powerful computational
tool for the early detection of breast cancer in radiology. As such, this study presents a review that shows existing work on deep
learning-based Computer-aided Diagnosis (CADx) systems for breast cancer detection. In the same context, it re�ects on
classi�cation utilizing breast thermograms. It �rst provides an overview of infrared thermography, details on available breast
thermogram datasets, and then segmentation techniques applied to these thermograms. We also provide a brief overview of deep
neural networks. Finally, it reviews works adopting Deep Neural Networks (DNNs) for breast thermogram classi�cation.

1. Introduction

Breast Cancer (BC) is the most common cancer in women
with an estimated 2.3 million new cases registered an-
nually, making it the second leading cause of death in
females [1]. Cancer results from a genetic abnormality due
to a change in somatic cells. �is modi�cation can result
from a genetic or epigenetic mutation [2]. Breast cancers
are classi�ed into invasive and noninvasive cancer. It is
invasive if it has stretched to nearby tissues of the ducts in
which it is located. Otherwise, it is noninvasive [3, 4].
Early detection is the best strategy for survival [5].
Currently, mammography is the state-of-the-art screen-
ing modality used to detect breast cancer in its infancy [6].
Although, it proved to be successful. It is an invasive
process that causes discomfort and exposure to radiation,
thus increasing the risk of radiation-induced breast cancer
[7].

Moreover, it is not recommended for young women who
naturally have dense breasts [8, 9]. �is is because breast
density is inversely proportional to the sensitivity of a
mammogram, making it di�cult to pick abnormalities [10].
Instead, women with dense breasts are recommended for a
breast ultrasound [11, 12]. However, breast ultrasound can
only reveal super�cial lesions [13].

�ermography is another screening modality that has
advantages over its counterparts. First, it is noninvasive
since no contact or hazardous radiation is involved [14, 15].
Second, it is portable and cost-e�ective [16]. �is screening
modality is based on infrared radiation; it measures the
heat radiated from the breast surface and maps the tem-
perature matrix onto a digital image to be analyzed by a
health practitioner. Its working principle leverages a sci-
enti�c fact found on skin surfaces harboring tumors in that
they generate abnormal heatmaps because of the higher
metabolic activity of cancerous cells. Until recently,

Hindawi
Mobile Information Systems
Volume 2022, Article ID 8952849, 19 pages
https://doi.org/10.1155/2022/8952849

mailto:dennies.tsietso@studentmail.biust.ac.bw
https://orcid.org/0000-0003-4936-8781
https://orcid.org/0000-0003-3741-8315
https://orcid.org/0000-0002-6945-6562
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8952849


scholars have attempted to develop predictive models for
adoption in the diagnostic workflow of breast cancer. Deep
Neural Networks (DNNs) have significantly displayed a
high predictive accuracy in breast cancer radiology. )is is
due to their robustness, scalability, and universal learning
approach [17].

Contrary to classical learning algorithms, these eliminate
the need for explicit feature extraction through automatic
feature extraction and provide the option to reduce the
computational cost of training a new model through the
transfer learning technique. )eir enormous performance
has led to their adoption in the design of Computer-Aided
Diagnostic (CADx) systems to augment the work of health
practitioners. )is review seeks to identify the work in the
literature related to the prediction of breast cancer based on
deep learning techniques using the thermal infrared imaging
modality. )e study sought to address the following key
research questions:

(i) What databases are used in BC classification models
based on thermography?

(ii) Which techniques are used for the segmentation of
digital breast thermal infrared images?

(iii) What evaluation metrics best assess the efficiency of
DNN classification models?

(iv) Which deep learning techniques are currently ap-
plied to classify breast thermograms?

2. Infrared Thermography

2.1.#ermal Radiation Overview. According to Planck’s law
of radiation, every object with a temperature above absolute
zero emits Electromagnetic (EM) radiation. EM radiation is
composed of a collection of quantum particles referred to as
“photons.” )e energy of each photon Ep is given by (1) [18]
as follows:

Ep �
hc

λ
, (1)

where h � 6.63 × 10− 34 J × s is Planck’s constant and c and λ
are the velocity and wavelength of the EMwave, respectively.
In the context of thermal radiation, we are concerned about
radiation resulting from a body’s temperature. )us, we can
quantify the emissive power or luminosity of a body with
Stefan’s law in (2) [19]:

Eb � σϵAT
4
, (2)

where σ � 5.6696 × 10− 28W/m2×K4 is the Ste-
fan–Boltzmann constant, ϵ is the emissivity of an object, T is
the object’s absolute temperature (K), andA is the surface
area of the emitter m2. It is clear from (2) that the rate at
which a body radiates energy is directly proportional to its
absolute temperature. )e wavelength of thermal radiation
lies within the range 0.75 − 1000 μm, which is categorized
into four subranges, namely, Near Infrared (NIR)
0.76 − 1.5 μm,Medium Infrared (MIR) 1.5 − 5.6 μm, and Far
Infrared (FIR) 5.6 − 1000 μm [20]. Figure 1 illustrates these
subranges within the electromagnetic spectrum.

3. Breast Thermography

Temperature is a good indicator of health [22]. Any devi-
ation from the normal range indicates a probable illness. As
chemical reactions are influenced by temperature, likewise,
the metabolic process is subject to body temperature [23].
)e metabolic activity of cancerous cells changes the tem-
perature profile of the breast region, causing an asymmetric
temperature distribution between the contralateral sides of
the breast [24]. Skin temperature differences in symmetric
body parts provide objective evidence that something is
wrong [25]. As the tumor size increases, so does the surface
temperature [26]. )is view is supported by the authors in
[27], who concluded that a tumor inside a breast could give a
varying temperature profile depending on factors such as
size, location, and depth. )is can help detect breast cancer
early, particularly in asymptomatic people.

A thermal imaging camera is used to capture the tem-
perature distribution of the breast area. )is is particularly
useful in cases where it is difficult to locate the physical
source of pain. Two different protocols can be utilized to
produce thermal images: Static Infrared )ermography
(SIT) and Dynamic Infrared )ermography (DIT). )e
former involves observing the temperature under steady-
state conditions, whereas the latter measures the thermal
response after subjecting to thermal stress excited through
either heating or cooling [28]. According to [29], DIT
produces high-resolution images but with a trade-off for
increased complexity in the inspection.)e idea behind DIT
is that the blood arteries of a malignant tumor will not
respond to sympathetic stimulation. As a result, the tumor
site will remain intact [20]. As Hernandez et al. [30] point
out, DIT was introduced to address the issue of false pos-
itives and negatives encountered by the SIT protocol.

3.1. Breast #ermography Datasets. Numerous studies have
attempted to produce thermographic datasets, which are
given in Table 1. However, these datasets are few compared
to those acquired through modalities such as mammogra-
phy. )ey are mostly stored in private databases and exist in
small sizes. Furthermore, most of these datasets were ac-
quired through the SIT protocol. From Table 1, thermo-
grams hosted by the Database for Mastology Research
(DMR-IR) are profound since they comprise each patient’s
corresponding clinical and personal data. DMR-IR utilized
both protocols. SIT and DIT were carried out in the same
room, under thermal conditions, and by the same team. For
DIT, an electric fan was used to cool the breast area for 5
minutes, after which 20 images of thermograms were cap-
tured sequentially at an interval of 15 s. )ese images can
then be used to determine the dynamic response of the
breast area to thermal stress.

4. Image Segmentation

Image segmentation involves partitioning pixels in a digital
image into coherent portions called homogeneous segments
[43]. Pixels in the same segment share qualities such as
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Table 1: Sources of digital breast thermography datasets.

Study Designer SIT DIT Clinical
data

No. Of
Exams Classes Public

Access Multiview Camera used

Silva et al. [31]

University Hospital Antônio
Pedro (HUAP) of Federal
Fluminense University,

Brazil

Yes Yes Yes 311 267 healthy, 44
sick Yes Yes FLIR-SC620

Arora et al.
[32]

New York Presbyterian
Hospital-Cornell No Yes No 92 60 malignant, 34

benign No No Sentinel
BreastScan

Bhowmik et al.
[33]

Agartala Government
Medical College (AGMC) of
Govind Ballav Pant (GBP)

Hospital, Agartala

Yes No Yes 100
49 abnormal, 45

normal, 6
unknown

No Yes FLIR-T650sc

Koay et al. [34] Moncton Hospital No Yes No 86 Not speci�ed No No �ermovision
680 medical

Francis et al.
[35] Vijaya Health Centre No Yes No 72 Not speci�ed No Yes ICI7320P

Gutierrez-
Delgado
Vázquez-Luna
[36]

Centre for the Study and
Prevention of Cancer

(CEPREC)
Yes No No 911 Not speci�ed No Yes IR camera DL-

700

Wang et al.
[37]

National Taiwan University
Hospital Yes No No 276 165 malignant,

111 Benign No Yes ATIR-M301

Lashkari et al.
[38]

Fanavaran madoon ghermez
(FMG) Yes No No 67 Not speci�ed No Yes �ermoteknix

VisIR 640

Tang et al. [39] PLA General Hospital Yes No No 117 70 benign, 47
malignant No No TSI-21 from

BIOYEAR inc.
Wishart et al.
[40]

Cambridge BreastUnit,
Addenbrooke’s Hospital No Yes No 106 65 malignant, 41

benign No No Sentinel
BreastScan

Ng and kee
[41] Singapore General Hospital Yes No No 90 Not speci�ed No Yes Avio TVS-2000

Bezerra et al.
[42]

Clinical Hospital of the
federal University of

Pernambuco (HC/UFPE),
Brazil

Yes No No 336

120 benign, 74
cyst, 76

malignant, 66
without lesions

Yes No Not speci�ed

Increasing frequency
Increasing energy Increasing wavelength
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.0001 nm
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Figure 1: �e electromagnetic spectrum with subranges of the infrared [21].
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intensity, texture, and hue [44]. Ideally, the goal is to break
down a medical image into basic objects with comparable
properties for easier analysis. As discussed by Sharma et al.
[45], segmentation in the medical domain aims to:

(i) Identify the Region of Interest (ROI)
(ii) Measure tissue volume
(iii) Aid in treatment planning

CADx systems adopt this technology to minimize the
image’s complexity by isolating the Region of Interest (ROI),
thus reducing computation costs for a learning algorithm. In
their review, Ramesh et al. [43] classified segmentation
techniques into region-based, thresholding, edge detection,
clustering-based, and model-based. )resholding is con-
sidered the simplest method with two variants. One is bilevel
thresholding, which divides an image into foreground and
background (i.e., binary) with the aid of a threshold value
[46]. )e other is multilevel thresholding, which partitions
an image into more than two classes [47]. Clustering
techniques employ mathematics and statistics to generate
several clusters within the image space [48]. )e goal is to
classify the unlabeled pixels into cohesive groups with
maximum affinity [49]. Edge detection techniques use dif-
ferential operators and a convolution mask to localize the
contours of an object and boundaries on an image [50].
Region-based segmentation attempts to group pixels with
identical features into regions [51]. Model-based techniques
facilitate fully automated segmentation of biomedical images
[52]. Table 2 shows the advantages and disadvantages of
these methods.

4.1. Works on Breast #ermogram Segmentation.
Predictive models are often trained with manually seg-
mented images; however, in CADx systems, ROI segmen-
tation must be conducted in real-time, i.e., while examining
the patient. )is improves the speed of the diagnostic
workflow. An alternative method is implementing a semi-
automated or fully automated segmentation system to
minimize delays. However, this is not an easy task due to
intensity inhomogeneity, noise, and obscured boundaries
normally encountered during segmentation [58]. Table 3
summarizes works implementing segmentation techniques
for breast thermograms.

In [59], automatic ROI segmentation and asymmetry
analysis of breast thermograms were implemented. Ini-
tially, the breast boundaries were identified by first
cropping out the undesired body portion, which consisted
of the waistlines and shoulder area. )e ROI localization
was devised with the Canny edge detector, then the left
and right boundary curves were extracted using the
gradient operator. After observing the parabolic shape of
the lower breast boundaries, the parameters that describe
these boundaries’ actual curves were selected by estima-
tion. Finally, the portion below the detected breast curve
was removed, then separated the breast sides with a
vertical line drawn at the point of contact of the

contralateral breasts. )ree sets of features were extracted
from the segmented ROIs for asymmetry analysis of heat
patterns in the breast region, including Higher-Order
Statistical (HOS) features, center calculation, and histo-
gram generation. We strongly agree with some of the
premises pointed out in their conclusions. First, we
broadly support their view that asymmetry analysis can be
useful as a second opinion for diagnostics. We also
support the usage of breast thermography for mass
screening since it is a portable and low-cost modality.
Finally, the graphic user interface designed facilitates the
system’s real-time operation.

Venkatachalam et al. [60] presented a method for seg-
menting an inflamed ROI using the active contour method.
First, a thresholding method based on bilateral histogram
differences was employed for localizing the inflamed ROI.
)is was then used to automate the initialization of active
contours driven by the multiscale local and global fitted
image (MLGFI) model. )e technique’s performance was
then validated with an expert’s manually segmented ground-
truth images. )e method was precise and accurate in
segmenting the inflamed ROI without over-segmenting or
under-segmenting. Its accuracy was evaluated on two
datasets against state-of-the-art methods to prove its sig-
nificance: K-means, fuzzy C-means, and Chan–Vese. Sec-
ond-order statistical features were extracted from the
segmented inflamed ROI and classified as benign or ma-
lignant. )eir analyses found that the technique exhibits
improved accuracy compared to state-of-the-art techniques.
)ese results are no surprise since this method segments a
smaller portion of the breast area, the inflamed portion,
thereby minimizing computation costs and improving
overall prediction performance.

A study in [61] proposed a novel method to detect the
boundary of breast thermograms using a Single Univalue
Segment Assimilating Nucleus (SUSAN); an edge-based
segmentation technique. )e Hough transform was used
to determine the center points of each breast after the
armpit region by hand. )en, for the bottom boundary, a
SUSAN edge detector was generated with two masks
uniquely oriented to emphasize the useful oblique edges
while disregarding unpleasant ones. After that, cubic
parabolic interpolation was used to interpolate the bottom
region’s edges and the Canny detector for retrieving the
outermost edge points. Finally, the intersection of the
outermost edge points and the boundary points of the
bottom of the breast. )e approach was remarkably ef-
fective and accurate in three different datasets. )e choice
for a SUSAN edge detector was well-thought out as it gives
an isotropic edge response enabling it to detect edges in all
directions. )e kernels were oriented at 45 and 135 de-
grees, allowing the detector to focus on the left and right
breast edges.

Moreover, a search algorithm was implemented to ex-
tract accurate breast boundaries. However, the authors
claimed the approach is useful as an automated tool; this is
misleading since their approach had adapted an element of
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manual segmentation throughmanual removal of the armpit
area. )eir approach qualifies as semiautomated.

5. Artificial Intelligence

A substantial volume of published work now describes AI’s
role in medicine. An increasing amount of this literature is
devoted to building machine learning models integrated
with the clinical setting to augment health practitioners’
work by processing the data from Electronic Health Records
(EHRs) [69]. Jian et al. [70] identified machine learning as a

potential solution to the challenges faced by health practi-
tioners and patients, such as diagnostic dilemmas and
waiting times. Machine learning has provided opportunities
to reduce healthcare costs, provide quality health care, and
improve precision [71]. Furthermore, it can play a pivotal
role in accurate medical diagnosis and aid health practi-
tioners in promptly diagnosing diseases.

Consequently, it has been extensively applied in
screening and diagnoses, particularly on images from mo-
dalities such as MRI and breast ultrasound.)is is due to the
capability of these models to search for clinical patterns from

Table 2: Advantages and disadvantages of segmentation types.

Category Advantages(s) Disadvantage(s)

)resholding
segmentation

(i) It is fast and simple [53],
inexpensive [54]

(i) Selection of appropriate threshold values is quite difficult [47, 55]
(ii) It gives optimal results if there is a large variation in intensity value
between classes

Edge detection
segmentation (i) Simple and easy to implement

(i))e generated do not guarantee to form closed boundaries [51].)erefore,
they must be used with region-based techniques [50].
(ii))ey are affected by noise, poor results in the presence of weak and pseudo
edges [54]

Clustering-based
segmentation

(i) Low computational cost [56],
easy to implement (i) Less noise immunity

Region-based
segmentation

(i) )ey are more accurate, noise
resilient [56] (i) High computation costs [57]

Table 3: Overview of works on breast thermogram segmentation.

Author(s) Technique(s) Method View Contribution

Kapoor et al. [59] Canny Detector Automatic Frontal
ROI extraction and asymmetry analysis of essential

characteristics, plus deployment on a GUI to facilitate real-
time operation

Venkatachalam et al.
[60] )resholding Automatic Frontal Auto-segmentation of the inflamed ROI. )e approach

outperformed K-means, fuzzy C-means, and Chan–Vese

Mahmoudzadeh
et al. [61]

SUSAN detector, Hough
Transform, canny detector

Semi-
automatic Frontal

To accentuate the oblique edges of the lower breast
boundaries, the SUSAN kernels were orientated at 45 and
135 degrees. )en a search algorithm was used for accurate

boundary extraction.

Hossam et al. [62] Hough Transform, Canny
Detector Automatic Frontal

ROI extraction based on statistics of images in the database,
segmentation of left and right breast from ROI, HT

algorithm for accurately identifying the bottom parabola
breast boundaries, and finally enhancing the contrast of

detected boundaries

Das et al. [63] Region growing Automatic Frontal

An effective and accurate temperature-induced
inflammatory ROI segmentation mechanism for ab-

normal breast thermograms and inflammatory knee joint
thermograms. It performed competitively with state-of-

the-art techniques.

Pramanik et al. [64] Region-based: active
contour Automatic Frontal A fast region-based active contour model for the precise

segmentation of the suspicious regions
Prabha and Sujatha
[65] Fuzzy-C-Means Automatic Frontal Extraction of hottest regions and the effectiveness of hottest

area index in identifying normal and abnormal conditions

Sanchez-Ruiz et al.
[66]

)resholding: Otsu’s
method Automatic Frontal

ROI segmentation based on color intensities, statistical
operators, thresholding operators, and local contrast

enhancement

Bardhan et al. [67] Region based, thresholding Automatic Frontal
Optimal segmentation of the inflamed region with reduced
complexity of parameter selection, execution time, and

minimization of under-segmentation

Diaz-Cortes et al.
[68]

)resholding: Otsu’s and
Kapur’s method Automatic Frontal,

right

Used the Dragonfly search algorithm to identify optimal
threshold values for segmenting the image into

homogeneous regions

Mobile Information Systems 5



large medical datasets to reveal abnormalities that are in-
visible to humans [72]. Following Patel et al. [73], phar-
maceutical companies are now incorporating deep learning
algorithms and machine learning into the drug discovery
process to predict the characteristics and discover drug
efficacy.

Generally, Machine Learning may be divided into six
main learning paradigms. )ese are: supervised learning,
unsupervised learning, semi-supervised learning, rein-
forcement learning, batch and online learning, and instance-
based and model-based learning [74]. In a supervised
learning framework, the data used to train the model in-
cludes the desired solutions called labels, which experts
normally prepare to serve as the ground truth for the model
[75]. In contrast, unsupervised learning presents no ground
truth for the algorithm. Figure 2 illustrates examples of both
supervised and unsupervised learning. Following the work
in [76], the authors present a semi-supervised learning
model which utilizes partially labeled data. )is paradigm
aids in developing powerful machine learning models on
limited labeled data [77]. )e reinforcement learning
framework takes a different avenue toward learning in that it
primarily focuses on interaction with the environment and
closely mimics the biological learning aspects [78]. Batch
and online learning are concerned with the ability of a
system to incrementally learn from a stream of incoming
data [74].

5.1. Supervised Learning Framework. In a supervised
learning task, the goal is given a training set that is a finite
sequence of pairs S �((s0, y0)), · · · , (sn− 1, yn− 1)) from
X × Y, the function h: X⟶ Y is needed to approximate
the value y ∈ Y corresponding to x ∈ X. )e function h is
referred to as the hypothesis function. )e aim is to have an
optimal h w.r.t. a suitably chosen “loss function” L(y, h(x))

that measures how far h(x) is from the actual value y [79].
To evaluate the average loss on a dataset, the most popular
choice is the “empirical” or “in-sample” risk shown in.

E(h)n �
1
n



n

i�1
cL(y, h(x)). (3)

It is worth noting that the reliance of supervised learning
frameworks on consistently labeled data is a problem in a
clinical setting. )is is confirmed by Kraljevic et al. [80] who
advocated for using detailed annotation guidelines that
specify cryptic scenarios for annotators.

5.2. Performance Measurement. As stated earlier, a loss
function is used to determine how well a model performs on
a given training set, also known as a “cost function.” )e
term “loss” refers to the difference between the predicted and
expected values. )erefore, a loss function computes the
difference between the anticipated and expected value [81].
In addition, a loss function quantifies this error into a single
real value. )e higher this value is, the more inaccurate the
model predicted. )erefore, a loss function must be mini-
mized to penalize high deviations from the expected values.

Hence, improving the model’s performance. Given this, it is
also worth mentioning that not all models will require this
function to be minimized. In some cases, the primary goal is
to maximize it. A lucid explanation for this is provided by
Couso and Sánchez in [82], where they name the opposite of
the loss function a ‘reward function’ which needs to be
maximized.

5.3. Model Evaluation. Various mathematical expressions
known as metrics have been defined to assess the perfor-
mance of diverse types of learning systems. Selecting a
performance metric is one of the most crucial and chal-
lenging tasks. In his book on Machine Learning and Arti-
ficial intelligence, Joshi [78] categorized commonly used ML
metrics into numerical error, categorical error, and hy-
pothesis testing. For classification tasks, most of the work in
literature relies only on accuracy to evaluate their classifiers.
However, accuracy alone is not an efficient metric for
evaluating different classifiers [83]. Nevertheless, the in-
terpretation of biomedical data is centered on accuracy and
precision. For fair evaluation, other common classifier
metrics used are precision, recall, and Area Under the Curve
(AUC) of the Receiver Operating Characteristic (ROC)
curve [84]. )ey are discussed in Table 4, and their math-
ematical expressions are shown from equations:

Accuracy �
TP + TN

TP + TN + FP + FN
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F − Score � 2∗
recall∗ precision
recall + precision

,

(4)

where

(i) True Positives (TP): positive cases correctly classi-
fied as positive instances

(ii) True Negatives (TN): negative cases correctly
classified as negative instances

(iii) False Positives (FP): negative cases wrongly classi-
fied as positive instances

(iv) False Negatives (FN): positive cases wrongly clas-
sified as negative instances

5.4. Artificial Neural Networks. Artificial Neural Networks
(ANNs) are among the most well-documented Machine
Learning algorithms. )is is due to scholars’ motivation to
know more about the brain’s processing function and its
ability to tackle complex problems.

ANNs work similarly to the nervous system in that they
receive certain inputs, process them, and create specific
outputs. A unit or neuron of a neural network is called a
perceptron. As shown in Figure 3, a perceptron is defined by
its state, transfer functions, and connections with other
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nodes [85]. )e transfer function produces network non-
linearity. In ANN, a layer of neurons combines several
neurons that share the same input, but each has its vector of
weights or coefficients and individual output.

5.5. Multilayer Perceptrons (MLPs). A logical extension of
the single-layer architecture forms what is referred to as a
Multilayered perceptron (MLP). An MLP is an ANN’s basic

architecture, which may be considered a network of inter-
neurons partitioned into three layers: input, hidden, and
output. Each internal neuron is now connected to all nodes
in the subsequent layer of neurons, thus forming a structure
resembling the human brain’s nerve system. ANNs are
classified into two types based on their connections: feed-
forward (acyclic) networks and recurrent (cyclic) networks
[86]. A feed-forward NN allows signals to travel in only one
direction, from input to output as shown in Figure 4.

On the contrary, a Recurrent Neural Network (NN)
provides feedback loops [87]. )ese MLP architectures are
shown in Figure 5, with some connections pointing in the
opposite direction. Although both leverage parallelism,
RNNs are more in-depth than all NNs because they combine
sequential and parallel information processing naturally and
efficiently, thus using extreme parallelism [88]. As Alamia
et al. [89] suggest, recurrent networks are best suited to
model explicit learning, whereas feedforward networks
capture the dynamics inherent in implicit learning. )ey are
adaptable and powerful, making them ideal for handling
large and complex computational tasks [90].

Supervised Learning

Unsupervised 
Learning

Reinforcement 
Learning

M
A

CH
IN

E 
LE

A
RN

IN
G

Regression

Classification

Clustering

Neural Network

Decision Tree

SVM

k-Means

Hidden Markov

Dimensionality 
Reduction

Linear Regression

PCA

Kernel PCA

K-Nearest Neignbor

Deep Q Network

AlphaZero
Model-Based

Model-Free

PARADIGM LEARNING TASK ALGORITHM

Figure 2: Machine learning taxonomy.

Table 4: Common classifier evaluation metrics.

Metric Description

Accuracy )is is a widely used metric in classifiers, as it measures the degree to which instances are classified correctly by the
classifier. It is a top-tier metric in biomedical imaging; hence, it needs to be high to avoid misdiagnosis

Sensitivity/
Recall It reveals the number of total abnormal breast cancer patients that are correctly estimated

Precision )e accuracy of positive predictions. Like accuracy, it is also a top-tier metric in medical imaging that must be high for
the system to be practical for the medical domain. However, there is a trade-off between this metric and sensitivity

F-score )is is the harmonic mean of precision and recall
AUC It reveals how the model will generalize/perform in different situations

∑ y

x0 ω0

ω1

ω2

x1

xn

Figure 3: A model of a Perceptron.
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To train ANNs, an algorithm called backpropagation is
used. By propagating the error backward through the net-
work, this approach computes the gradient of the error with
respect to the weights for a given input [91].

5.6. Overview of Deep Learning. )e recent emergence of
computers with more processing power has led to a renewed
interest in ANNs in a complex form called DNNs. As a
result, this triggered many innovative technological devel-
opments in computer vision and speech recognition. Not-
withstanding, deep learning outperformed its counterparts
to become state-of-the-art. DNNs can play a pivotal role in
accurate radiology diagnosis and aid health practitioners in
diagnosing diseases quickly and precisely. In the clinical
setting, these augment the work of health practitioners by
processing huge data from Electronic Health Records
(EHRs) [69]. DNNs provide robustness, scalability, and a
universal learning approach [17].

5.7. Convolutional Neural Networks

5.7.1. Overview. Convolutional Neural Networks (CNNs)
are examples of deep networks. )ey perform outstandingly
in visual recognition tasks such as classification. )eir ef-
fectiveness in computer vision results from their unique
working principle, which is physiologically inspired by the

brain’s visual cortex. )is area of the cerebral cortex receives
and analyzes sensory nerve impulses from the eyes [93].
Hubel and Wiesel [94] found that neurons in the visual
cortex respond to specific visual field patterns known as the
receptive field. )e intricacy of the patterns rises as they
propagate through the subsequent brain molecules; hence
the corresponding neurons will respond to more complex
patterns. A CNN adopts a similar principle, extracting low-
level features through its first layers. )en, when the image
propagates through its layers, the complexity increases.
Traditional neural networks use vectorization that tends to
ignore the 2D spatial structure of the image, whereas CNN
employs 2D convolutions which consider the 2D structure of
images [95]. In contrast to explicit feature extraction, others
[96, 97] have highlighted the advantage of CNNs in that they
automatically detect distinct features of each class without
any explicit attribute extraction. A CNN architecture
comprises several building blocks: convolution layers,
pooling layers, and Fully Connected Layers (FCLs), as shown
in Figure 6.

5.7.2. Convolution Layer. )is is an intrinsic component of a
CNN. Here, a neuron is only connected to a narrow area of
input neurons rather than fully connected as in conventional
ANN, thereby reducing the number of parameters to be
learned and allowing a network to develop deeper with fewer
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parameters [99]. )is implies that the weights will occupy
less memory, making CNN memory effective. It is made up
of kernels or filters, the parameters of whichmust be learned.
)is area extracts features from the image through a linear
operation called convolution. As shown in Figure 7, a kernel
is slid over the entire input image to calculate the dot
product between each element of the input image and a filter
at every spatial position to produce a feature map. However,
its size must be smaller than the input image [100]. After the
convolution operation, a nonlinear operation follows in the
form of an activation function. As Srinivas et al. [95] point
out, a nonlinear operation between layers makes the model
more expressive than a linear model and makes the model
training faster.

5.7.3. Pooling Layer. )e key task of this layer is to reduce
the dimensions of feature maps while maintaining para-
mount features within the map. )is decreases the number
of subsequent learnable parameters, thereby minimizing
computational costs. Furthermore, extracting relevant in-
formation controls the overfitting of the network [102]. Like
the convolution operation, pooling uses a kernel, stride, and
padding as hyperparameters to execute the operation. )ere
are several types of pooling operations. )e most common
types are max pooling, global average, and min pooling. Max
and average pooling examples are shown in Figure 8. In max
pooling, the max pixel value is picked within the kernel
whereas in average pooling the average of pixels within the
mask is computed.

5.7.4. Fully Connected Layer. )e flattening layer processes
feature maps of the final pooling or convolutional layers. As
shown in Figure 9, this layer converts these features into a
one-dimensional vector. It connects each array element to a
FCL, simply a feed-forward NN. As in conventional NN,
every input element in an FCL is connected to the next layer
by a learnable weight. It has the same number of nodes in its
output layer as the number of classes to be predicted. In
[104], a study was conducted on the impact of FCL on CNN
performance, from which two key conclusions were drawn.

First, it was found that for better performance, shallow CNN
architectures needed more nodes in the FCLs, whereas
deeper ones required a smaller number of neurons re-
gardless of the type of dataset. Lastly, shallow CNN archi-
tectures need more FCLs and a substantial number of
neurons in the FCLs for wider datasets than deeper datasets
and vice versa.

5.8. Deep Belief Networks

5.8.1. Overview. DNN are typically trained using the
backpropagation algorithm; as already discussed, it propa-
gates the output error backward through the network to
modify the weights. However, as the network depth rises, the
propagated error gradually vanishes to zero, impeding the
revision of early layer weights and consequently degrading
network performance [105]. )is can also lead to the
overfitting phenomenon. To address these problems, a new
kind of DNN architecture was introduced, a Deep Belief
Network (DBN). DBNs have emerged in favor of an effective
implementation of a learning technique. )ey employ un-
supervised pretraining which enhances the model’s per-
formance and avoids overfitting [106]. As is the case for
breast thermograms, a feature crucial for small-sized
datasets.

5.8.2. Restricted Boltzmann Machine. A Restricted Boltz-
mann machine (RBM) is a probabilistic model, which a
generative stochastic two-layer NN can represent. As shown
in Figure 10, these two layers are the hidden layer h and the
visible layer v. Unlike a Boltzmann machine, the RBM re-
stricts intra-layer neuron connections, but both have inter-
layer neuron connections.)ese neuron connections may be
unidirectional or bidirectional. )e migration from full
connection to restricted connection minimizes the time it
takes to train the model and learning parameters [107]. An
RBM can learn the probability distribution from samples. It
employs an unsupervised learning approach. Hinton [108]
presented a Contrastive Divergence (CD) learning algorithm
for training RBMs.
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Figure 6: A convolution neural network [92].
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5.8.3. Construction of Deep Belief Networks. A DBN ar-
chitecture is composed of stacked directed RBMs as shown
in Figure 11. For efficient learning, a DBNs adopt the two-
step method proposed by Hinton [108]. )e first step in-
volves an unsupervised layer-wise learning procedure that
leverages the CD algorithm to obtain data distribution
without the need of labels. )is involves training the first
RBM of the DBNwith original data and then using its output
as input for the successor RBM.)is repeats for other RBMs
util we have learned weights. Lastly, the fine-tuning process
is done with a backpropagation to revise the weight matrix of
the network. )e pretraining process prevents overfitting,
consequently improving themodel’s generalization [109]. To

use a DBN for a classification task, we must add a new
network of supervised learning, which can classify the
samples based on the features extracted by DBN.

5.9. Preprocessing Images for Deep Learning. Training DNN
mandates the input data to be compatible with the network.
However, there are many instances where the raw data are
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messy. Such issues are dealt with in the preprocessing stage.
At this stage, functions are designed to automatically pro-
duce transformations on the raw data to improve the
model’s performance. �ese functions can be reused on a
live system to transform new data before feeding it into the
network. �e goal of preprocessing thermograms can be to
emphasize suspicious areas [110, 111] since image seg-
mentation performance relies on other preprocessing
techniques for decimating noise. In the context of breast
thermograms, the following are possible preprocessing
techniques.

5.9.1. Data Augmentation. DNNs have a huge appetite for
data; however, biomedical datasets are currently scarce and
available in small sizes. Data augmentation is a method
used for addressing the issue of data scarcity by increasing
the size of the dataset [112]. It can be de�ned as the arti�cial
expansion of a dataset by carrying out a set of modi�cations
on the existing instances to produce distinct ones. It can
also cushion disparity between classes by boosting the
diversity of the class instances. Overall, the technique can
help a DNN to reduce generalization errors. �is view is
supported by a survey in [113] where they found the
technique to prevent over�tting in DNN. �ere are two
approaches to data augmentation, one is through image
manipulation, and the other is through DNN.�e former is
less complex as it generates a new instance by performing
transformations on the original image. �is can be done
through geometric transformations, the use of kernels, etc.
�e latter leverages some DNN architectures, such as
Generative Adversarial Networks (GANs), to learn the
features of the original image to generate synthetic ones
based on learned features [114].

5.9.2. Image Registration. Image registration is a tool for
spatially estimating a coordinate transformation that
aligns two or more images [115]. It facilitates comparing
or integrating multiple images or data captured from
dissimilar sources. During this process, one of the images,
called the reference image, is considered �xed while the
other moves through several image operations such as

regularization and transformations. [116]. �e alignment
quality is measured through similarity measures such as
cross-correlation and mean squared intensity di�erences.
�e coordinate transformation that best relates the ref-
erence and moving image is estimated by iteratively
minimizing the dissimilarity between the �xed and
moving image. In instances where DIT protocol has been
used, a set of progressive breast thermograms has been
captured. Image registration becomes necessary to reg-
ister multiple images together to form an image com-
patible with a DNN.

5.9.3. Image Enhancement. Image enhancement aims to
make an image well suited for speci�c utilization by either
extracting the details that are obscured or highlighting
certain features of interest. �e acquired images have
various kinds of noises which need to be decimated to
maintain their quality. However, noise, edges, and texture
are high-frequency components that are di�cult to
distinguish from a digital image. Noisy images can im-
pede the learning algorithm from reaching its optimal
performance. Moreover, it is an intrinsic task toward
quality image segmentation. Linear �lters such as the
Gaussian �lters are classical approaches adopted for
suppressing noise in the spatial domain. However, they
denoise with a tradeo� of deteriorated edges and object
details [117]. An alternative approach to denoise an
image in a spatial domain is through a non-linear �ltering
technique such as an Anisotropic Di�usion Filter (ADF).
An ADF denoises while also preserving vital information
[118].

In contrast with spatial domain �ltering, which directly
deals with the image matrix, transform domain �ltering can
be adopted. It operates on the Fourier transform of an
image and then re-transforms it back to the spatial domain
[119]. In addition to image �ltering, other image en-
hancement techniques include contrast enhancement,
sharpness enhancement, and color correction. Neverthe-
less, a recent survey by Liu et al. [120] identi�ed a gap in
the literature of lack of metrics or quantitative standards
for evaluating the performance of these enhancement
techniques.

5.9.4. Other Preprocessing Techniques. One factor that
makes it di�cult to attain optimally trained models is when
the numerical attributes have very distinct scales. As such, it
is imperative to scale features before feeding them onto a
learning algorithm. Normalization is a widely used feature
scaling technique for changing the range of pixel intensity
values to form that is easier for the learning algorithm. In
addition to feature scaling, the input images must be resized
to a form compatible with the architecture of the DNN. For
instances where segmentation is applied, morphological
operations such as dilation, erosion, and closing, are nor-
mally used to manipulate the shape of objects in an image
based on the connectivity of pixels to extract the region of
interest.
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6. Research on Breast
Thermogram Classification

Roslidar et al. [121] reviewed the potential of thermographic
imaging and deep learning models to detect BC compre-
hensively. )eir review revealed tremendously accurate
CNN classifiers performed well on breast thermograms. For
better CNN classifiers, they emphasized the image pre-
processing stage.)ey advocated for an integrated automatic
ROI segmentation into the CNN since it reduces compu-
tation time and improves identification accuracy [122].
More proposed approaches are given in Table 5. Resmini
et al. [123] presented a hybrid methodology for detecting
and diagnosing BC using DIT and SIT. )e study used the
DMR-IR dataset. Two key actions were performed in pre-
processing of both DIT and SIT images. First, the image
registration technique establishes a correspondence between
multiple images by setting one image as the reference and
subjecting the floating images to operations such as regu-
larizations and transformations [116]. Second, manual ROI
segmentation. Before segmentation and registration of the
SIT images, the temperature matrix was obtained from the
image. Furthermore, a Genetic Algorithm was used as a
dimensionality reduction tool for extracting texture features
to reduce computation costs. Overall, the authors conceded
to a few limitations: a limited number of patients used,
manual ROI segmentation, few iterations in the Genetic
Algorithm, and failure to indicate the position of
abnormality.

Chatterjee et al. [124] proposed a computer-based di-
agnostic model for detecting BC using thermograms. Due
to the computational overhead in training DNNs, the
authors employed a transfer learning technique with
pretrained layers of VGG16 CNN architecture. After
extracting features with the model, optimal features were
selected with an enhanced version of a metaheuristic
Dragonfly algorithm (DA) named the Grunwald–Letnikov
Dragonfly algorithm (GLDA). )e GLDA method effec-
tively reduced the dimensions of the feature set, as it
yielded 82% fewer features. Moreover, their model
achieved a diagnostic accuracy of 100% on the DMR-IR
dataset. As the authors rightly point out, the dataset size
was small; hence a large dataset needs to be used to
demonstrate the model’s potential on much larger datasets.
Furthermore, they made another valid point that
employing an ensemble improves performance.)is view is
also emphasized in [125].

Ekici and Jawzal [126] developed software to automate
breast thermograms’ BC detection. )eir method consists of
a CNN optimized by a Bayes Algorithm. )e dataset used
had a cohort of 140, of which 95 were benign and the rest
malignant. Due to the class disparity, the data augmentation
technique was used to balance the two. Also, object-oriented
image segmentation was used for the ROI extraction. )e
model’s performance was then compared with those from
the literature on the same dataset from which some used
statistical features but used various classifiers, namely, SVM,
ANN, RBF, etc.

On the contrary, their method used CNN features and a
CNN for classification. )e authors found the accuracy of
nonoptimized CNN to be 97.91%; but after optimizing CNN
parameters with a Bayes algorithm, the accuracy rose to
98.95%. We agree with the authors’ view that CNN is vig-
orous in automatic feature extraction and requires less of the
developer’s dedication than manual feature extraction. )ey
also recognized the potential of the DIT protocol in im-
proving performance and advocated for further research.

Gonçalves et al. [127] employed two bioinspired meta-
heuristic algorithms to fine-tune three CNN architectures
for thermogram-based BC detection, namely, VGG-16,
ResNet-50, and DenseNet-201. A GA and Particle Swarm
Optimization (PSO) algorithm were specifically used to find
optimal FCLs of the three pretrained models and hyper-
parameter tuning. From the experiments conducted, the GA
outperformed the PSO. However, both algorithms out-
performed most manual experiments. Overall, the GA
significantly improved the F1 score and maintained it above
0.90 for all architectures.)eVGG-16model improved from
0.66 to 0.92, while the ResNet-50 rose from 0.83 to 0.90. )e
authors conceded a limitation in their work of failure to
segment the ROI by proposing the technique for their next
work. Additionally, they acknowledged the DIT protocol’s
potential by considering its images for future work.

A recent study by Sánchez-Cauce et al. [128] offers the
most innovative approach to detecting breast cancer. )e
method combines different views of breast thermograms
with personal and clinical data considered risk factors for
breast cancer. )ese were used to train a multi-input model
with branches comprising CNNs for each image perspective
and an ANN for clinical and personal data. )e individual
output was then combined to form a global output for
classification. )e model achieved accuracy of 97%, sensi-
tivity of 83%, and area under the ROC curve of 0.99. )e
authors reached two key conclusions. First, adding lateral
views of the breast improved the overall model’s perfor-
mance. Lastly, the addition of clinical data helped to identify
sick patients. )ese are valid points because a model trained
on lateral views of the breast is less likely to miss lesions that
may develop on the sides of the breast area. In addition, the
clinical and personal data used has substantial evidence from
the literature to support them as risk factors. For example,
they used diabetes and age at menarche. Diabetic patients are
more at risk of developing cancer [129]. An earlier age of
menarche is a risk factor since it increases susceptibility to
breast carcinogenesis [130]. In addition to its impressive
contributions, the study could have employed segmentation
to achieve better results.

In [131], clinical data and five breast thermogram views
were used for detecting breast cancer. )ey used thermo-
grams acquired through the SIT protocol and multiple
frontals, 90, and 45 degrees. )eir findings are like those in
[128] since the addition of clinical data increased the per-
formance of the CNN model. Accuracy improved from
85.4% to 93.8% after adding clinical data. Furthermore, the
model achieved a specificity of 96.7% and a sensitivity of
88.9% after adding clinical data. Also, their model was
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Table 5: Overview of works on breast thermogram classification using DNNs.

Author(s) Model Pros Cons Exclusivity
Resmini et al.
[123] MLP Dimensionality reduction for

reduced computation costs Small sample size DIT for screening and SIT for
diagnoses

Chatterjee et al.
[124] VGG16 CNN Reduced feature set dimension as

82% less features were used

Small sample size and a
100% accuracy which is

suspicious of
overfitting

A meta-heuristic optimization
algorithm was used for selecting
optimal features for classification

Ekici and
Jawzal [126] CNN Bayes optimization yielded a more

accurate model NA BC detection with a CNN optimized
by a bayes algorithm

Gonçalves et al.
[127]

VGG- 16,
ResNet-50 and
DenseNet-201

Improved F1-Score NA

Employed two bio-inspired meta-
heuristic algorithms to fine-tune
three CNN architectures for BC

detection

Sánchez-Cauce
et al. [128] CNN, ANN Model has high accuracy and AUC Lack of segmentation

Combines three views of breast
thermograms jointly with personal

and clinical data

Mammoottil
et al. [131] CNN Improved model accuracy resulting

from clinical data Lack of segmentation
Combines five views of breast

thermograms jointly with personal
and clinical data

Abdel-Nasser
et al. [132] MLP A large sample size NA

Employed representation learning
and texture analysis technique to
model temperature changes during
DIT and used these representations

to build a model

Dawood et al.
[133] CNN Full penetration at low to non-

radiation
Requires a microwave

source

Detection of the size and location of
a breast tumor through microwaves

and thermography
Baffa and lattari
[134] CNN High accuracies from both protocols AUC not given Prediction using SIT and DIT

protocols

Zuluaga-
Gomez et al.
[135]

CNN Data-augmentation reached
identical performance metrics NA

Demonstrated the influence of data
pre-processing, data augmentation
and sample size on several DNN-

based CADx systems

Dey et al. [136] DenseNet121 Accuracy, precision, and recall are
high AUC not given BC detection using a pretrained

DenseNet121

Ucuzal et al.
[137] ResNet50V2 Less training time Huge Disparity

between the classes

Developed web application and
deployed a CADx framed on a

pretrained model

Mohamed et al.
[138] CNN )ermograms resized to smaller size

resulting in accelerated computation AUC not given
Auto-segmentation with a U-Net
and using its output for a DNN

classifier

Mambou et al.
[139] Inception V3 NA Accuracy of the model

not given

A DNN-based CAD system that
couples an SVM classifier in the case
of uncertainty in the output of the

DNN

Tello-Mijares
et al. [140] CNN

Segmentation was used to increase
recall and reduce false positives. )e

work also used 2-fold cross
validation schemes for training and

testing

Small sample size

A CNN was trained to segment
thermograms using a combination
of the curvature function k (cvt k)
and the gradient vector flow snake

approach

Yousefi et al.
[141]

ResNet-50,
autoencoders

Using a sparse deep autoencoder, the
method addresses the curse of

dimensionality in high-dimensional
deep feature selection

NA

Extracted high-dimensional deep
thermal features, called deep-

thermomics from a ResNet-50 pre-
trained from low-rank thermal
matrix to track the vasodilator

activities in the breast region as a
biomarker for detecting breast

cancer
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compared with other works in literature and was found to be
highly competitive. However, this work shares some limi-
tations with the work in [128], as segmentation was not used
despite its benefits.

In [132], the study presented a novel approach to
detecting BC with thermograms from the DITprotocol. )e
method employed representation learning and texture
analysis to model temperature changes during DITand used
these representations to build a multi-layered perceptron
(MLP) classifier. )e classifier achieved 95.8% accuracy. To
validate their method, three similar studies were compared
to their work. One of these used only 22 samples and failed
to use any form of cross-validation. Instead, their work used
a large dataset and randomly partitioned it into a training,
development, and test set. )is is good practice, as small
datasets tend to overfit the model and lack validation risk
producing a predictive model that may not generalize to
unseen data. Unsurprisingly, the authors concluded that
their proposed method produces a compact but descriptive
representation of each instance, which led to outstanding
classification results compared to related ones from
literature.

In [133], a hybrid breast cancer detection modality was
proposed. )eir method involved microwaves as a radiation
source, thermography as an imaging recorder, and a CNN to
obtain quantifiable information on the tumor’s location and
size. )e method was based on the variation of the elec-
tromagnetic power between the healthy and tumorous
breasts. A screen plate was placed under the breasts so that
the transmitted waves led to a heat pattern forming on them.
)e difference between the heat patterns was then utilized to
check for breast abnormalities. )e method was found to
exhibit the capability to detect and determine the size and
location of a tumor with a radius of 5mm. Contrary to x-rays
used in mammography, which are associated with an in-
creased risk of breast cancer, this work used electromag-
netics, allowing full penetration at a low to non-radiation
(Table 5).

7. Conclusion

)is paper reviews the available information on deep
learning-based CADx systems of breast thermograms, and
metrics often used to validate these classifiers. It also ex-
amined the role of segmentation on DNNs performance and
existing work on breast thermogram segmentation. Seg-
mentation improved the efficiency of CADx systems by
lowering computing complexity, as per the studies.

Furthermore, it facilitates asymmetry analysis of breast
thermograms, which can assist radiologists to avert further
diagnostic conundrums. )e most reliable and prevalent
deep learning-based classifiers for breast thermograms were
CNNs and their derivatives. )is study suggests that deep
learning and thermography can play a significant role in the
early detection of breast cancer.

Additionally, it provides valuable information about the
role of artificial intelligence in improving diagnostic
workflows in health care. Further work is needed to produce
breast thermogram datasets or make them publicly acces-
sible for research, as only a few are easily accessible. Also,
since the previous work was focused primarily on frontal
breast thermograms, more work on the segmentation and
classification of lateral breast thermograms is required to
cater to lesions that may develop on lateral breast sides [143].
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diagnosis based on thermography images using pre-trained
networks,” J. Cogn. Syst.,vol. 6, no. 2, 2021.

[138] E. A. Mohamed, E. A. Rashed, T. Gaber, and O. Karam,
“Deep learning model for fully automated breast cancer
detection system from thermograms,” PLoS One, vol. 17,
p. e0262349, 1 January 2022.

[139] S. J. Mambou, P. Maresova, O. Krejcar, A. Selamat, and
K. Kuca, “Breast cancer detection using infrared thermal
imaging and a deep learning model,” Sensors, vol. 18, no. 9,
p. 2799, 2018.

[140] S. Tello-Mijares, F. Woo, and F. Flores, “Breast cancer
identification via thermography image segmentation with a
gradient vector flow and a convolutional neural network,”
J. Healthc. Eng., vol. 2019, pp. 12–19, 2019.

[141] B. Yousefi, H. Akbari, and X. P. V. Maldague, “Detecting
vasodilation as potential diagnostic biomarker in breast
cancer using deep learning-driven thermomics,” Biosensors,
vol. 10, no. 11, p. 164, 11, Oct 2020.

[142] M. Macedo, M. Santana, W. P. dos Santos, R. Menezes, and
C. Bastos-Filho, “Breast cancer diagnosis using thermal
image analysis: a data-driven approach based on swarm
intelligence and supervised learning for optimized feature
selection,” Applied Soft Computing, vol. 109, Article ID
107533, 2021.

[143] L. Jingxin, Z. Mengchao, L. Yuchen et al., “COVID-19 Lesion
Detection and Segmentation–A Deep Learning Method,”
Methods, vol. 5, pp. 62–69, January 2021.

Mobile Information Systems 19


