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With the introduction of 4G/5G Internet and the increase in the number of users, the malicious cyberattacks on computing
devices have been increased making them vulnerable to external threats. High availability windows servers are designed to ensure
delivery of consistent services such as business activities and e-services to their customers without any interruption. At the same
time, a cyberattack on any of the clustered computer can put servers and customer devices in danger. Amemory dumpmechanism
can capture the contents of memory in the event of a system or device crash such as corrupted �les, damaged hardware, or
irregular CPU power consumption. In this paper, we present a smart memory forensics scheme to recognize malicious attacks
over high availability servers by capturing the memory dump of suspicious processes in the form of RGB visual images. Second,
the local and global properties of malware images are captured using local binary patterns (LBP) and gray-level co-occurrence
matrices (GLCM). A state-of-the-art t-distributed stochastic neighbor embedding scheme (t-SNE) is applied to reduce data
dimensionality and improve the detection time of unknownmalwares and their variants. An optimized CNNmodel is designed to
predict malicious �les harming servers or user devices. �roughout this study, we employed public data set of 4294 malicious
samples coveringmalware variants and benign executables. A baseline is prepared to compare the performance of proposedmodel
with state-of-the-art malware detection methods.�e combined LBP+GLCM feature extraction along with t-SNE dimensionality
reduction scheme further improved the detection accuracy by 98%, whereas the detection time is also increased by 73x.�e overall
performance shows that memory forensics is more e�ective for malware detection in terms accuracy and response time.

1. Introduction

Due to extreme and rapid development of Internet tech-
nology, the e-business and e-services has become a key part
of daily life. Meanwhile, malicious software also known as
malwares keep evolving and posing a security threat to the
user devices. To overcome the security threats, the

establishment of a fast and secure malware detection system
is essential for high services of services. �e well-known and
commonly used malware detection methods rely on sig-
natures, which use the sequences of binary patterns to
uniquely identify malwares [1]. Antivirus programs detect
malwares of similar behavior by matching malicious sig-
natures of the scanning �les. Signature-based malware
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detection methods generally provides outstanding accuracy
with fewer false positives. When a new malicious program
enters a victims’ device, the extraction process takes time to
extract and read signatures leaving connected devices vul-
nerable for some time. Researchers have also suggested
heuristic measures to detect suspicious files that could harm
computer devices in order to tackle such vulnerabilities [2].
Heuristic methods were developed to detect unknown
malwares by preserving suspicious program features. For
instance, if an unknown packer is being used to protect
detection, it could be listed as a suspicious software
attempting to hide or modify its original signatures. Such
methods have the potential to detect new unknown mal-
wares, but their false positive rate is relatively high. Since
many commercial software developers use packers or similar
tools to stop hackers from breaching or manipulating their
products for free. Researchers have been developed many
strategies to overcome limitations of malware detection such
as static, dynamic, and hybrid strategies [3].

Static methods can easily recognize from other detection
techniques since they need less malware detection time and
do not require real-time malware execution. -ese methods
typically analyze various aspects of suspicious programs such
as sequences, byte patterns, opcode, API calls, and other
relevant properties from portable executables (PEs) [4]. -ese
aspects of suspicious program are collectively referred as
signature, which is an algorithm or unique hash used to
distinguish one malware from another such as malware
families. As a result, no real-time execution or computational
resource is required. However, static methods have some
shortcomings such as code obfuscation or encryption, which
can easily deceive malware detection strategy [5]. -erefore,
an alternative and faster strategy is essential to detect ob-
fuscated and encrypted malwares with a higher true positive.

Dynamic methods generate similar outcomes regardless
of whether malware binaries are obfuscated or encrypted.
Rather than examining the underlying features of a mali-
cious code, a dynamic approach depends on examining
discriminative behavior caused by real-time program exe-
cution. Dynamic methods generally execute programs in
virtual environments such as sandboxes or virtual machines
that are designed to monitor malware behavior. To be more
specific, a dynamic method examines function calls to un-
cover suspicious anomalies in order to detect malware [6].
However, these malware activities are further classified into
several observation strategies such as function parameter
analysis, function call analysis, information workflow
analysis, trace and tack analysis, and dynamic visual analysis
of malware execution. Apart from that, numerous activity
analyzer tools are also accessible online for dynamic analysis
of malware binaries and executables. -ese activity analyzer
tools include TT analyzer, CW Sandbox, and Anubis, etc.
Dynamic methods detect malware more effectively with
fewer false positives, but extracting dynamic malware
characteristics is more complicated and more time con-
suming than static analysis. -erefore, many researchers
have developed hybrid strategies to overcome the short-
comings of static and dynamic methods to generate high
positives ratios in small amount of time.

Given the drawbacks of static and hybrid methods,
cybersecurity businesses are shifting toward artificial intel-
ligence [7]. Artificial intelligence algorithms are proven to be
more successful in assessing malware patterns than static or
dynamic methods. An AI algorithm uses smart visual rep-
resentation to capture malware characteristics using DWT
(discrete wavelet transform), SURF (speeded up robust
feature), GIST, and SIFT descriptors. -e DWT and GIST
descriptors can be used to capture global characteristics such
as structural patterns, while the SURF and SIFT descriptors
can be employed to capture local information of malicious
binaries. Few studies have adopted a combined approach to
capture both local and global characteristics in order to
enhance malware detection methods [8]. However, the
cybercriminals are actively creating new malwares variants
making their detection more challenging that may require
new strategies to overcome security threats [9].

Recently, memory forensics such as examining the
volatile memory has shown to be a more effective compared
to static, dynamic, and signature-based malware detection
methods. Memory forensic-based malware detection is
determined into two phases. -e first phase involves the
transformation of virtual or physical memory data into
memory dump files, while the second phase involves nu-
merous analyzers to uncover anomalies or malicious be-
havior caused by malware execution. Lastly, the smart
techniques like artificial intelligence are used to detect actual
malware binaries [5]. According to Dai et al. [10], a malware
executable in a volatile memory is most likely to be un-
covered compared to mapping malicious signatures. Al-
though some malwares can disguise themselves using
encryption or packing, but eventually exposes their vital
information such as code and data segmentation during
real-time process execution. As a result, memory forensics
can detect malware by examining victims’ computer RAM.
Furthermore, latest malware variants can escape detection
by eradicating the evidence of their existence that may
overshadowed by traditional detection methods. Fortu-
nately, such malwares stay in volatile memory until mali-
cious task is completed. A memory utilization strategy can
effectively detect these malwares by obtaining memory
dumps. Given the capability and flexibility of memory fo-
rensics, we can transform volatile memory binary data into
RBG images as a source of information from dumped
processes. -e feature descriptors can further extract dis-
criminating information for faster detection using artificial
intelligence algorithms.-emain contributions of this paper
are listed as follows:

(i) A malware detection architecture is proposed for
windows devices that applies memory forensics to
capture discriminating behavior of malware and
benign samples instead of malware signatures,
which can be obfuscated and encrypted to evade
detection.

(ii) We used RGBs of different resolutions such as
224× 224 and 300× 300 to capture the effects of
memory dumps on malware samples. Few malware
binaries consist of small resolutions compared to
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others that may not capture sufficient discrimi-
nating information. Instead, we used different
resolutions and 3-channel RGB images to extract
malicious features from both malware and benign
samples.

(iii) We used combined LBP+GLCM descriptors for
feature extraction instead of single image descriptor.
LBP has the ability to recognize unchanging pitch
and variation against monotonic grayscale contrast
with great precision. -e smoothness, softness, and
roughness characteristics of image can be used to
measure the textural variations. Alternatively, the
GLCM captures the spatial distributions of pixels
that holds textual information. It further exploits
degree of correlation between two adjacent gray
pixels separated by distance at certain position to
measure discrimination of global characteristics.
Lastly, both local and global characteristics are fused
to capture both types of textural features.

(iv) We further applied t-SNE dimensionality reduction
and visualization to transform high-dimensional
and complex features into low-dimensional space.
Since LBP and GLCM generate large number of
features from a single malware image.-erefore, the
artificial intelligence algorithms require an extensive
amount of time over data training and prediction,
which is improved by t-SNE algorithm.

(v) An optimized fine-tuned CNN model is ensembled
for a public data set of 4294 malware + benign ex-
ecutables to perform malware detection and variant
classification. -e proposed model is further com-
pared to state-of-the-art models and related works
to evaluate performance.

-is study is structured as follows: Section 2 describes a
literature review on malware detection strategies. Section 3
describes the overall architecture of malware detection
covering data selection, feature analysis, extraction methods,
and evaluation matrices. Section 4 examines experimental
findings and state-of-the-art comparison. Section 5 con-
cludes this research and outlines the future works.

2. Literature Review

Since the 5G network has been deployed worldwide, the
demands for high-performance service delivery are rapidly
increasing.-e global Internet traffic via Internet devices has
been grown to 54.8% since the first quarter of 2017 [11]. -e
number of malicious attacks is expected to grow further in
future as the demand for Internet devices expands, which is
also one of the major tasks in future Internet of things. Many
studies on malware detection have been undertaken, but the
malware detection via image processing has proven to be
more effective. In this approach, the meta information of
malware is retrieved from executables or binaries and then
transformed into grayscale or color images to achieve
predictive malware detection.-is section discusses the pros
and cons of some of these approaches.

Han et al. [12] used graph theory and information en-
tropy-based associations to find distinguishing malware
characteristics. Hidden patterns were first identified and
transformed into grayscale images. Later, entropy graphs
were generated to expose potential malware families. -e
empirical analysis of 1000 malware samples achieved around
97.9% overall accuracy. Barath et al. [13] further extracted
textural patterns from malware images and conduct PCA
assessment on the collected features. -e principal com-
ponents were then loaded into a nearest neighbor classifier
to perform detection. -e empirical analysis of 10,000
samples produced an average accuracy of 96% on eight
malware families. Xiaofang et al. [14] retrieved localized
hashing patterns frommalware images using SIFTdescriptor
and achieved n accuracy of 85% on a data set of 8410
malware samples consisting of 25 families. Although, the
SURF descriptor has proven to be robust than the SIFT
descriptor while extracting local textual characteristics, but
SURF is not resilient to pixel rotation and illumination.

Several studies exploited the capabilities of deep neural
networks to overcome the limitations of simple machine
learning methods. For instance, Bozkir et al. [15] analyzed
malware and benign files using several neural network
models. In the beginning, raw malware and benign binaries
were collected from executables and transformed into col-
ored images. Later, a public data set of 12,394 malicious files
was partitioned into 8750 train and 3644 test images for
performance analysis. -e empirical study achieved 97.48%
malware detection accuracy on the “DenseNet” framework.
Natraj et al. [16] extracted local binary patterns from visual
malwares using the GIST descriptor. First, malware binaries
were transformed to grayscale images, and afterward clas-
sification algorithms were employed to analyze extracted
patterns. -eir proposed model obtained 97% accuracy on a
data set of 9339 malware samples from 25 families.

Malware attacks are not only affectingWindows PCs but
also the Internet and industries. As a result, Ullah et al. [17]
developed a CNN model to identify malware attacks on
industries over the Internet. For visualization, the Internet
malware binaries were first transformed into colored images.
Hemalatha et al. [18] proposed an efficient DenseNet neural
network model for malware detection based on grayscale
images. Experimental evaluation of four public malware data
sets Malimg [16], BIG-2015 [19], MaleVis [15], and Malicia
[20] produces 98.23%, 98.46%, 98.21%, and 89.48%, re-
spectively. Multi neural networks can optimize the perfor-
mance of single neural network [21]. Ullah et al. [22] used a
hybrid multimodel image representation for malware clas-
sification to improve prediction time and accuracy. -eir
multimodel approach able to produce 98% to 99.4% accu-
racy on two different malware data sets. Federated learning
allows devices to combinedly learned and scared prediction
model. Rey et al. [23] federated learning approach able to
produce 99.92% accuracy on known devices and 98.59%
accuracy on unknown devices, respectively.

Memory forensic has recently gained more popularity
for malware detection. Dai et al. [24] used HOG descriptor
to extract features based on memory dumps. -e extracted
features were then used to train deep neural networks on
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grayscale images. Grayscale images greater than 4MB were
resized to 4096 pixel width using the bicubic interpolation
method. As per the empirical study, the accuracy perfor-
mance was improved by 96.7% on malware detection. In
another study, Bozkir et al. [25] employed memory forensics
and computer vision to detect malware and their variants.
Instead of grayscale images with limited characteristics, a
malware data set consisting of 4294 colored images is
prepared with public access. -ey further used UMAP
feature reduction strategy and GIST+HOG descriptors to
improve detection accuracy on different predictive models.
-e empirical evaluation achieved up to 96.39% detection
accuracy with an average detection time of 3.56 seconds.
HOG is a well-studied descriptor that performs well on
human-based detection but also sensitive toward image
rotation as it uses only one direction for each image pixel. It
is quite possible that feature extraction process may lose
some discriminating information as many malwares are
obfuscated or encrypted to avoid detection. In our study, we
use LBP that uses eight directions for each pixel. -erefore,
LBP can effectively map discriminating behavior regardless
of obfuscation or encryption. Furthermore, GLCM extract
spatial relationship among different pairs of pixels. Hence, a
smart memory forensic approach with combined
LBP+GLCM descriptor and t-SNE dimensionality reduc-
tion can overcome such limitations.

3. Malware Detection via Memory Forensics for
Windows Devices

-emalware detection architecture for windows is designed
to examine memory dump files for the identification of
potential malware from interconnected user devices. -e
memory dump files can capture malware anomalies and
execution process in real time. As a result, we can identify
the discriminating behavior of malware and benign exe-
cutables more efficiently. -is section briefly explains the
data set and descriptors along with dimension reduction
strategy used to implement malware detection architecture.
Figure 1 presents the overall structure of malware detection
framework based onmemory forensics. In the first phase, we
focused on generating dump files from volatile memory of
malicious process using a virtual machine. -e second phase
focused on binary file representation of malware into
224× 224 and 300× 300-dimensional RGB images. Next,
feature extraction process is carried out using LBP and
GLCM descriptors to extract discriminating characteristics
of malware and benign samples. Malware visual images
consist of both local and global textures. -e local features
refer to those patterns that depict distinct structure such as
an edge, a point, or a small patch. Alternatively, the global
features refer to those patterns associated to the whole image
shape or structure. Since a single descriptor can only capture
the limited information. -erefore, a feature fusion strategy
can facilitate neural network to learn image features from
their rich internal and external information. -e resulting
feature set can effectively classify both malware and benign
samples regardless of computational complexity and ob-
fuscation. Next, the t-SNE dimensional reduction and data

visualization are also applied to reduce high-dimensional
data into low-dimensional feature space. Lastly, several
state-of-the-art algorithms were utilized to evaluate malware
detection and classification performance. In this study, we
utilized memory forensics instead of traditional signature-
based methods. Memory forensics analyze the process under
execution rather than matching signature of malicious
structure or code of malware executable. -e memory fo-
rensic process transforms physical memory data into dump
files to uncover anomalies or malicious behavior of a
malware sample throughout its execution. Any malware in a
volatile memory is most likely to be exposed compared to
signature matching. Since many malwares disguise them-
selves via encryption or packing. However, such malwares
expose their vital information such as code and data seg-
mentation during real-time execution. As a result, memory
forensic process detects malware by examining RAM data of
a computer or user device. -e advanced malware variants
can avoid detection by erasing traces of their activity, en-
abling them to escape detection from traditional methods.
-ese malwares remain in volatile memory until the mali-
cious process is executed. A memory forensic method can
detect such malwares by obtaining memory dumps of ter-
minated processes.

3.1. Dumpware10Data set . Several public malware data sets
have been widely studied in the literature to detect and
validate different types of malwares and their variants. Al-
though these data sets have greatly improved malware de-
tection strategies, they are restricted by two fundamental
limitations. -e first limitation is the unavailability of
portable executables due to security concerns of data
sharing. -e second limitation is the lack of benign samples,
which is essential for discriminating between actual malware
and benign samples apart from malware variants. -e
negative samples are essential in classification tasks. For
instance, benign samples serve as negative samples in
malware detection process; alternatively, malware classifi-
cation without benign samples is regarded as a close-set
problem [25]. -e primary objective of our study is to
develop a classification model capable of identifying sus-
picious processes whether malicious or not. -is study fo-
cuses on employing memory forensics to identify suspicious
processes, which may simply overlook by traditional sig-
nature-based malware detection techniques possibility due
to obfuscation and encryption. As a solution, we selected a
public malware data set Dumpware10, which is entirely
based on memory forensics and contains 3686 malware and
608 benign samples. We further partitioned the data set into
80% train, 20% validation, and 20% test sets for malware
detection and classification.

3.2. LBPFeatureDescriptor. -e LBP descriptor is one of the
simplest and most reliable methods for extracting local
features from textural images such as malware representa-
tion. LBP has the ability to recognize grayscale micro-
patterns from visual images with great precision [26]. In
computer vision, the texture properties of an image are used
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to characterize the degree of variations or spatial changes in
textual patterns. -e smoothness, direction, softness, and
roughness characteristics of each surface can be used to
measure textural variations. Such patterns required a strong
descriptor to extract all distinctive features. We adopt the
LBP descriptor to capture the unchanging pitch or variations
produced by irregular malware patterns.

-e LBP descriptor measures intensity in a digital
image using a threshold value for adjacent pixels. Following
that, LBP further assigns a decimal label to that threshold
pixel. Figure 2 presents a 3 × 3-pixel block to demonstrate
how the LBP descriptor extracts discriminating charac-
teristics from a malware image. A 3× 3-pixel block is
chosen to examine each pixel intensity, with the central
pixel of the block acting as the threshold value for
neighboring pixels, i.e., 130. Subsequently, all pixels in the
block with values greater than the threshold have been
assigned a bit value of 1, while all remaining pixels in the
block with values less than the threshold have been
assigned a bit value of 0. In this way, each neighboring pixel
has an assigned value to it is either 0 or 1. Next, the LBP
descriptor locates all values clockwise other than the central

pixel and returns an 8 bit binary number, which in our case
is 10101101. Lastly, the central pixel’s 8 bit value is
transformed to a decimal number, which is 173 for the
binary number 10101101 used in this example. Once, labels
are assigned to pixels, the final feature set is calculated from
pixel values in the form of a histogram.

-e LBP descriptor has proven to be very successful in
visual malware analysis; however, resultant images may have
large dimensions. As a result, the characteristic of the larger
structures cannot be retrieved using only 3× 3-pixel block.
To overcome this problem, we used LBP descriptor with
different radiuses depending on the size of malware images.
-e final LBP feature set was constructed and merged after
calculating histograms for each radius. -e computational
execution of LBP descriptor is further detailed in the form of
four-step procedure:

(i) For each pixel on the x- and the y-axes, select
surrounding pixels P within a defined radius R.

(ii) Determine difference in the intensity between the
current pixel on the x and y axes and the sur-
rounding pixels P.

RGB Visual Representation to Feature Extraction

Windows Devices over Internet

Malware Attacker User Device

Volatile Memory Dump Collection

Malicious Code

Analyze BehaviorDump Process

Memory Dump

3-Channel RGB Image Conversion

224 × 224
300 × 300

LBP
Local Binary Pattern

GLCM
Co-occurrence Matrix

Feature Extraction via LBP and GLCM Descriptors

Feature Selection to Malware Detection

t-SNE Visualization & Feature SelectionMalware Detection via Optimized CNN Model

Malware

Figure 1: An overall malware detection framework for windows devices via smart memory forensics.
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(iii) Choose a threshold value for the surrounding pixels
P and use intensity difference to assign 0 and 1 as
single bit values.

(iv) Transform the bit sequence of the surrounding
pixels P to decimal values and replace the original
intensity value of current pixel with the computed
decimal value.

-e LBP descriptor decimal value for each pixel is
computed as follows:

LBP(P, R) � 
P−1

P�0
f gp − gc 2p

. (1)

Here gc and gp are the intensity differences between the
current pixel and its surrounding pixels, whereas P is the
number of surrounding pixels for a given radius R.

3.3. GLCM Feature Descriptor. Haralick et al. [27] proposed
the gray level co-occurrence matrix (GLCM) descriptor for
extracting global features from digital images. -e GLCM
descriptor primarily built on the concept that the spatial
distribution of pixels holds the textural information of the
image. GLCM exploits a co-occurrence matrix to estimate
the joint probability distribution of two gray pixels separated
by distance d at certain position in the image. GLCM em-
ploys three important aspects: direction (θ), variation am-
plitude (d), and neighboring interval or gray level to extract
integrated information from a grayscale image. -e direc-
tion (θ) refers to the change in grayscale angle, which in-
cludes the primary direction of texture changes such as 0o,
45o, 90o, and 135o among others. -e offset (d) is the dis-
tance between two pixels in a grayscale image, whereas two
adjacent pixels indicate the gray level orientation and offset
value of pixels equal to 1. -e gray-level orientation of pixels
indicates maximum grayscale value plus 1, which is used to
signify grayscale compression. Figure 3 demonstrates the
feature extraction process of an RBG image with offset value
1 in the direction of 0 degree and gray level 3.-e first step in
the GLCM descriptor is to transform an RGB-colored image
to grayscale in order to apply compression. -e grayscale
compression is useful for reducing matrix dimensions and
feature extraction time for larger images. In order to gen-
erate co-occurrence matrix, pixel pairs were selected on
position i and j for each element in thematrix.-e initial co-
occurrence value for a matching pair is 1 which is incre-
mented by 1 when the next identical matching pair is

recognized. -e numbers are then multiplied by 2 to re-
construct the co-occurrence matrix in the opposite direc-
tion.-eGLCMdescriptor offers a significant number of co-
occurrence matrices that cannot be used as a final feature set.
As a result, we simply employed four co-occurrence matrix
properties to build the final feature. -e selected GLCM
properties of the visual images are energy, contrast, corre-
lation, and homogeneity indicators. -e final GLCM feature
set consists of 20 columns, with each indicator comprising of
5 directions, resulting in 4 indicators × 5 directions.

LBP andGLCMdescriptors are quite effective in terms of
malware classification with few minor limitations. For in-
stance, LBP is not insensitive to pixel rotations. -e size of
feature set increases the number of neighbors, which may
also increases the computational complexity of descriptor.
-e structural information of LBP is also restricted as it only
captures the pixel variations. Alternatively, the GLCM de-
scriptor characterizes textural patterns by assessing the
occurrences of pixel pairs in specific spatial relationship. A
large number of computational resources are required as
multiple matrices are computed to identify pixel pairs.
Furthermore, GLCM features are also not insensitive to pixel
rotation as well as changes in textual scaling. Although
computational complexity is a significant issue when de-
scriptors applied to large number of images. To overcome
this limitation, we resized malware images into 200× 200
and 300× 300 dimension to resolve computation cost
overhead in effective manner.

3.4. t-SNE Visualization and Dimensionality Reduction.
-e t-distributed stochastic neighbor embedding (t-SNE) is
a nonlinear dimension reduction strategy used to visualize
high-dimensional data in two or three low-dimensional
planes with apparent distinction [28]. -e t-SNE method
reduces high dimensionality in 2 steps. In the first step, high-
dimensional data points are assigned to similar objects with
a higher probability of selection. In the second step, t-SNE
minimizes divergence in low-dimensional space by adopting
a uniform probability distribution. -e t-SNE visualization
is highly popular due to its potential to scale high-dimen-
sional data into low-dimensional space.-e t-SNE algorithm
begins processing by employing stochastic neighbor em-
bedding (SNE) on the data points and then transforms the
high-dimensional distance between elements into the
probability of similarities. -e similarity between two data
points from xj to xi is represented in terms of conditional
probability pj|i using equation (2).

200 100 160

120 130 160

200 100 200

1 0 1

0 1

1 0 1

Pixel
3×3

Threshold
130

Binary
10101101

Malware Image

150 90 30

80 173

Decimal
173

Figure 2: Example of LBP estimation for 3× 3-pixel block from RGB malware image.
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Pj|i �
exp −l xi −xj

�����

�����
2
/2σ2i 


k≠ i

exp − xi −xk

����
����
2/2σ2i 

. (2)

-e probability of similarity in the original feature space
is statistically determined using equation (3).

Pi,j �
Pi|j +Pj|i

2n
. (3)

Here n represents the length of a data set. -e t-SNE
method requires an input parameter termed as “perplexity,”
which can be interpreted as an uniform measurement of an
effective number of clusters [29]. Mathematically, perplexity
can be expressed as

Prep Pi(  � 2H Pi( ). (4)

Depending on the pairwise distances between data
points, t-SNEmethod automatically determines the variance
σi, such that the effective number of clusters corresponds to
the user-defined perplexity value. To minimize congestion
between data points, t-SNE adopts the student t-distribution
based on single degree of freedom. -e probability at low
dimension qij is estimated using the matching distribution,
as shown in equation (5).

qij �
1+ yi − yj

�����

�����
2

 
− 1


k≠ l

1+ yk − yl

����
����
2

 
− 1 . (5)

Many studies [30] stated that t-SNE distribution plots
can be viewed as visual clusters of common distributions.
-ese visual clusters can be improved further by adjusting
parameters such as perplexity value and number of itera-
tions. To construct optimal visual clusters, one must grasp
the t-SNE parameters and information provided. Moreover,
exploratory analysis and supplemental data can facilitate in

the selection of appropriate parameters and the verification
of the outcomes. -e structure of visual clusters formed by
t-SNE is more isolated resulting in a more reliable and
observable shape. However, effectiveness of t-SNE algorithm
is always influenced by input data. t-SNE reduces dimen-
sionality by utilizing local data properties, which may fail if
the data has an exceptionally high-dimensional structure. In
addition, several optimization parameters may be necessary
to locate the constructed solution. In this study, we inte-
grated both descriptors into a single vector for each malware
image and used t-SNE to capture discriminating behavior of
both descriptors into three dimensions. We then fed the
t-SNE output into a deep learning model to evaluate per-
formance in terms of accuracy and training time.

3.5. Memory Dumps of Malicious Processes. Malware de-
tection via memory forensics has recently gained more
popularity since process information is stored in volatile
memory throughout its execution. As a result, suspicious
activity can be retained from volatile memory in the form of
memory dumps. One significant advantage of memory fo-
rensics is their resistance to obfuscation and packing as the
runtime behavior of process remains unchanged. Memory
dumps are system core dumps that are frequently used for
troubleshooting particularly in application development
process. When the system dumps a process, it preserves all of
its processing data including thread stacks, data segments,
heap sectors, and the calling sequence in the form of raw
binaries. We can further utilize memory dumps to extract
potential abnormal behavioral information from physical
memory. Figure 4 presents the memory forensics lifecycle of
a malicious process that begins with runtime behavioral
analysis and terminated with RGB image transformation. In
this example, a cryptojacking malware i9prlkgopr.exe is
retrieved via JOESandbox (https://www.joesandbox.com/)
that infects the victim device using XMRig (https://xmrig.
com/)miner.-ismalware performs twomalicious activities
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Figure 3: GLCM co-occurrence estimation using four properties from RGB malware image.
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to affect the victim computer. First, malware evades oper-
ating system protection using obfuscation and nonstandard
tools. Second, it installs a miner script on the victim device in
order to mine cryptocurrencies using the host CPU/GPU
power. -e miner script implemented by this malware can
consume up to 98% CPU and 95% RAM depending on the
configuration of the victim system. -e malware is operated
in a sandbox environment, while ProcDump is used to
monitor suspicious activities. -e ProcDump utility termi-
nates the process and generates a raw memory dump file of
the terminated process on detection of suspicious activity.
Lastly, the raw dump binaries are transformed into RBG
visual images to extract LBP andGLCM features for malware
detection.

3.6. Optimized Convolutional Neural Network (O-CNN).
-e following section provides the overview of O-CNN
model used to train deep learning models for malware
detection and variant classification. Four parameter tuning
components have been selected to construct the O-CNN
model. -e first component is the input layer used to initiate
training process. -e second component is a convolutional
layer used to reduce noise and improve image character-
istics. To optimize the learning performance, we additionally
employed convolutional kernel width and learning rate.
Next, a pooling layer and a dense layer have been utilized to
transform two-dimensional image properties into a one-
dimensional feature set. Figure 5 shows the internal struc-
ture of proposed O-CNN model including neural network
layers. -e brief overview of each layer and its fine-tuned
functions is given below:

3.6.1. Convolutional Layer. -e CNN layer collects crucial
characteristics of input images such as interpretation, ro-
tation, and scaling of invariance to reduce training pa-
rameters. It significantly decreases overfitting and increases
the generalization capability of the proposed DCNNmodel.
-e input value of CNN layer consists of several building
blocks [31]. -e output mapping variable is computed
based on total addition to input building block of CNN
layer. -e CNN mapping for random input xl

j is shown in
equation (6).

x
l
j � f 

i∈Mj

x
l−1
j × k

l
ij + b

l
j

⎛⎜⎝ ⎞⎟⎠, (6)

where Mj is the building block for CNN input; kl
ij is a

convolutional kernel that is combined with the ith input and
jth output features; bias for the ith input feature is repre-
sented by bl

j; and f is an activation function associated to the
corresponding CNN layer.

δl
j � δl+1

j W
l+1
j × f′ u

l
  � βl+1

j up δl+1
j  × f′ u

l
 , (7)

where l + 1 signifies a pooling layer, W denotes the current
convolution kernel, and βl+1

j up(δl+1
j ) specifies Upsampling

for minor class. -e partial derivative z and error cost
function of convolution kernel are computed as shown
below:

zE

zbj

� 
s,t

δl
j u, v, (8)

where (δl
j)u, v represents a patch value for each convolution

kernel in a stack.
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Figure 4: Memory forensics lifecycle for visual malware behavioral analysis.
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3.6.2. Pooling Layer. -e DCNN model employs two types
of pooling: maximal and average pooling. It has no effect on
backward propagation but minimizes the effects of image
deformation during DCNN training phase. -e pooling
layer further improves model performance while reducing
the size of the visual input feature set:

x
l
j � f down x

l−1
j  + b

l
j , (9)

where down(xl−1
j ) is a pooling task and b is the bias value.

-e overall sensitivity can be computed using following
formula:

δl
j � δl+1

j W
l+1
j × f′ u

l
 . (10)

3.6.3. Dense Layer. In TensorFlow Keras, the output of the
pooling layer is further characterized based on the dense
layer. -e neurons inside the dense layer are all inter-
connected to the neurons in the pooling layer. It flattened the
two-dimensional feature vector into a one-dimensional
feature space prior transferring it to the output layer of
proposed DCNN model.

3.6.4. Output Layer. In the output layer, test samples of
memory dump images were labeled as malware or benign
files. To validate the performance of the train and test
models, we employ the SoftMax-Cross Entropy loss function
throughout the DCNN model. Equation (9) can be used to
estimate the training and testing data loss.

Loss � −log
exp fzt( 

kexp fzt( 
 , (11)

where fzt is the rank of the kth class label. -e Adam op-
timizer is also used to learn DCNN model parameters that
minimize training data loss.

3.7. Evaluation Matrices. We selected several evaluation
metrics also used in previous studies to measure the per-
formance of malware detection. -e independent variables

of the study are true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). TP refers to
malware samples that have been correctly labeled, whereas
FP refers to benign samples that have been mistakenly la-
beled as malware. Similarly, TN refers to benign samples that
have been correctly labeled, whereas FN refers to malware
samples that have been mistakenly labeled as benign. In
addition to the base definitions, we utilized accuracy, pre-
cision, recall, and F1-score as dependent variables to assess
the overall predictive performance of the O-CNN and state-
of-the-art detection models.

Accuracy �
TP + TN

TP + FP + TN + FN

Precision �
TP

TP + FP

Recall �
TP

TP + FP

F1 − Score � 2 ×
Precision × Recall
Precision + Recall

. (12)

4. Empirical Evaluation and Discussion

-is section examines the impact of feature extraction de-
scriptors on predictive models. First, the proposed O-CNN
model is tested on both 224× 244 and 300× 300-dimension
images. Second, the optimal feature set is applied to several
predictive models for state-of-the-art comparison. -e best
outcome is further compared to existing studies. Finally, the
selected features are visualized using t-SNE and overall
performance on both image dimensions is evaluated.

4.1. Malware Detection via Proposed O-CNN Model. We
examine the impact of 224× 224 and 300× 300-dimensional
malware images on malware detection. Table 1 compares
performance of three feature sets on O-CNN model. -e

Malware Malware 
Image

Resized 
Image

Dense_1 Dense_2
Conv_2

Conv_1

Maxpool_1

Maxpool_2

K1

K2

K3

Kn

Input Feature Extraction Classification Output

Figure 5: Internal structure of O-CNN model depicting convolutional, pooling, dense and output layers.
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accuracy of all three feature sets is above 88% on both di-
mensions. -e lowest accuracy is achieved by GLCM feature
set on 224× 224, while the highest accuracy is achieved by
combining LBP+GLCM feature set on 300× 300 dimen-
sional images. -e combined approach outperforms LBP
and GLCM descriptors by achieving above 97% accuracy on
both image dimensions. -e main purpose of this study is to
categorize malware and benign samples; therefore, we dis-
tinctly measure the precision, recall, and f1-score of malware
and benign categories. GLCM recall value is pretty low
compared to other descriptors, which is 0.28 on 224× 224-
dimensional images and 0.36 on 300× 300-dimensional
images.-e observation shows that a large number of benign
files were incorrectly classified as malware samples, even
though the precision and recall of their benign samples are
above 88%. LBP recall is 0.61 on 224× 224-dimensional
images, while the recall on 300× 300-dimensional images is
0.96, respectively. From this observation, we conclude that
local features are more effective in detecting malware pat-
terns compared to global textural features. However, ob-
fuscation and encryption strategies can evade detection. As a
result, some textural global features can facilitate predictive
model to effectively detect obfuscated malware samples.

-e fine-tuned parameters are used to optimize the
predictive performance of deep learning models. As a result,
the model accuracy and model loss are observed on number
of epochs to visualize potential overfitting or underfitting of
deep learning models. We observed train and test accuracy
of all three feature sets on 200 epochs for 224× 224 and
300× 300-dimensional images as shown in Figure 6. In
comparison to LBP and GLCM feature sets, combine
LBP+GLCM strategy fits train and test accuracy more ef-
fectively on proposed O-CNNmodel. In Figure 6(a), the LBP
train and test accuracy begins at 0.86 and remains between
0.92 and 0.99 after 20 epochs, whereas the model accuracy of
train data is 5% higher than model accuracy of test data. In
Figure 6(b), the model accuracy of GLCM feature set is
between 0.85 and 0.91, respectively. -e overall model ac-
curacy of LBP has shown to be better than GLCM. In
Figure 6(c), the accuracy of combined LBP+GLCM feature
set has shown to be most effective than all. -e train and test
model perfectly fit on each other without any visible dif-
ferences. -is observation showed that the fine-tuned

parameters of O-CNN model can detect more unknown
malware samples when local and global features of LBP and
GLCM are deployed together.

A model loss is an outcome of a wrong prediction by a
deep learning model. We use loss function to indicate how
bad a model predicts on each test sample. Higher loss in-
dicates worst prediction model for given samples. Figure 7
shows the train and test loss generated by proposed O-CNN
model for three types of feature sets. In case of LBP feature
set, the model loss of train and test samples have a difference
of 30%. -e lowest loss generated by train samples is 0.03,
while the lowest loss generated by test samples is 0.30 on 200
epochs. In case of GLCM feature set, the difference in model
loss of train and test samples is constant throughout epoch
iterations that is around 9%. -e combined LBP+GLCM
approach proved be more effective by outperforming single
feature descriptors. -e train loss of combined LBP +GLCM
feature set is less than 0.10, while the test loss of combined
LBP+GLCM feature set is less 0.20 only.

A confusion matrix visualizes correct and incorrect
samples predicted by deep learning models. Figure 8 shows a
normalized confusion matrix of our best feature set com-
bined LBP+GLCM on both 224× 224 and 300× 300-di-
mensional images using proposed O-CNN model. In the
case of 224× 224-dimensional images, the misclassification
of benign samples is higher than malware samples. In
confusion matrix, 3% benign samples were misclassified as
malware, while 2% malware samples were misclassified as
benign. For 300× 300-dimensional images, the performance
is further improved by achieving only 2% misclassification
on benign samples and 1% misclassification on malware
samples. From the observations of Figures 6–8, we conclude
that the combined LBP +GLCM on 300× 300-dimensional
images is an optimal choice.

4.2. Performance Comparison with Related Works. We
implemented optimal feature set on state-of the-art machine
learning and deep learning classifiers for comparative
evaluation of proposed DCNN model. Table 2 presents the
performance of optimal feature set on five machine learning
and four deep learning algorithms. -e overall accuracy of
combined LBP+GLCM feature set is above 80%. -e lowest

Table 1: Comparison of detection performance of DCNN model on three types of feature sets.

Feature Dimension Accuracy Sample Precision Recall F1-score

LBP
224× 224 0.9297 Malware 0.90 0.61 0.73

Benign 0.93 0.99 0.96

300× 300 0.9399 Malware 0.97 0.96 0.96
Benign 0.80 0.82 0.81

GLCM
224× 224 0.8873 Malware 0.95 0.28 0.43

Benign 0.88 1.00 0.94

300× 300 0.8929 Malware 0.87 0.36 0.50
Benign 0.89 0.99 0.94

LBP+GLCM
224× 224 0.9780 Malware 0.97 0.98 0.98

Benign 0.98 0.97 0.98

300× 300 0.9807 Malware 0.98 0.99 0.98
Benign 0.99 0.98 0.98
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accuracy is achieved by naı̈ve bayes classifier that is also
above 80.4%, whereas the highest accuracy is achieved by the
proposed O-CNN model. -e proposed model outperforms
other classifiers on all performance indicators. -e average
precision, recall, and f1-score is 98% and model loss is 10%,
respectively. In this observation, we conclude that the op-
timal feature not only performs efficiently on proposed
model but also flexible to other predictive classifiers.

-e optimal outcomes generated by proposed O-CNN
model are compared to similar studies directed on various
image dimensions. For instance, Nataraj et al. [16] used
multidimensional images spanning between 32× 32 to
1024×1024, and Dai et al. [10] used 2048× 2048 and
4096×4096-dimensional images to implement their pre-
dictive models. Since the large images generate more fea-
tures, therefore, enhancing the predictive performance of
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Figure 7: Train and test loss of three feature sets on proposed DCNN model. (a) LBP. (b) GLCM. (c) LBP +GLCM.
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Figure 6: Train and test accuracy of three feature sets on proposed DCNN model. (a) LBP. (b) GLCM. (c) LBP +GLCM.
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deep learning models. Unfortunately, the larger images
required more computational time and resources to extract
all features. Rezende et al. [32] and Bozkir et al. [25] used
224× 224 and 300× 300 and generate more than 96% ac-
curacy on four performance indicators. Table 3 shows the
performance of proposed model compared to reference
studies. In comparison to related studies, our combined
LBP+GLCM strategy outperforms them by achieving more
than 98% accuracy on same performance indicators.

4.3. t-SNE Visualization and Performance of Dimensionality
Reduction. -e t-SNE algorithm is an alternative way for
cross-validation that does not require any data training like

supervised algorithms. As an unsupervised algorithm, t-SNE
does not use labels to classify but only reveals the structure of
feature set and similarity between data points. t-SNE use
perplexity value to balance local and global aspects of data on
resulting plot. In general, it is observed that lower the
perplexity value, the more local structure is preserved
whereas with higher perplexity more global structure is
preserved. We applied t-SNE visualization on both LBP,
GLCM, and combined LBP+GLCM feature sets. We vi-
sualize the best separation of malware and benign classes by
providing best perplexity values such as 10, 30, 70, and 100,
respectively. In Figure 9, the t-SNE plot shows only two
clusters for malware and benign samples, which indicates
low-dimensional t-SNE data have the ability to categorize
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Figure 8: Confusion matrix of LBP+GLCM for 224× 224 and 300× 300-dimensional images.

Table 2: Comparison of state-of-the-art predictive models on optimal feature set

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) Loss (%)
Logistic reg. 89.4 89.8 89.4 87.1 N/A
Naı̈ve bayes 80.4 85.4 80.4 82.2 N/A
K-near neighbor 94.8 94.7 94.8 94.5 N/A
Decision tree 87.1 86.8 87.1 86.9 N/A
Random forest 91.5 91.4 91.5 90.4 N/A
DNN 84.7 72.0 85.0 78.0 43.0
GRU 94.7 95.0 95.0 95.0 20.0
RNN 85.9 91.0 86.0 87.0 36.0
LSTM 94.5 94.0 95.0 94.0 22.0
Proposed model 98.1 98.0 98.0 98.0 10.0

Table 3: Comparison of proposed DCNN model with other reference studies.

Study Dimension Accuracy (%) Precision (%) Recall (%) F1-score (%)

Nataraj et al. [16] (2011) 32× 32 91.4 91.5 91.4 91.51024×1024

Dai et al. [10] (2018) 2048× 2048 94.5 94.6 94.5 94.54096× 4096
Rezende et al. [32] (2018) 224× 224 96.9 97.0 96.9 96.9

Bozkir et al. [25] (2021) 224× 224 96.3 96.4 96.4 96.4300× 300

Our method (optimal) 224 × 224 98.1 98.0 98.0 98.0300 × 300
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Table 4: Comparison of proposed O-CNN model with other reference studies.

MalwareVariants
Before t-SNE reduction After t-SNE reduction

224× 224 300× 300 224× 224 300× 300
Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect

Adposhel 0.99 0.01 1.00 0.00 1.00 0.00 1.00 0.00
Allaple 0.95 0.05 0.94 0.06 1.00 0.00 1.00 0.00
Amonetize 0.97 0.03 0.96 0.04 0.98 0.02 0.98 0.02
Autorun 0.73 0.27 0.75 0.25 0.96 0.04 0.96 0.04
Browsefox 0.91 0.09 0.85 0.15 0.99 0.01 1.00 0.00
Dinwod 0.71 0.29 0.89 0.11 1.00 0.00 1.00 0.00
Installcore 0.99 0.01 0.99 0.01 1.00 0.00 1.00 0.00
Multiplug 0.84 0.16 0.84 0.16 1.00 0.00 1.00 0.00
Vba 1.00 0.00 1.00 0.00 0.99 0.01 1.00 0.00
Vilsel 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Average (%) 0.90 0.09 0.92 0.08 0.99 0.01 0.99 0.01
Time (s) 117s 119s 30 seconds (74.3x) 32 seconds (74.1x)

Mobile Information Systems 13



224×224

Adposhel

Allaple

Amonetize

AutoRun

BrowseFox

Ac
tu

al
 L

ab
el

Dinwod

Vilsel

VBA

MultiPlug

Predicted Label

InstallCore

1

1

0.98

0.96

0.99

1

1

0.99

1

1

0

0 0.02

0

0

0

0

0

0

0.04

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0 000

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

300×300

1

1

0.98

0.96

1

1

1

1

1

1

0

0 0.02

0

0

0

0

0

0

0.04

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0 000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

Ad
po

sh
el

A
lla

pl
e

A
m

on
et

iz
e

Au
to

Ru
n

Br
ow

se
Fo

x

D
in

w
od

Vi
lse

l

V
BA

M
ul

tiP
lu

g

In
sta

llC
or

e

Adposhel

Allaple

Amonetize

AutoRun

BrowseFox

Ac
tu

al
 L

ab
el

Dinwod

Vilsel

VBA

MultiPlug

Predicted Label

InstallCore

Ad
po

sh
el

A
lla

pl
e

A
m

on
et

iz
e

Au
to

Ru
n

Br
ow

se
Fo

x

D
in

w
od

Vi
lse

l

V
BA

M
ul

tiP
lu

g

In
sta

llC
or

e

Figure 10: Confusion Matrix of proposed O-CNN model for 224× 224 and 300× 300-dimensional images.
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samples into their respective categories. LBP feature set
shows clear separation when perplexity value is 70 and 100.
Comparatively, GLCM feature set shows clear separation at
perplexity 30. One probable explanation is that the LBP
feature set comprises of edges and small visual patches.
-erefore, multiple cluster points are visible and separated
from each other. Alternatively, GLCM feature set consists of
visual content and textural characteristics. -e combined
LBP+GLCM consists of both edges and textural charac-
teristics. All nonoverlapping clusters are clearly visible with
the exception of a few outlier values. In general, t-SNE
applies dimensionality reduction on data set and facilitate
exploratory analysis for appropriate selection of parameters.
-e visual clusters formed by t-SNE are more isolated that
can improve classification performance.

-e performance of t-SNE dimensionality reduction on
malware detection and variant classification is further
evaluated for proposed O-CNN model. Table 4 presents the
classification outcomes before and after using t-SNE re-
duction on both 224× 224 and 300× 300-dimensional im-
ages. Before t-SNE reduction, the average percentage of
correct classifications are greater than 0.90 on both di-
mensional images. However, few samples from some mal-
ware variants are also misclassified. For instance, Autorun
variant has more than 25% misclassified samples. After
t-SNE reduction, the classification is improved by producing
only 0.01 misclassified variants. In the case of Autorun
variant, the misclassified samples are also reduced from 25%
to 2%. Furthermore, the average detection and variant
classification time is also improved by 74.3x and 74.1x on for
both dimensional images. From this observation, we con-
clude that t-SNE dimensionality reduction not only im-
proves the accuracy of malware variant classification but also
optimizes the malware detection time which will be the
major requirement in windows devices and high availability
servers. Lastly, Figure 10 presents the confusion matrices of
224× 224 and 300× 300-dimensional images generated us-
ing proposed O-CNN model after t-SNE reduction. -e
figure shows that the majority of malware variant classes are
effectively detected with less than 2% to 4% accuracy loss.

5. Conclusion

Malware detection is a critical security issue for Windows
users who interact with the Internet on a regular basis. Be-
cause of the popularity of 5G Internet devices and the growing
number of Internet users, malware attacks have become a big
threat for Windows devices. -is study has focused on
performing memory forensics in order to detect malware
attacks and their potential variants. First, we extracted local
and global features using LBP and GLCM feature descriptors
from textual images of memory dump files. Next, the pro-
posed O-CNNmodel was fine-tuned on fused features of LBP
and GLCM descriptors to detect malware and benign samples
from test models. -e widely studied performance indicators
were selected to compare proposed methods with state-of-
the-art models and related studies. -e empirical evaluation
showed that the proposed O-CNNmodel achieved above 98%
accuracy on individual malware and benign samples.

Furthermore, t-SNE dimensionality reduction is applied on
different feature sets to visualize malware and benign samples
as isolated visual clusters. t-SNE feature set achieved upto 99%
accuracy onmalware variant classification as well as improved
the training time of 0-CNN by 74%. We believe that memory
forensics store execution information of malware samples
into RAM which significantly facilitate cybersecurity analyst
to detect malware presence regardless of obfuscation and
encryption. In the future, we planned to develop a combined
blockchain and memory less malware detection model to
overcome malware processing cost under limited resource
capabilities.

Data Availability

-emalware data set investigated during the current study is
available in the Dumpware10 repository (https://web.cs.
hacettepe.edu.tr/∼selman/dumpware10/).
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