
Research Article
Design and Implementation of Software-Defined Data Center
(SDDC) for Medical Colleges and Universities

Wei Lin , YuMing Wu, and Ning Jiao

Hebei Medical University, Shijiazhuang, Hebei 050031, China

Correspondence should be addressed to Wei Lin; linwei@hebmu.edu.cn

Received 8 April 2022; Revised 9 May 2022; Accepted 20 May 2022; Published 9 June 2022

Academic Editor: Abid Yahya

Copyright © 2022Wei Lin et al.�is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�e current medical universities culture can re�ect their professional nature, showing a strong development trend. �e current
socialist economy of China is rapidly developing along with cloud computing for data centers. For cultural and educational
activities, virtualization and software-de�ned data center (SDDC) technologies are being used.�emost widely used open-source
virtualization technologies are SDDC and virtualization. Users may utilize OpenStack to establish private cloud computing
environments. �e separate control and forwarding architecture of SDDC also make it naturally suitable for the data center’s
network environment. Ryu controller has become one of the most widely used SDDC controllers because of its lightweight, high
e�ciency, and modularity features. Due to the large variety of network operations required by the SDDC, appropriate man-
agement and control function modules must be developed on Ryu when it is used as the controller. �is study investigates the
construction of campus culture at medical colleges and universities using SDDC. Ourmain objective is to improve the e�ciency of
data construction in medical colleges and universities and creating a positive cultural environment. On the one hand, the addition
of functional modules makes the management of the controller itself easier. Ryu lacks an intuitive interactive platform. Although
OpenStack provides an interactive interface, it cannot meet the integration requirements of Ryu. �e uni�ed control and school
scheduling system have some research and application potential. �e experimental results show that our proposed approach of
designing an SDDC for medical colleges and universities has a signi�cant impact and has vast potential for future studies.

1. Introduction

In recent years, cultural construction projects were launched
in local colleges and universities in China. Also, with
construction rising tide, medical schools have started their
cultural construction projects, with corresponding positive
results. �e current cultural construction of colleges and
universities, on the other side, faces signi�cant di�culties.
�ere will be constraints on the implementation of con-
struction projects due to a variety of factors such as a lack of
funding and school transformation, which will result in the
construction projects getting terminated. As a result, the
socialist market economy is rapidly developing [1]. Data
centers have been an important part role of the client-server
computing architecture since the 1990s. Due to the rapid
improvement of Internet technology in recent years, medical
colleges and universities have started to place a higher focus

on software data center facilities as a source of cultural
development. �erefore, the current campus cultural con-
struction activities need to establish a systematic manage-
ment to ensure that various construction plans are
implemented. Implementation can e�ectively improve
various construction projects, particularly the development
of cloud computing technology, which has brought major
changes to network services and prompted a climax in data
center construction [2]. In the cloud computing environ-
ment, data centers provide network services to colleges and
universities through the Internet. However, the construction
of a data center requires not only various basic hardware
facilities but also a software architecture that manages
various resources of the data center and provides services to
the outside world. At present, the more mainstream cloud
architectures include AWS (Amazon Web Services),
VMWare (Virmal MachineWare,Wei Rui), and OpenStack.

Hindawi
Mobile Information Systems
Volume 2022, Article ID 9139257, 10 pages
https://doi.org/10.1155/2022/9139257

mailto:linwei@hebmu.edu.cn
https://orcid.org/0000-0002-2715-0901
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9139257

Among them, OpenStack, with its open-source features and
extensive community support, has gradually become a
private cloud construction. OpenStack is mainstream, and it
has a much higher level of acceptance than similar open-
source projects [3].

In recent years, the software-defined data center (SDDC)
has become a popular topic in the field of network tech-
nology. &e control and forwarding planes are separated in
SDDC that adopt network architecture. &e southbound
communication interface is used by the controller to pro-
grammatically control the network devices on the for-
warding plane. One of SDDC’s earliest standards, OpenFlow
was developed initially to provide a real-time experimen-
tation environment for new network protocols, developed
by campus network researchers. &e SDDC controller
controls the OpenFlow switches in the network through the
OpenFlow protocol and then manages the entire network
[4]. &e key problem in the development of traditional data
centers (in the cloud computing direction) is that it takes a
lot of investment to realize cloud services. &e server vir-
tualization carries out the corresponding transformation of
the existing network, while SDDC can quickly and efficiently
realize the network virtualization and reduces the trans-
formation cost. To solve the difficulties that arose during the
transformation, Google’s SDDC controller Onix-group has
been successfully deployed on the data center’s internal
backbone network. Because of its near 100% bandwidth
utilization, the data center has been the industry’s central
focus for promoting SDDC technology.

When the data center continues to expand and deploy on
a large scale, the management and control of the data center
are essential challenges that SDDC needs to solve. Currently,
OpenStack is widely used in infrastructure as a service (Iaas)
cloud computing data center to provide computing, storage,
and virtual resources. &e management of application
modules has become increasingly complex as a result of the
deployment of SDDC in data centers and the continual
improvement of controller functionalities. Although
OpenStack provides a graphical user interface to assist user
operations, SDDC controller integration is problematic.
&erefore, the focus of this research is to design a resource
management system.&at achieves unifiedmanagement and
control of the SDDC controller and OpenStack by evaluating
the software-defined data center’s present requirements [5].

Academic data center research now focuses mostly on
network structure, energy consumption control, and virtual
machine scheduling, with just a few studies focusing on
management techniques. In China, Huawei’s Manage one
management system, which automates service deployment
and orchestrates the rollout process, is very well. Operators
may use this as a starting point to construct their preferred
service development methods and quickly launch new
services.&is solution divides the management system into a
business center, IT service management center, and service
center. &e operation and maintenance center, according to
functions, manages data center resource equipment through
the cooperation of each part. &e management system based
on this solution can not only be deployed in the public cloud
and the private cloud but can also be applied to traditional

data centers. Most of the research on network management
systems is based on SNMP (simple network management
protocol). Before the concept of SDDC and OpenFlow was
proposed, in 2007, Shu Chang realized an SNMP agent by
compiling NET-SNMP to manage the network. In 2008,
Zhang Jie developed a network management system with
network topology discovery and traffic monitoring based
on the SNMP protocol system. In 2014, Wang Hongmin
developed a management system to manage the devices
and resources in the SDDC network. Particularly with the
advent of SDDC, the OpenFlow flow table, network to-
pology, tenant network, and so on were all mentioned in
the text, but the management of servers and hosts monitor
was not [6–8]. In 2015, Zhang et al. realized the real-time
management of the physical network topology and the
OpenFlow flow table query function through the NOX
controller in the SDDC field combined with the SNMP
protocol. &e data were integrated into SNMP because
other systems may get access to the SDDC network
through the SNMP interface. However, the NOX con-
troller’s support for the OpenFlow protocol is still in an
earlier version, so it is more limited [9].

In other foreign countries, Hewlett–Packard Company’s
Open View, CA of CA Company Uni-center, and IBM’s
Tivoli are instances of representative network management
software. &e solutions provided by the three companies
provide solutions for data center network management from
different perspectives. Although these tools are fully func-
tional, only some of them are used in actual data center
management, and researchers are more inclined to lower-
cost open-source tools. Furthermore, commercial software
was indeed particularly susceptible to scalability problems
and will be unable to meet some of the special needs of a
software-defined data center [10]. Medical colleges and
universities are inseparable from the construction of soft-
ware facilities in carrying out various teaching activities. At
this stage, the strengthening of software facilities in many
colleges and universities has made the economic develop-
ment of software research inevitable for social development.
Most of the students use various resources in the con-
struction of the campus, which to a certain extent has also
achieved the development of the school’s ideological and
cultural aspects. As the school develops, it will reflect the
corresponding teaching concepts. Medical colleges and
universities will reflect the corresponding school-running
characteristics and the vigorous development of cultural
connotations. &e following are the main contributions of
this study:

(i) Users may utilize OpenStack to establish private
cloud computing environments. &e separate
control and forwarding architecture of SDDC also
make it naturally suitable for the data center net-
work environment.

(ii) &eNode and V8 engines are implemented in C and
C++ and are positioned for high performance and
low memory consumption.

(iii) SDMs (software definition management system,
SDDC) three-tier architecture includes application

2 Mobile Information Systems

layer, control layer, and infrastructure layer. It is
based on HTML, CSS, Ajax, and JavaScript.

(iv) A complete proxy for OpenStack Dashboard is
designed and implemented after an analysis of login,
HTTP requests, and WebVNC workflow. &e
dashboard can connect to the Internet through the
management system for users to access.

&e rest of this study is arranged in a logical order:
Section 2 shows related work, Section 3 shows the related
technology, Section 4 shows system structure design, and
Section 5 shows the design and implementation of main
functional modules. Finally, Section 6 illustrates the research
to a conclusion.

2. Related Work

&ere have been a few related works on network manage-
ment. Presently, a host of new communication networks is
surfacing, and therefore, we must properly manage those
[11]. A very well-managed services protocol is the SNMP
protocol. Numerous traditional NMSs use SNMP to manage
networks. As a result, some studies employ SNMP tomanage
new network architecture, allowing traditional systems to
take control. For cloud network management, CNMM, for
example, enhances SNMP [12]. &is specifies a management
architecture as well as a manager-agent network model for
coordinating information stored on multiple portions of the
multistage router to provide a unified view to an external
network management station issuing SNMP requests [13].
MIBs can be used to designate forwarding planes. In the
context of SDN, the ITRI container computer provides an
SNMP-based monitoring subsystem. However, it does not
have an SNMP-based NMS for managing SDN [9]. It
provides an architecture for an integrated network man-
agement and control system (INMCS), which combines
traditional network management features like discovery and
fault detection with SDN-enabled end-to-end flow provi-
sioning and control [14]. It is a hybrid control model.
However, neither of these SDN solutions has multiservice
management. &e testbed in this research is based on pre-
vious work. Customers may now design their protocol
formats and flow processing rules in physical switches using
an SDN-based protocol-independent platform. It describes
an autonomous architecture for an SDN-based multiservices
network [15].

3. Related Technology

&e software-defined data center is designed and developed
based on the SDDC architecture and the OpenStack cloud
computing platform. &e SDDC controller manages and
controls the network devices in the data center through the
OpenFlow protocol, while OpenStack performs unified
regulation on storage, computing, and other virtual re-
sources [16, 17]. &e management system is located at the
application layer in the SDDC architecture and performs
unified scheduling management for the SDDC controller
and OpenStack at the control layer. &is section mainly

provides an overview of SDDC architecture and some
components of OpenStack and focuses on the server-side
and front-end development technologies used in the de-
velopment of management systems, as well as Node.js,
RabbitMQ, and SNMP protocols [18]. As described in this
study, software-defined networking (SDN) provides a log-
ically centralized controller with a global view of the whole
data center network. As a result, it provides you with the best
of both worlds without requiring the least amount of work.
&e comprehensive management ability of traditional
centralized system cannot be compared with the scalability
of the large-scale distributed system. To improve the data
quality of stored and processed data and the QoS of mul-
titenanted data center network clouds, we want to adopt an
expanded SDN controller architecture [19]. &is study
identified the first harmonic integration of an optical flexible
hardware framework with a rapid application and virtual-
ized environment. On the highest part of the cloud server,
the powerful software-defined networking (SDN) central
controller makes it possible for the virtual machines of
computing and communication resources. To create a vir-
tual data center (VDC) and virtual network functions
(VNF), the profoundly programmable all-optical circuit and
packet-switched data plane can perform on-demand uni-
cast/multicast switch-over. &e authors illustrate realistic
intradata center networking with predictable latencies for
both unicast andmulticast commuters, as well as monitoring
and database migration scenarios, all of which are enabled by
the network function virtualization (NFV) component [20].
&is study presents a unique architecture for spatial or-
chestrating of network-intensive software applications that
are tuned for high service quality. &is design includes a
global cluster manager for software-defined data centers
(SDDCs), a runtime QoS monitoring system, and a QoS
modeller and decision-maker for automation tool utility
coordination. &e developed software automatically selects
the optimum spatially accessible computational resources
inside the SDDC based on the software component’s provided
QoS model. &is design is event driven since the services are
launched and destroyed in real time for each usage event [21].

3.1. SDDC and OpenFlow. &e SDDC architecture is shown
in Figure 1. &e network is divided into three layers: the
application layer, the control layer, and the infrastructure
layer. &e control layer centrally manages and controls the
infrastructure layer through the southbound interface, such
as the OpenFlow protocol, while the application layer uses
the northbound interface [22]. &e interaction with the
control layer is implemented. In contrast to traditional
network distributed control, SDDC extracts the control
system of each network device and uses it as the controller,
with the network device only acting as a simple forwarding
device. &e controller formulates the forwarding rules to
achieve the control and forwarding separation [18], as shown
in Figure 1.

As one of the available southbound interfaces in SDDC
implementation, OpenFlow has been widely supported by
the industry. &e structure of the OpenFlow switch is

Mobile Information Systems 3

composed of three parts: flow table (flow table), secure
channel: road (secure channel 1), and OpenFlow protocol
(OpenFlow protocol I), as shown in Figure 2. &e flow table
is the forwarding rule of the switch, and the secure channel is
the connection between the OpenFlow switch and the
OpenFlow protocol [23]. &e interface of the controller, the
switch, and the controller exchange data through the
OpenFlow protocol. One controller can be connected to
multiple OpenFlow switches.

3.2. Northbound Interface of SDDC Controller. &e north-
bound interface is the interface provided by the controller to
other devices for access and management. Although the
formulation of the northbound interface scheme and pro-
tocol is a hot issue in the current SDDC field, a unified
standard has not yet been formed. In general, numerous
open-source controllers on the one hand, and the classifi-
cation framework on the other, promote the development of
the current SDDC northbound interface. Different standards
organizations have standardized and defined the north-
bound interface protocol [24]. NETCONF protocol, YANG
data model, RESTful protocol, and RESTCONF protocol are
the four main northbound interface protocols currently in
use. ODL, for instance, uses the YANG data model, while
SDDC open-source controllers such as Floodlight and Ryu
all use REST-based interfaces. &is study partly adopts the
REST method when formulating the communication
method between the controller and the management system
[25].

&e concept of representational state transfer (REST)
was first proposed by Fielding. &e main objective is to
understand and evaluate the architecture design of network-
based application software while complying with the ar-
chitectural principle [26]. &e RESTful architecture is de-
rived from a powerful, high-performance, and suitable
communication architecture. Each URI represents a re-
source in the RESTful architecture, and the client com-
municates with the server-side resource using the HTTP
protocol. Any text, image, song, or online service that can be
represented by a URI is considered a resource. &e URI
requires the use of a logical identifier instead of a physical
identifier. Taking the northbound interface in Ryu as an

example, “/stats/flow/1” is a logical identifier, which means
obtaining the switch flow table with a depository participant
identity (DPID) of 1 instead of using “/stats”/flow/1.html” as
such physical identifiers. In the HTTP protocol, GET, POST,
PUT, and DELETE are used to describe the operation mode
of resources.&ey correspond to the basic operations of four
different types of resources: GET is for getting, POST is for
adding or updating, PUT is for updating, and DELETE is for
deleting [27]. For example, in Ryu, “GET http://api.ryu.com/
stats/flow/1“ is used to query or get the switch flow table,
then “POST http://api.ryu.com/stats/flow/1” is used, and the
flow table information is added to the body of the request to
create the flow table. &e same is true for PUTand DELETE,
but considering that some browsers do not support these
two methods, POST is sometimes used instead. For example,
in OpenStack, the POST method is used to delete a virtual
machine instead of DELETE.

3.3. OpenStack Architecture. &e main components of
OpenStack include Swift, Keystone, Nova, Neutron, Cinder,
and Glance, which correspond to object storage, identity,
compute, network, block storage, and image functions, re-
spectively. Figure 3 shows the roles of Horizon and Keystone in
the OpenStack stack. Horizon’s Dashboard, which serves as the
system’s browser entry point, has a W-curve-based graphical
interface that makes navigation simple [28]. Users can use the
dashboard to control the system’s computing, storage, and
network resources, as well as to operate other components of
the system. Keystone controls user information and completes
each module’s authentication, as shown by the dotted line in
the diagram. &e solid line in the figure represents the core
component of OpenStack that ensures its security.

3.4. Server-Side and Front-End Development Technologies

3.4.1. Node.js and Express. Node is a server-side JavaScript
environment based on Google’s V8 engine. Both the Node
and V8 engines are implemented in C and C++ and are
positioned for high performance and low memory con-
sumption. &e difference is that the V8 engine mainly serves
JavaScript scripts on the browser, while the Node is aimed at
the background server process. Its main features are as
follows:

Flow Table

Flow Ttable

Openflow Switch

Openflow
Protocol

SSL

Figure 2: OpenFlow switch structure.

Business Applications

Internet service

OpenFlow

API

Infrastructure layer

Control layer

Application layer

Figure 1: Software-defined network architecture.

4 Mobile Information Systems

http://api.ryu.com/stats/flow/1
http://api.ryu.com/stats/flow/1
http://api.ryu.com/stats/flow/1

(1) Asynchronous nonblocking single-threaded I/O.
Because JavaScript is a single thread, unlike other
server-side languages, the Node’s processing of
concurrent business logic does not depend on
multithreading but instead uses an asynchronous I/
O event model.

(2) &e event front end responds to the user interaction
mechanism, and JavaScript uses the event-driven
mechanism. When a user interacts with an HTML
element, an event is triggered, and the event drives
the corresponding function to process information
[29]. External requests will be put in the processing
queue after the server-side Node introduces the
event mechanism. &e Node will run the callback
code corresponding to the event when an event with
a state change is recognized, such as the completion
of file reading.

(3) &e system is compatible with multi platform nodes,
and the project source code currently running on
Linux and Ubuntu can be ported and deployed
across platforms without any modification. &e
project in this article is developed on the Windows
platform and deployed on the Ubuntu platform
without any additional porting effort.

Express is a lean and flexible Node and is a W-web
program framework. Express, which is based on the Node,
provides the fundamental functions required by W-curve
applications. Express is also an MVC (model view con-
troller) pattern framework, with features such as routing and
template engine [30]. In MVC,M stands for model, V stands
for view, and C stands for controller. Figure 4 shows the
relationship between the three.&e view is a template engine
such as Jade or EJS, and the controller is the routing
mechanism. &e model includes multiple Node compo-
nents, such as a database or a developer-defined module.

3.4.2. Communication between Web Front End and Server.
(1) AJAX.&e concept of asynchronous JavaScript and XML
technology (asynchronous JavaScript, XML, and AJAX) was
first proposed by Garrett. AJAX allows web applications to
send and receive data from the server asynchronously in the

background and dynamically change page content without
reloading the entire page by separating the data exchange
layer from the presentation layer. In the procedure, XML can
be replaced with the JSON data format, which not only
reduces the amount of data but also makes it easier to parse
with JavaScript [31].

&e comparison between AJAX and the traditional
model is shown in Figure 5. In the traditional web appli-
cation model, the server returns the entire web page’s HTML
and CSS data, and the browser refreshes the entire web page
based on the response [32]. In contrast to the traditional
model, in the AJAX working model, the browser commu-
nicates with the background server by asserting JavaScript
scripts. At this time, the server returns XML data, HTML
content, or JavaScript data, rather than the entire web page,
which is then processed by JavaScript. &e script updates the
local interface on the web page. AJAX not only reduces the
burden on the server but also allows users to avoid expe-
riencing problems caused by frequently refreshing web pages
[33].

(2) Socket IO. Web applications that required two-way
communication between the client and the server had to
depend on HTTP polling to keep the information updated
before the advent of online socket. For example, instant
messaging and game applications have resulted in significant
increases in server and client overhead, as well as increased
network traffic [34]. Other improvement schemes such as
long polling and streaming essentially use AJAX methods to
simulate real-time effects and do not implement real real-
time technology. Furthermore, the HTTP protocol was not
designed for two-way communication in the first position.
&e WebSocket protocol is designed to replace HTTP as a
bidirectional communication protocol at the transport layer,
based on existing infrastructure such as proxying, filtering,
and authentication, as shown in Figure 6.

&e web socket communication model is like streaming
or long-distance communication. &e current state is
maintained once the connection is established, and data can
be pushed from the server to the client at any time thereafter.
However, the difference is that although they are all based on
TCP, after the connection is established, the data trans-
mission phase of WebSocket does not require the partici-
pation of the HTTP protocol. In the long connection mode,
the information sent by the server to the client has the
complete HTTP header information. &e data interaction of
WebSocket is complicated only during the first handshake,
and the transmission phase is pure WebSocket data flow.
WebSocket will inevitably cause compatibility issues on
different browsers due to the different support capabilities of
browsers for HTML5. Socket and IO were created to aid in
the development of programmers. Node is a socket, and the
socket is an IO of a Js real-time communication library that
loops various protocols, including WebSocket, and makes
them available to Node developers for real-time background
message push. Switch protocols are automatically based on
browser support socket, on the other hand.&e disadvantage
of IO is that it requires simultaneous use of the front end and
the server, and it cannot connect to other WebSocket
applications.

Keystone

Cinder

Nova Glance Swift

Neutron

Horizon

Figure 3: &e role of keystone and horizon in OpenStack.

Mobile Information Systems 5

&is research focuses on the software-defined data center
management system’s related technologies. &e architecture
of SDDC and the controller’s northbound interface are
explained first, accompanied by the OpenStack module
composition and the functions of Horizon and Keystone, as
well as their roles in themanagement system.&eNodeused in
the management system’s development is then discussed in

detail. In web front-end development, Js, RabbitMQmessage
queue, AJAX asynchronous communication, and socket are
used. &e SNMP protocol is used to monitor IO and devices.

4. System Structure Design

&e design of the software structure is the basis for the de-
velopment of the management system, and the realization of
business functions needs to be supported by a reasonable
software design. &is study first analyzes the requirements of
the management system of the data center and determines the
development language and corresponding modules [35].&en,
the three basic softwaremodules of themanagement system are
expounded in detail: the core schedulingmodule, the front-end
communication module, and the data processing module. &e
core scheduling module is responsible for user authentication
and scheduling of other modules. In response to user requests,
the data processing module is responsible for data collection,
processing, and persistence. &en, it designs and implements
two communicationmechanisms, RESTinterface, andmessage
queue of SDMS system. Finally, it introduces the programming
structure of the SDMS system, the component frame of the web
front-end, and the structure of the database.

4.1. SystemRequirements Analysis. Resource management is
an important means to ensure the reliable operation of the
data center. &e management system records the software-
defined data center in specific. &is improves the data
center’s availability and reliability while also reducing the
data center’s monitoring difficulty [36]. Some implemented
functions in the software-defined data center do not need to
be integrated into the management system because they are
implemented in the corresponding SDDC controller.

4.1.1. Resource Management. &e management system
needs to manage the resources in the data, including net-
work monitoring, link monitoring, configuration manage-
ment, asset management, and equipment monitoring.
Network monitoring includes real-time topology viewing,

User Interface

JavaScript

Web server

Data processing

Web server

Data processing

Server system Server system

Browser

User Interface

Browser

HTTP-
request

JavaScript data
HTML and

CSS data
HTTP-
request

Figure 5: AJAX working model and regular model.

Model

abstraction of the functionality of the
system application;

Provide methods and paths for using system
functions;

storage of data;
Notify relevant parts when data changes

View

Abstract data representation:
Represents data for a user:

Maintain consistency with Model
data;

Controller

Translate user input into system events;
Select based on user input and context

Appropriate display data

Status query

Amendment notice

Choose a view

user action

Modify status

Figure 4: MVC relationship diagram.
cl

ie
nt

establish connection

(HTTP upgrade)

two-way communication

establish and maintain a
connection

Either party closes the
connection

Disconnect

se
rv

er

Figure 6: &e communication process of WebSocket.

6 Mobile Information Systems

message notification, link information, and traffic infor-
mation. Link monitoring can view the bandwidth statistics
of each switch port, and the traffic usage of each core switch,
aggregation switch, and edge switch [37]. Configuration
management includes the configuration of routing algo-
rithms, server information, cluster information, and switch
information. Device monitoring can monitor server per-
formance parameters in the data center.

4.1.2. VDCMapping Process. In the case of considering only
the host failure, the reliability of VDC is defined as the
survival rate or reachability rate of VM in the worst case.&e
actual reliability of VDCJ after mapping should not be less
than rj, as shown in the following formula:

rj ≤
N

j

 − maxPj(n)

N
j

. (1)

Among them, Pj(n) represents VDC, the number of VMs
allocated to host n. According to formula (1), for VDC, the
maximum number of VMs allowed to be placed on a host is
shown in the following formula:

K � ⌊ Nj

 1 − rj ⌋. (2)

&e goal is to help InP improve the long-term average
return per unit time, which is defined by the following
formula:

maximizeR � lim
t⟶∞

R(t)

t
� lim

t⟶∞

j∈ j|t>tj

RjxjTj

t
. (3)

Based on the above requirements, this article selects
Node.js, which is compatible with Windows and Linux
platforms, as the development language. &e Node can not
only provide web services as a server but also meet various
functional requirements of data center management through
the expansion of modules. &e database selects the NoSQL
database MongoDB to cooperate with Node.js for JSON
structure data storage.

4.2. Structural Design of Management System (SDMS).
SDDC’s three-layer architecture includes an application layer,
control layer, and infrastructure layer. &e SDMS (software-
defined management system, also known as the software-
defined management system) system is mainly concerned
with the application layer. Ryu, the OpenStack and SDDC
controller, is at the control layer, while physical components
such as servers and switches are at the infrastructure layer.

&e express framework adopts the MVC design pattern,
which can make the software structure clearer. However, the
information interaction of the management system is rel-
atively complex, and the conventional MVC framework is
difficult to meet the requirements of data interaction.
&erefore, this study expands and redivides the functions of
MVC based on the actual needs and forms a data processing
module. &e front-end communication module is the
structure of the core scheduling module. &e detailed design
of each module is shown in Figure 7.

4.2.1. Data Processing Module. &e data processing module,
which is at the heart of the system’s data processing, reads
the data. It is then sent to the front-end communication
module for rendering and display, or it is returned to the
user directly. It monitors the data from the message queue
that needs to be saved and stores it in MongoDB after
processing.

4.2.2. Front-End Communication Module. Its component
includes data display on the web front-end. &e information
is embedded in the web template for rendering by the front-
end communication module, which then returns it to the
user’s browser for display. However, some data in the data
center are updated frequently and change in real time, such
as network node topology, traffic monitoring, and burst
error information. &e real-time performance of the data
will be greatly reduced if all the data are rendered by the
front-end communication module, but the SDMS system
will be heavily burdened. As a result, WebSocket is used in
the view to push data to the front end.WebSocket can realize
the function that the server actively pushes messages to the
front end. In this study, this function is implemented by the
socket of nodes [38, 39]. &e IO module is completed: &e
introduction of WebSocket also requires the occurrence of
certain processing capabilities in the web front end. &is
studymainly uses multiple third-party modules of JavaScript
to realize the function of dynamically modifying the content
of web pages.

4.2.3. Core Scheduling Module. &e core scheduling module
authenticates users and manages user permissions as the
general system’s manager. User requests initiate the oper-
ation of data processing modules, front-end communication
modules, and OpenStack and Ryu components.&emessage
queue RabbitMQ can distribute the information of the data
center control layer to the management system without
waiting for the processing result of the data to perform the
next task. Data will be correctly received and processed
because of RabbitMQ’s consumption mechanism.

Ryu OpenStack

Web interface other apps

message queue

logic moduleMongoDB

co
re

 sc
he

du
lin

g
m

od
ul

e

Socket.IO Communication
module

Figure 7: Structural design of SDMS management system.

Mobile Information Systems 7

&e entire system is located between the user and the
control components of the data center. &e SDMS system
needs to authenticate any external requests to ensure the
data center’s security. &e user must be notified of the data
center response using amechanism that is convenient for the
administrator. However, as a global control, this structure
also requires the SDMS system to have a very high load to
ensure the normal operation of the system. &e mechanism
of Node itself can ensure the operating efficiency of the
platform, and the introduction of the message queue Rab-
bitMQ can also relieve the load pressure to a certain extent.

5. Design and Implementation of Main
Functional Modules

According to the business function of the data center, the
SDMS system is divided into multiple functional modules
for design and implementation. &e web front-end
function module, which is based on the bootstrap
framework and combined with iQuery and D3, is aimed at
the PC side browser. Designing the data interaction be-
tween the front end and the backend of the web, the
presentation of the page frame, using Js and other third-
party JavaScript libraries, and the implementation in
combination with specific functions are provided in the
following sections. Network monitoring link detection is
one of four submodules in the data center resource
management function module. Configuration manage-
ment and asset management are responsible for the front-
end display and back-end data management, respectively.
User authentication uses the web page login control and
the 1 : 3 connection of ordinary data to verify the user’s
identity in combination. &e OpenStack Keystone module
implements HTTPS communication on the web front-end
to improve security. &e device monitoring module col-
lects CPU, memory, and network traffic data through the
SNMP agent installed on the server and transmits the
above data to the web front-end display through the
management system. A complete proxy for OpenStack
dashboard is designed and implemented after an analysis
of login, HTTP requests, and WebVNC workflow. So, the
dashboard can connect to the Internet through the
management system for users to access.

&e web front-end interface of the management system
is mainly designed for PC browsers. In the choice of a front-
end framework, this study adopts Bootstrap, combined with
jQuery and D3. To achieve various dynamic functions, Js,
data tables, and other third-party JavaScript function li-
braries are used.

5.1. Data Interaction. &e template rendering of the view on
the backend server-side makes up one part of web front-end
rendering. &e other part is browser-side real-time ren-
dering and JavaScript modification. &e view template en-
gine has the advantage of being able to separate the interface
from the data, which improves development efficiency.
Here, the default Jade template of the express is used. Real-
time rendering is for data messages that are not suitable for

rendering with a template engine in the background. &e
front-end can use the following two methods when ac-
quiring data:

5.1.1. Active Acquisition by the Front End. Actively obtained
data include traffic information, configuration information,
asset information, and log information. Because the traffic
information data are refreshed frequently and need to be
updated regularly, the front end can use the polling method.
To request data from the specified interface through the
HTTP GET method, jQuery is called to modify the DOM
node to dynamically add or delete the required content.
&e other items are controlled by the JavaScript function
window. &e on-load method is the jQuery function.
When the page is loaded, ready () uses the GETmethod to
request data from the corresponding interface. By
changing the type parameter, the ajax () function uses the
GET, POST, or DELETE method for asynchronous re-
quests using $.

5.1.2. Server-Side Push. Information such as topology
changes and error warnings is the main target of this
method. &e data’s most significant feature at present is the
randomness, in which it changes. &is is incompatible with
refreshing the entire page or using regular polling, so the
socket is used IO. When the page is loaded, the web front-
end will establish a socket with the server. &e data pushed
by the background are monitored by the IO connection.
&e page is partially refreshed when the listener receives
the data through the use of query. For the drawing of
topology, D3 is used in this study. &e specific imple-
mentation will be described in detail later in conjunction
with each module.

5.2.PageFrames. &e structure of the overall page includes
the left navigation bar, the upper user bar, and the main
content. &e specific structure is shown in Figure 8. &e
page template index date provides the code for the title,
navigation bar, and user control. After the user controls
the system login, the server additionally fills the user’s
name in the template and sends it to the browser after
rendering.

Usually, the active label in the navigation bar is marked
with class� “active” in HTML language, and it can also be
dynamically implemented using CSS styles or jQuery.
Considering that not only the active label needs to bemarked
but also the partial refresh of the main content according to
the user’s operation, the jQuery method is adopted.

To make all labels inactive, firstly, jQuery is used to select
all list label elements and listen for mouse click events, then
the “active” class is removed from all labels. &e title triggers
the jQuery function after the mouse clicks on the navigation
and then adds the label for the current mouse to click the
“active” class. Finally, using asynchronous communication,
the preset value of the corresponding label as well as the
corresponding body content is obtained.&e main code is as
follows:

8 Mobile Information Systems

//Select all tags and listen for click events
//Select all tags and listen for click event
S(“Ii”). Click (function ()
{
//Select the id currently clicked by the mouse
var target� $(this). attar (“id”);
if (target� undefined) return;
//Remove the currently active class tag
S (“. active”). remove Class(“active”);
//Add a class with a value of active to the selected tag.
S(this). add Class(“active”);
//page path corresponding to the label
var tar� urI[target];
//Get the content of the page through an asynchronous
method
S.get (tar, function (data)
{

//&e HTML tag added to the selected content, the id
is content

var content� S(“#content”);
//Clear the web page content corresponding to the

previous label
content. Empty (;
//Add the content corresponding to the current label
content. Append(data);

})
});

6. Conclusion

In the process of strengthening the campus culture’s con-
struction, medical colleges and universities are using the
network platforms to carry out various educational activities
by conducting vivid network education for students through
relevant media platforms. According to the school’s own data
center, relevant professional websites are launched, existing
teaching resources are updated, and more effective methods
are adopted to allow education to run through the entire

construction activities. On the online platform, students can
express their opinions and ideas about cultural construction
more directly, and teachers can gain a better understanding of
students’ ideological activities. Various online platforms can
help teachers with good moral character to answer questions
and solve the problems of students. &ese platforms cultivate
students’ ideological and moral aspects, making the Internet
at the center of cultural construction. &is study first analyzes
the current management and control requirements of soft-
ware-defined data centers (SDDCs) by using the express
framework of nodes. &e SDMS management system is
designed at the application layer of the SDDC architecture to
investigate the construction of campus culture at medical
colleges and universities. &e proposed approach aims to
cultivate a cultural environment at institutions across China
and around the globe in the future.

Data Availability

&e datasets used and analyzed during the current study are
available from the corresponding author upon reasonable
request.

Conflicts of Interest

&e authors declare that they have no conflicts of interest.

References

[1] J. J. Ahonen, “On qualitative modelling,” AI & Society, vol. 8,
no. 1, pp. 17–28, 1994.

[2] A. I. Avetisyan, R. Campbell, I. Gupta et al., “Open cirrus: a
global cloud computing testbed,” Computer, vol. 43, no. 4,
pp. 35–43, 2010.

[3] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba,
“PolicyCop: an autonomic QoS policy enforcement frame-
work for software defined networks,” in Proceedings of the
2013 IEEE SDN for Future Networks and Services (SDN4FNS),
pp. 1–7, Trento, Italy, November 2013.

[4] G. Berndtsson, M. Folkesson, and V. Kulyk, “Subjective
quality assessment of video conferences and telemeetings,” in
Proceedings of the 19th International Packet Video Workshop
(PV), pp. 25–30, IEEE, Munich-Garching, Germany, May
2012, Piscataway.

[5] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Com-
puting: a platform for internet of things and analytics,” in Big
Data and Internet of <ings: A Roadmap for Smart Envi-
ronments, N. Bessis and C. Dobre, Eds., Springer International
Publishing, Cham, pp. 169–186, 2014.

[6] C. Chiu, A Study of Application-Awareness in Software-De-
fined Data Center Networks, Louisiana State University, Baton
Rouge, Louisiana, 2017.

[7] DMTF, “Software-defined data center (SDDC) definition a
white paper from the osddc incubator,” pp. 1–22, 2014, https://
www.dmtf.org/sites/default/files/standards/documents/DSP-
IS0501_1.0.1a.pdf.

[8] A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa,
M. Vouk, and A. Rindos, “SDDC: a software defined data-
center experimental framework,” in Proceedings of the 2015
3rd International Conference on Future Internet of <ings and
Cloud, pp. 189–194, Rome, Italy, August 2015.

Title User control

Main content

N
av

ig
at

io
n

Ba
r

Figure 8: Web page layout.

Mobile Information Systems 9

https://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0501_1.0.1a.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0501_1.0.1a.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0501_1.0.1a.pdf

[9] Y. Zhang, X. Gong, Y. Hu, W. Wang, and X. Que, “SDNMP:
Enabling SDN management using traditional NMS,” in
Proceedings of the 2015 IEEE International Conference on
Communication Workshop (ICCW), pp. 357–362March 2017,
London, UK, June 2015.

[10] T. D. Warehouse and T. Common, IBM Tivoli Netcool/
OMNIbus V7. 2. 1 Delivers Improved Security, Enhanced
Process Control, Support for Windows IPv6, and Linux on
System z Platform Support, pp. 1–32, Springer, Wuzhen, 2008.

[11] M. Madan and M. Mathur, “Cloud network management
model A novel approach to manage cloud traffic,” Interna-
tional Journal of Cloud Computing: Services and Architecture
(IJCCSA), vol. 4, 2014.

[12] A. Bianco, R. Birke, F. G. Debele, and L. Giraudo, “SNMP
management in a distributed software router architecture,” in
Proceedings of the 2011 IEEE International Conference
Communications (ICC), pp. 1–5, Kyoto, Japan, June 2011.

[13] “Software-defined networking (SDN): Layers and architecture
terminology,” 2015, http://tools.ietf.org/html/rfc7426.

[14] T.-c. Chiueh, C.-C. Tu, Y.-C. Wang, P.-W. Wang, K.-W. Li,
and Y.-M. Huang, “Peregrine: An all-layer-2 container
computer network,” in Proceedings of the CLOUD 2012: 2012
IEEE 5th International Conference on Cloud Computing,
pp. 686–693, Honolulu, HI, USA, June 2012.

[15] P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim, and
D. Pinheiro, “Enhancing network management frameworks
with SDN-like control,” in Proceedings of the 2013 IFIP/IEEE
International Symposium on Integrated Network Management
(IM 2013), pp. 688–691, Ghent, Belgium, May. 2013.

[16] H. Li, X. Que, Y. Hu, X. Gong, and W. Wang, “An autonomic
management architecture for sdn-based multi-service network,”
in Proceedings of the 2013 IEEE Globecom Workshops (GC
Wkshps), pp. 830–835, IEEE, Atlanta, GA, USA, Dec. 2013.

[17] J. Li, Z. Zhao, and R. Li, “A machine learning-based intrusion
detection system for software-defined 5G network,” 2017,
https://arxiv.org/abs/1708.04571.

[18] A.-C. G. Anadiotis, L. Galluccio, S. Milardo, G. Morabito, and
S. Palazzo, “SD-WISE: a software-defined WIreless SEnsor
network,” 2017, https://arxiv.org/abs/1710.09147.

[19] H. Zhang, Na Liu, K. Long, J. Cheng, V. C. M. Leung, and
L. Hanzo, “Energy efficient subchannel and power allocation
for software-defined heterogeneous VLC and RF networks,”
IEEE Journal on Selected Areas in Communications, vol. 36,
no. 3, pp. 658–670, 2018.

[20] P. Kathiravelu, “Software-defined networking-based en-
hancements to data quality and QoS in multi-tenanted data
center clouds,” in Proceedings of the 2016 IEEE International
Conference on Cloud Engineering Workshop (IC2EW),
pp. 201–203, Berlin, Germany, April 2016.

[21] G. M. Saridis, S. Peng, Y. Yan et al., “Lightness: a function-
virtualizable software defined data center network with all-
optical circuit/packet switching,” Journal of Lightwave Tech-
nology, vol. 34, no. 7, pp. 1618–1627, 2016.

[22] U. Paščinski, J. Trnkoczy, V. Stankovski, M. Cigale, and
S. Gec, “QoS-aware orchestration of network intensive soft-
ware utilities within software defined data centres,” Journal of
Grid Computing, vol. 16, no. 1, pp. 85–112, 2018.

[23] S. Xu, X.-W. Wang, and M. Huang, “Software-defined next-
generation satellite networks: architecture, challenges, and
solutions,” IEEE Access, vol. 6, pp. 4027–4041, 2018.

[24] P. Giard, G. Sarkis, C. Leroux, C. &ibeault, and W. J. Gross,
“Low-latency software polar decoders,” Journal of Signal
Processing Systems, vol. 90, no. 5, pp. 761–775, 2018.

[25] H. Yao, T. Mai, X. Xu, P. Zhang, M. Li, and Y. Liu, “Net-
workAI: an intelligent network architecture for self-learning
control strategies in software defined networks,” IEEE Internet
of <ings Journal, vol. 5, no. 6, pp. 4319–4327, 2018.

[26] A. Marotta, K. Kondepu, D. Cassioli, C. Antonelli,
L. M. Correia, and L. Valcarenghi, “Software defined 5G
converged access as a viable techno-economic solution,” in
Proceedings of the 2018 Optical Fiber Communication Con-
ference and exposition (OFC), Beijing, 2018.

[27] D. Huang, A. Chowdhary, and S. Pisharody, Software-Defined
Networking and Security, IOPs, Linjiang, 2018.

[28] F. Rebecchi, J. Boite, P.-A. Nardin, M. Bouet, and V. Conan,
“DDoS protection with stateful software-defined networking,”
International Journal of Network Management, vol. 29, no. 1,
Article ID e2042, 2019.

[29] J. Su, R. Xu, S. M. Yu, B. W. Wang, and J. Wang, “Redundant
rule detection for software-defined networking,” KSII Trans-
actions on Internet and Information Systems, vol. 14, no. 6, 2020.

[30] E. Shenkman, M. Hurt, W. Hogan et al., “OneFlorida clinical
research consortium: Linking A clinical and translational science
institute with A community-based distributive medical educa-
tionmodel,”AcademicMedicine, vol. 93, no. 3, pp. 451–455, 2017.

[31] S. Y. Guraya, M. F. Al-Qahtani, B. Bilal, S. S. Guraya, and
H. Almaramhy, “Comparing the extent and pattern of use of
social networking sites bymedical and non-medical university
students: A multi-center study,” Psychology Research and
Behavior Management, vol. 12, pp. 575–584, 2019.

[32] T. Li and Z. Ye, “Campus personal health information
reporting system under the covid-19 epidemic: Design and
development,” DEStech Transactions on Social Science, Edu-
cation and Human Science, vol. 22, 2020.

[33] Z. Zhou, X. Lu, C. Peng et al., “Research on the optimization
of the system for the identification, supervision and privacy
protection of targeted poverty alleviation for poverty-stricken
college students based on big data technology,” in Proceedings
of the 2020 International Conference on Computer Engineering
and Application (ICCEA), Guangzhou, China, March 2020.

[34] X. Zhang, “Design and implementation of university asset
management system based on discriminant analysis and
decision tree model,” in Proceedings of the 2021 4th Inter-
national Conference on Information Systems and Computer
Aided Education, Dalian, China, September 2021.

[35] F. Wang and Q. Hu, “Design and implementation of digital
platform of academic test in colleges and universities,” Journal of
Physics: Conference Series, vol.1881, no. 3, Article ID 032055, 2021.

[36] C. Liu, Y. Li, X. Zhao, X. Ren, and M. Tang, “Design and
implementation of college students’ psychological prediction
system based on data mining,” in Proceedings of the 2021 4th
International Conference on Information Systems and Com-
puter Aided Education, Dalian, China, September 2021.

[37] C. Li, D. Ramachandran, K. Rajagopal, S. Jafari, and Y. Liu,
“Predicting tipping points in chaotic maps with period-
doubling bifurcations,” Complexity, vol. 2021, Article ID
9927607, 10 pages, 2021.

[38] A. Sadiq, R. A. Khan, B. Mahmood, and M. F. Ashraf,
“Assessing institutional preparedness of Pakistani medical
schools towards curriculum change using MORC,” Journal of
Business and Social Review in Emerging Economies, vol. 7,
no. 3, pp. 687–698, 2021.

[39] X. Wang, J. Li, H. Chen, and J. Li, “Development and
implementation of counselor work management information
system based on MySQL and data center,” in Proceedings of
the 2021 6th International Conference on Communication and
Electronics Systems (ICCES), Coimbatre, India, July 2021.

10 Mobile Information Systems

http://tools.ietf.org/html/rfc7426
https://arxiv.org/abs/1708.04571
https://arxiv.org/abs/1710.09147

