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Currently, the forecasting of healthcare costs is of signi�cant importance for the �nance management of both government and
individual citizens. However, the existence of dramatic individual diversity in health status, as well as the extensive complexity of
the factors in�uencing the cost, has made the prediction a challenging task. �anks to the unprecedented adoption of mobile
devices, regular individuals may contribute diverse dimensions of data for the medical cost prediction. Hospitals and healthcare
service providers are all setting up their ownmobile services and collect user data for analysis. Previous methods usually employed
traditional machine learning or simple neural networkmethods, which are di�cult to be applied to the nonlinear medical cost and
diverse dimensions of data. �erefore, this paper proposes a multitask learning-based framework for interpretable medical cost
interval prediction to address these issues. �e framework proposed in this paper �rst predicts subcost intervals by applying the
multidimensional data collected from mobile ends and following the multitask learning paradigm. �e total cost interval is then
predicted based on this prediction. Simultaneously, the framework derives a decision tree from the parameters of the multitask
learning network and calculates the importance of each feature in predicting the cost intervals. �is paper demonstrates the
method's e�ectiveness using real-world data experiments.

1. Introduction

�e management of healthcare cost is one of the largest
challenges in the �eld of health insurance and healthcare,
which can easily lead to a shortage or waste of healthcare
resources when poorly managed [1–4]. Owing to the ex-
tensive development of mobile devices, patients and regular
citizens can freely contribute their own data for the pre-
diction of the medical cost. Typical organizations like
healthcare service providers and hospitals are setting up
their own applications towards this trend. Patients and
subscribers can use those mobile apps to contribute multiple
types of data like demographic attributes, manually inputted
daily healthcare records, and even sensing data from smart

watches [5]. �erefore, it is of great signi�cance to study the
adoption of these data for medical cost prediction, which can
bring personalized and understandable services for patients.

Currently, DRG (Diagnosis Related Group)-based
payment methods are being widely used to predict costs
through characteristic groupings [6, 7], which has strongly
motivated the research on reliable medical cost prediction.
Various methods are proposed to accurately predict cost
ranges and identify key factors for grouping, allowing for
e�cient resource deployment and timely identi�cation of
potential risks. �ese methods are assumed to bring sig-
ni�cant implications for reducing pressure on healthcare
resources and improving resource utilization [8, 9] while
concealing no signi�cant personal information of patients
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[10–12]. However, because of the various treatment options
chosen by individual patients, the amount and composition
of medical cost are highly personalized and divergent [13].
Moreover, due to the different conditions of different pa-
tients and the influence of factors such as healing time and
degree of recovery, it is difficult to fit medical costs with
simple linear models. 'erefore, the prediction of medical
cost requests both the application of various dimensions of
data available from mobile ends and feedbacks to users with
a deep understanding on the impact of individual and
personalized characteristics on healthcare costs [14, 15].

Considering these challenges, traditional methods rely
heavily on machine learning models like linear regression
[16] and regression trees [17, 18], as well as simple neural
network models. However, the overall representation is
inadequate owing to the sophisticated correlations among
factors. In recent research, deep learning methods [19]
outperformed traditional computational methods in various
prediction tasks due to their ability to adapt the composition
of individual feature factors for better representation [20].
Given the complexity of the components and data dimen-
sions in medical cost prediction [21], deep learning methods
can make more accurate and reasonable predictions of
overall costs by depicting the correlation between the various
costs in addition to predicting individual costs.

Based on the above, this paper proposes a multi-task
learning-based interpretable medical cost interval prediction
framework.'emodel takes multiple sources of information
about the patient into account, including (1) the patient’s
natural characteristics and (2) the stage of the patient’s
condition. (3)'e patient’s lesion attributes, and outputs the
prediction results for each type of cost interval.

'e framework is made up of two parts: (1) A multitask-
learning framework for interval prediction over data collected
from mobile ends. 'e cost intervals are predicted by the
prediction framework in two steps. To begin, a logistic re-
gression approach is combined as a preprocessing of the input
neural network data, which is then fed into the neural network
to calculate predictions for the various subcost intervals. 'e
total costs are then predicted based on the prediction of the
subcost intervals.Among these, the logistic regressionmethod
is used to improve the network’s convergence and training
speeds. (2) An explainable and personalized decision tree
based on the analysis of factor importance in a multilearning
task.'e Gini coefficient is reconstructed using the multitask
learning framework weights obtained from training to build a
decision tree, and the importance of each feature is calculated
using the decision tree.

'e proposed framework owns two advantages for
medical cost prediction. On the one hand, the framework
predicts total costs by coupling subcosts, allowing all subcost
prediction intervals to be in obtained while also capturing
the links between subcosts and global payments; on the other
hand, the framework can analyze the importance of different
factors in the prediction of cost intervals based on the
prediction process. Corresponding observations can serve as
a foundation for physician triage.

To the best of our knowledge, this is the first time that a
multiclassification approach to cost interval forecasting has

been used. 'e remainder of this paper is organized as
follows: Section 2 presents work related to cost interval
prediction. Section 3 presents the cost interval prediction
model for multitask learning. Section 4 presents the ex-
perimental results. Section 5 analyses the factor impact.
Section 6 presents the conclusions.

2. Related Work

'e study of cost prediction tasks is becoming more
widespread, and one of the widely used methods for health
care cost prediction is the regression-based model [22, 23].
To avoid the requirement of general linear models for data to
follow a normal distribution, Moran et al. performed pre-
diction using generalized linear models [16]. Panay et al.
used the evidence regression method, which is based on the
idea that other elements in a set that are correlated for a
specific element are placed in a set of similar patients, and
the overall predicted expectation is calculated for optimi-
zation [24]. Tkachenko R et al. used SGTM-like neural
structures for segmented linear prediction [25]. Takeshima
et al. defined experimental valuables on which regression
models with minimum absolute shrinkage and selection
operators (lasso) were built. Explanatory valuables were
selected by LASSO avoiding overfitting using the validation
data [26]. Based on regression methods, various machine
learning methods have been introduced [27, 28]. Taloba et al.
in [17] compare the performance of linear regression type
Lasso, gradient augmentation of regression decision trees,
M5 regression decision trees, random forests, linear re-
gression, and CARTregression trees in this task and analyze
the advantages and disadvantages of each method.

Due to properties such as end-to-end training and good
fitting ability to nonlinear data, neural network methods, in
addition to machine learning methods, have been intro-
duced into the prediction of medical costs. Morid et al.
compared various methods and found that ANN (Artificial
Neural Network) performed the best [20]. In [29], Zeng et al.
used multilayer neural networks to construct unsupervised
learning models to learn patient representation from
medical data. 'e collection of medical data from mobile
devices are also extensively studied. Issues like efficiency
[5, 30] and data utilities are thoroughly considered. 'ese
studies are complementary to our work.

Generally, for cost prediction, current work is primarily
based on patients’ natural attributes and health data, but
there are fewer methods for predicting the costs of specific
conditions during treatment. At the same time, current
methods are based on simple statistical learning and neural
networks, and they are incapable of fully exploiting the value
of data contributed by patients from mobile ends.

3. Framework: A Multitask Learning Based
Framework for Interpretable Medical Cost
Interval Prediction

3.1. Problem Definition. For a patient set U � U1, U2, ...,

Ui, ..., UN} containing N patients, where each patient Ui has
a feature set Xi and an element xi ∈ R for each feature
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dimension. For example, the feature set may include natural
features such as “age,” daily collected data like heartbeat
records and related events inputted by patients. 'ese fea-
tures are collected and submitted through mobile devices.
Corresponding features also involve the disease stage such as
“TMN-stage,” and focal features such as “type of comor-
bidity,” which are both terminologies used for clinic diag-
nosis of breast cancer. We define a cost interval set
Y � Y1, Y2, ..., Yi, ..., YN , where Yi � Yi,sub ∪Yi,total, Yi,sub �

yi,1, yi,2, ..., yi,k , Yi,total � yi,total .

In this paper, we take k� 3 as an example, yi,1, yi,2, yi,3
correspond to the intervals of treatment cost, examination
cost, and drug cost, respectively, and yi,total is the total cost
interval.yi,1 ∈ 1, 2, ..., k1 , yi,2 ∈ 1, 2, ..., k2 ,
yi,3 ∈ 1, 2, ..., k3 , yi,total ∈ 1, 2, ..., ktotal .

For a given set of patient features X, after inputting it
into the model, the set Y � Ysub ∪Ytotal of its corresponding
cost intervals is output.

3.2. A Framework for Predicting Medical Cost Intervals Based
on Multitask Learning. 'e framework proposed in this
paper consists of three components: data preprocessing; a
hard sharing network for subcost interval prediction; and a
total task prediction network based on sub-cost intervals.
'e results obtained from predicting subcost intervals and
the raw data outputted by hard sharing are used as inputs for
the total cost prediction. An illustration of the framework is
shown in Figure 1.

3.2.1. Data Preprocessing: Logistic Regression. 'e training
of neural networks for such data suffers from slow con-
vergence and long training times due to the weak linear
nature of the association between medical data and medical
cost intervals. Traditional machine learning methods like
logistic regression may extract shallow nonlinear association
among data, which can benefit the overall training perfor-
mance of the framework. As a result, in this paper, θ

∧

log istic is
calculated using logistic regression before being fitted with a
neural network. When the user Ui set of features Xi is

entered, the auxiliary information h
θ
∧
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where θ
∧

1, θ
∧

2, ..., θ
∧

ktotal
∈ R is the model parameter and the

parameter is obtained by optimising the loss function by an
iterative method, the loss function is a great likelihood

function, θ
∧

log istic � argmin
θlog istic

Losslog istic(hθlog istic(X), Y).

h
θ
∧
log istic

(Xi) concatenated with the original data, to obtain

INPUT(Xi):

INPUT Xi(  � concat Xi, h
θ
∧
log istic

Xi(  . (2)

INPUT(Xi) as input to the multitask learning hard
sharing layer can speed up the convergence and training of
the neural network.

FC BN RELU

logistics
regression CInput +

Output1:
treatment costs

Output2:
examination costs

Output3:
drug costs

...
+ Output4:

total costs

hard sharing layer

mini-module

Total cost forecast layer

...

Figure 1: 'e cost forecasting framework.
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3.2.2. Hard Sharing Network for Subcost Interval Forecasting.
'e hard sharing layer consists of the mini-module and
Resnet.

Each mini-model consists of a full connection layer, a
BatchNormalization layer, and an activation layer (ReLu is
used as an example in this paper) which, after the hard
sharing layer, gives a hidden layer representation of the data
m

(l)
i :

FC
(l)
i � FC m

(l−1)
i ,

BN
(l)
i � BN FC

(l)
i ,

m
(l)
i � σ BN

(l)
i ,

(3)

where l is the number of layers in the network of the mini-
module.

In order not to degrade the performance of the network
due to degradation caused by nonconstant mapping, a re-
sidual network is used in this paper. A residual connection
[19] is made for every two mini-modules to obtain the
hidden layer h(Xi):

Resnet(L)
i � Resnet m

(2L)
i , m

(2L+1)
i ,

h Xi(  � Resnet(L)
i .

(4)

Put h(Xi) into different full connection layers to obtain
predictions for each subcost interval:

y
∧

i,1 � FC1 h Xi( ( ,

y
∧

i,2 � FC2 h Xi( ( ,

y
∧

i,3 � FC3 h Xi( ( .

(5)

Based on this, Y
∧

i,sub � y
∧

i,1, y
∧

i,2, y
∧

i,3  of Xi is obtained.
Where the loss function Losssub for the subcost prediction
network is defined as follows:

Losssub � 
3

j�1
αjLoss Y

∧
i,j, Yi,j . (6)

3.2.3. Total Cost Interval Forecasting Network Based on
Subcost Intervals. A fully connected layer and an activation
layer comprise the total cost interval prediction network.
'e predicted values of the three subcost intervals, along
with the output of the hard sharing layer, are fed into the
total cost prediction layer, which produces a prediction of
the total cost interval as follows:

X
∧

i,total � concat h Xi( , y
∧
1, y
∧
2, y
∧
3 ,

y
∧

i,total � σ FC X
∧

i,total  ,

(7)

From this, the predicted value Y
∧

i � y
∧

i,total  is obtained
for four cost intervals of Xi

'e loss function Losstotal for the overall cost is defined as
follows:

Losstotal � Loss(Y
∧

, Y). (8)

It distinguish the differences between Losssub and
Losstotal:

Loss � β1Losssub + β2Losstotal, (9)

where β1 and β2 are hyper parameters. In this paper, (8) is
selected as the loss function.

4. Feature Importance Analysis

Simply predicting the cost interval may confuse the doctors
even if a highly accurate performance is guaranteed.
'erefore, a feature-importance-based framework in
explaining the prediction of cost interval is further proposed
in this part. 'e whole framework is based on an improved
version of decision tree, where multiple factors considered in
the prediction model are involved. An illustration is shown
in Figure 2.

A decision tree approach is used in this paper to analyze
the importance of factors obtained through the multitask
neural network in section 3. In contrast to previous decision
tree methods simply estimating information gain for a single
task, an method tailored to couple with multitasks is
designed for the information gain estimation.

Based on the weight parameters of the whole prediction
network obtained from training, the weight parameters
corresponding to each sub-cost interval is first calculated as a
percentage of the total cost prediction layer, which is used as
the weight for the Gini coefficient calculation of the decision
tree nodes. 'e original Gini coefficient calculation formula:

gini � 
k

k�1
pk 1 − pk( . (10)

For a given matrix of patient features (x1,0, x1,1,

x2,0, x2,1, x2,2), the input total cost prediction layer is subject
to the following calculation: (x1,0, x1,1, x2,0, x2,1, x2,2)×

(w1,0, w1,1, w2,0, w2,1, w2,2)
T, where the feature elements with

the same first numerical ordinal number of the subscript,
e.g., x1,0, x1,1 refer to common features. 'en, for the same
feature element Xi, having a matrix of weights Wi, the
weight of each feature element in the calculation of the Gini
coefficient is calculated as follows:

αk �
Wk

����
����l2


N
i�1 Wi

����
����l2

, (11)

'en, the weighted Gini coefficient calculation formula:

gini � α1 

K1

K1�1
pk1

1 − pk1
  + α2 

K2

k2�1
pk2

1 − pk2
  + . . .

+ αn 

Kn

kn�1
pkn

1 − pkn
 .

(12)

We build a decision tree using the CART classification
tree method [20]. 'e main idea of the method is to
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iteratively split the patient set where each subset share
identical value on some features. Specifically, when a feature
F takes the value f in a sample U with N users, the sample U

is divided into two parts U1 and U2, where U1 is the set of
samples with F≠f and U2 is the set of samples with F≠f.
'e method calculates the Gini coefficient of each feature at
each value, choose the case with the smallest Gini coefficient,
and use it to generate this node, with U1 and U2 as patient
sets in two child nodes. When a node’s number of samples U

falls below a predefined threshold, or when the number of
features is zero, the current node’s decision making process
is terminated.

'e method described above is used to create a decision
tree. 'e essence is to create a binary tree by selecting the
features that will give the greatest Gini gain as nodes at each
layer. 'e importance of each feature in nodes is calculated
using the following formula based on the generated decision
tree:

Nt

N
× gini −

NtR

Nt

× giniR −
NtL

Nt

× giniL , (13)

where N is the total number of samples, Nt is the number of
samples at this node,Nr is the number of samples at the right
child node, and NtL

is the number of samples at the left child
node.

5. Experiments

5.1. Dataset. 'e experiments in this paper are based on a
real breast cancer medical cost dataset. We give links to the
data demos at the end of this article. Patient features include
age, T stage, M stage, N stage, histological classification,
complication and comorbidity, and HER2 attributes. 'e
representation for the feature is shown in Table 1.

In this paper, treatment costs, examination costs, and
drug costs are selected as the three subcosts to be predicted
and the total costs are predicted by using these three subcosts
as auxiliary information. For the different costs, the paper
divides the cost intervals as shown in Table 2.

'e experiments in this paper use one-hot coding for the
representation of the data.

5.2. Parameter Settings. 'e logistic regression model in this
paper employs Newton’s method as the optimization
method for the loss function, and the regularization method
employs the l2 normwith a regularization strength of 0.5; the
neural network employs ASGD as the optimization method,
with a starting learning rate of 0.1 and decreasing to 50% of
the original every 100 epochs; and the linear layer has a
dimension of 128.

logistics
regression CInput +

Output 1:
treatment costs

Output2:
examination

costs

Output3:
drug costs

..
Output4:
total costs

Total cost forecast layer

hard
sharing

layer

root

...

...

Decision Treeαk = 
||Wk||l2

||Wi||l2∑N

i=1

gini = α1

K1

K1=1
PK1 (1–PK1) +α2

K2

K2=1
PK2 (1–PK2)+...+αn

Kn

Kn=1
PKn (1–PKn)

Figure 2: Decision tree analysis method based on neural network weights.

Table 1: Patient feature categories classification.

Features Feature categories Values

Age

25 - 0
25–40 1
40–50 2
50–60 3
60+ 4

T-stage

T0 0
Tis 1
Tx 2
T1 3
T2 4
T3 5
T4 6

Histologic classification

Invasive carcinoma 0
Invasive ductal carcinoma 1

Papillary carcinoma 2
Infiltrating lobular

carcinoma 3

Medullary carcinoma 4

N-stage

N0 0
N1 1
N2 2
N3 3
Nx 4

M-stage
M0 0
M1 1
Mx 2

Complication and
comorbidity

serious 0
General 1

— 2

HER2

0 0
1+ 1
2+ 2
3+ 3
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'e decision tree for analyzing the importance of the
influencing factors in this paper uses a CART decision tree
with a maximum number of layers of 7. 'e Gini coefficient
is used to calculate the information gain, but unlike the
traditional Gini coefficient, the Gini coefficient is improved
in this paper, and the specific method is described in Section
4.

5.3. Experimental Results

5.3.1. Cost Interval Forecast Results. First, to verify the ef-
fectiveness of the methods, SVM, decision tree, plain
Bayesian, logistic regression, and k-means methods were
tested on the same dataset in this paper. 'e results are
shown in Table 3. Compared with traditional machine
learning methods, the multi-task learning method has sig-
nificantly improved the prediction accuracy for the four
types of cost intervals, which raises the accuracy by 5% on
treatment cost, 9% on examination cost, 10% on drug cost,
and 10% on the total cost.

It can also be seen that the prediction accuracy of our
method is also significantly improved compared to that of
the logistic regression-only method. 'e multitask learning
model can effectively reduce the reliance on the linear nature
of the data using the logistic regression-only method.
According to Figure 3, the model convergence speed is
improved after the inclusion of the logistic regression
approach.

To verify the effectiveness of the framework in this paper,
we test the prediction results when the network layer in the
framework is replaced by traditional machine learning
methods. Moreover, the accuracy of the prediction of
subcosts is tested under different total cost prediction results.
According to the results in Table 4, when the total cost
prediction is correct, the method fails in all cases for the sub-
cost intervals only 21% of the time, which is much lower than
traditional machine learning methods. Correspondingly,
according to the results in Table 4, when the total cost
prediction is incorrect, the sub-cost interval prediction fails

in all cases by 24% compared to the correct case, which is the
largest improvement compared to the other cases and re-
mains lower than the traditional method. 'us, it can be
demonstrated that the neural network method used in this
paper, which can better capture the non-linear relationship
between subcosts and total costs, outperforms traditional
machine learning methods.

Finally, to verify the robustness of the framework, the
operation of the network is tested at different learning rates
in this paper, and the results are shown in Figure 4. 'e
convergence rate is fast at higher learning rates, but the
accuracy as well as the loss gradually converge to the same
level at the end. 'is proves that the network is stable.

5.3.2. Experimental Results on the Feature Importance.
Decision trees based on the trained network are shown in
Figure 5. Compared with the decision trees built by the
traditional method, the prediction accuracy of the our de-
cision tree for the total cost is 0.71, which is much greater
than the 0.45 of the traditional decision tree method. 'e
decision tree generated by this method has more Gini nodes
with 0 and a clearer judgement process.

Table 2: Cost interval.

Treatment costs 1000− 1000–2000 2000+ —
Examination costs 5000− 5000–10000 10000+ —
Drug costs 500− 500–1500 1500–2000 2000+
Total costs 10000− 10000–20000 20000–25000 25000+

Table 3: Accuracy comparison with classical methods.

Method
Accuracy

Treatment costs Examination costs Drug costs Total costs
SVM 0.54 0.48 0.53 0.43
DecisionTreeClassifier 0.61 0.54 0.54 0.45
Naive_Bayes 0.59 0.58 0.61 0.61
Logistic regression 0.65 0.64 0.62 0.51
k-means 0.48 0.43 0.37 0.42
Multi-task 0.7 0.73 0.72 0.71

0.158

0.156

0.154

0.152

0 200 400 600 800

Step

Loss

multi_task (no logistic)
multi_task

Figure 3: Comparison of loss before and after using the logistic
regression method.
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Table 4: Percentage of cost forecast (1) Table of other cost projections when total cost projections are correct. (2) Table of other cost
projections when total cost projections are incorrect.

Methods
Accuracy

Number of correct projections for other costs≥ 1 Number of correct projections for other costs� 0
SVM 0.54 0.45
DecisionTreeClassifier 0.62 0.38
Naive_Bayes 0.51 0.49
Logistic 0.64 0.36
k-means 0.53 0.47
Multi-task 0.79 0.21

Accuracy
Methods Number of correct projections for other costs≥ 1 Number of correct projections for other costs� 0
SVM 0.47 0.53
DecisionTreeClassifier 0.51 0.49
Naive_Bayes 0.48 0.52
Logistic 0.41 0.59
k-means 0.49 0.51
Multi-task 0.55 0.45
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Figure 4: Accuracy and loss of training at different learning rates. (a) Accuracy. (b) Loss.
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Figure 5: Illustration of the decision tree constructed by our framework.

Table 5: Importance of each feature.

Feature Importance (descending order)
N-stage 0.1934
T-stage 0.1747
Age 0.1344
Complication and comorbidity 0.1276
HER2 0.1033
Histologic classification 0.0997
M-stage 0.0701
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Based on the generated decision tree, the importance of
the features is calculated and the results are shown in Table 5
and Figure 6. Among them, N-stage and T-stage are sig-
nificantly more important than the last five features, and
M-stage is significantly less important than the first six
features.

6. Conclusion

'is paper presents an interpretable and personalized
medical cost interval prediction framework based on mul-
titask learning over data on mobile ends. It can predict total
cost intervals based on the subcost intervals of the medical
process, and the importance of each feature for cost interval
prediction can be obtained using a decision tree approach
based on the trained neural network’s weight parameters. To
begin, this paper uses a multitask learning approach to
obtain the subcost intervals in the medical process and mine
their correlation to exploit the value of the data; second, the
subcosts pass through the full connection layer to predict the
total cost intervals; finally, in order to determine the im-
portance of patient characteristics in predicting cost inter-
vals, the decision tree’s Gini coefficient calculation method is
reconstructed by using full connection layer weights of
subcosts to predict total costs. Furthermore, to improve the
speed of model training and convergence, the data is pre-
processed using logistic regression methods, and ResNet
structure is used to keep the network identity Mapping.

Data Availability

'e data presented in this study are available on request
from the corresponding authors.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Acknowledgments

'is work was supported by Ministry of Science and Tech-
nology of Sichuan Province Program (No. 2021YFG0018,
2022YFG0038).

References

[1] S. M. Bartsch, M. C. Ferguson, J. A. McKinnell, W. O’Shea,
and B. Y. SiegmundLee, “'e potential health care costs and
resource use associated with COVID-19 in the United States,”
Health Affairs, vol. 39, no. 6, pp. 927–935, 2020.

[2] R. Tipirneni, M. C. Politi, J. T. Kullgren, E. C. Kieffer,
S. D. Goold, and A. M. Scherer, “Association between health
insurance literacy and avoidance of health care services owing
to cost,” JAMA Network Open, vol. 1, no. 7, p. e184796, 2018.

[3] J. Pang, Y. Huang, Z. Xie, and Z. LiCai, “Collaborative city
digital twin for the COVID-19 pandemic: a federated learning
solution,” Tsinghua Science and Technology, vol. 26, no. 5,
pp. 759–771, 2021.

[4] A. Agarwal, S. Sharma, V. Kaur, and M. Kaur, “Effect of
E-learning on public health and environment during COVID-
19 lockdown,” Big Data Mining and Analytics, vol. 4, no. 2,
pp. 104–115, June 2021.

[5] S. Cheng, Z. Cai, J. Li, and H. Gao, “Extracting kernel dataset
from big sensory data in wireless sensor networks,” IEEE
Transactions on Knowledge and Data Engineering, vol. 29,
no. 4, pp. 813–827, 2017.

[6] N. Mihailovic, S. Kocic, and M. Jakovljevic, “Review of di-
agnosis-related group-based financing of hospital care,”
Health Services Research and Managerial Epidemiology, vol. 3,
2016.

[7] G. Robinson, M. Goldstein, and G. M. Levine, “Impact of
nutritional status on DRG length of stay,” Journal of Par-
enteral and Enteral Nutrition, vol. 11, no. 1, pp. 49–51, 1987.

[8] H. Fahlevi, I. Irsyadillah, M. Indriani, and S. O. Rina, “DRG-
based payment system and management accounting changes
in an Indonesian public hospital: exploring potential roles of
big data analytics[J],” Journal of Accounting and Organiza-
tional Change, vol. 18, p. 4, 2021.

[9] A. A. H. de Hond, A. M. Leeuwenberg, L. Hooft et al.,
“Guidelines and quality criteria for artificial intelligence-
based prediction models in healthcare: a scoping review[J],”
Npj Digital Medicine, vol. 5, no. 1, pp. 1–13, 2022.

[10] Y. Liang, Z. Cai, J. Yu, Q. Han, and Y. Li, “Deep learning based
inference of private information using embedded sensors in
smart devices,” IEEE Network, vol. 32, no. 4, pp. 8–14, 2018.

[11] Z. Cai and X. Zheng, “A private and efficient mechanism for
data uploading in smart cyber-physical systems,” IEEE
Transactions on Network Science and Engineering, vol. 7, no. 2,
pp. 766–775, 2020.

N

T

AGE

complication and comorbidity

HER2

histologic classification

M

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.2000.000

Figure 6: Importance of features.

8 Mobile Information Systems



[12] L. Yang, X. Chen, Y. Luo, X. Wang, and W. Wang, “IDEA: a
utility-enhanced approach to incomplete data stream ano-
nymization,” Tsinghua Science and Technology, vol. 27, no. 1,
pp. 127–140, 2022.

[13] R. Manne and S. C. Kantheti, “Application of artificial in-
telligence in healthcare: chances and challenges,” Current
Journal of Applied Science and Technology, vol. 40, no. 6,
pp. 78–89, 2021.

[14] V. Shankaran, S. Chennupati, H. Sanchez, L. F. Sun, and
B. AlyHealeySeal, “Clinical characteristics, treatment patterns,
and healthcare costs and utilization for hepatocellular car-
cinoma (HCC) patients treated at a large referral center in
Washington state 2007-2018,” Journal of Hepatocellular
Carcinoma, vol. 8, pp. 1597–1606, 2021.

[15] B. E. Saelens, R. T. Meenan, E. M. Keast, Y. Frank, D. Kuntz,
and S. P. Fortmann, “Transit use and health care costs: a cross-
sectional analysis,” Journal of Transport & Health, vol. 24,
Article ID 101294, 2022.

[16] J. L. Moran, P. J. Solomon, A. R. Peisach, and J. Martin, “New
models for old questions: generalized linear models for cost
prediction,” Journal of Evaluation in Clinical Practice, vol. 13,
no. 3, pp. 381–389, 2007.

[17] A. I. Taloba, A. El-Aziz, M. Rasha, H. M. Alshanbari, and
A. A. El-Bagoury, “Estimation and prediction of hospitali-
zation and medical care costs using regression in machine
learning[J],” Journal of Healthcare Engineering, vol. 2022,
Article ID 7969220, 2022.

[18] Z. Cai, Z. He, X. Guan, and Y. Li, “Collective data-sanitization
for preventing sensitive information inference attacks in
social networks,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 4, pp. 577–590, 2018.

[19] I. K. Nti, J. A. Quarcoo, J. Fosu, and G. K. Fosu, “A mini-
review of machine learning in big data analytics: applications,
challenges, and prospects,” Big Data Mining and Analytics,
vol. 5, no. 2, pp. 81–97, 2022.

[20] M. A. Morid, K. Kawamoto, T. Ault, J. Dorius, and
S. Abdelrahman, “Supervised learning methods for predicting
healthcare costs: systematic literature review and empirical
evaluation,” in Proceedings of the AMIA Annual Symposium
Proceedings. American Medical Informatics Association,
pp. 1312–1321, Beijing China, June 2017.

[21] Z. Zheng and X. Zheng, “A private and efficient mechanism
for data uploading in smart cyber-physical systems,” IEEE
Transactions on Network Science and Engineering, vol. 7, no. 2,
pp. 766–775, 2020.

[22] J. Pang, Y. Huang, Z. Xie, and Z. HanCai, “Realizing the
heterogeneity: a self-organized federated learning framework
for IoT,” IEEE Internet of +ings Journal, vol. 8, no. 5,
pp. 3088–3098, 2021.

[23] J. Tie, X. Pan, and Y. Pan, “Metabolite-disease association
prediction algorithm combining DeepWalk and random
forest,” Tsinghua Science and Technology, vol. 27, no. 1,
pp. 58–67, Feb. 2022.

[24] B. Panay, N. Baloian, J. A. Pino, S. Peñafiel, H. Sanson, and
N. Bersano, “Predicting health care costs using evidence re-
gression[J],” Multidisciplinary Digital Publishing Institute
Proceedings, vol. 31, no. 1, p. 74, 2019.

[25] R. Tkachenko, I. Izonin, N. Kryvinska, V. Chopyak,
N. Lotoshynska, and D. Danylyuk, “Piecewise-linear approach
for medical insurance costs prediction using SGTM neural-
like structure,” IDDM, vol. 21, pp. 170–179, 2018.

[26] T. Takeshima, S. Keino, R. Aoki, and K. MatsuiIwasaki,
“Development of medical cost prediction model based on

statistical machine learning using health insurance claims
data,” Value in Health, vol. 21, p. S97, 2018.

[27] D. Bertsimas, M. V. Bjarnadóttir, M. A. Kane, P. Kryder, and
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