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)e whale optimization algorithm (WOA) is a popular swarm intelligence algorithm which simulates the hunting behavior of
humpback whales. WOA has the deficiency of easily falling into the local optimal solutions. In order to overcome the weakness of
the WOA, a modified variant of WOA called OCDWOA is proposed. )ere are four main operators introduced into the
OCDWOA to enhance the search performance of WOA. )e operators include opposition-based learning method, nonlinear
parameter design, density peak clustering strategy, and differential evolution.)e proposed algorithm is tested on 19 optimization
benchmark functions and a seismic inversion problem. OCDWOA is compared with the classical WOA and three typical variants
of WOA. )e results demonstrate that OCDWOA outperforms the compared algorithms in terms of obtaining the global
optimal solution.

1. Introduction

In recent years, the nature-inspired algorithms have
attracted lots of attention from researchers. Swarm intelli-
gence (SI) algorithm is a main kind of nature-inspired al-
gorithms. Swarm intelligence algorithms are designed by
simulating the behaviors of animals or plants. )e widely
used SI algorithms include particle swarm optimization
(PSO) [1], Ant colony optimization (ACO) [2], artificial bee
colony algorithm (ABC) [3], grey wolf optimization (GWO)
[4], wolf pack algorithm (WPA) [5], brain storm optimi-
zation [6], and whale optimization algorithm (WOA) [7].

)e whale optimization algorithm (WOA) is proposed in
2016. WOA searches the global optimal solution by simu-
lating the foraging behaviors of the whales, including
encircling prey, researching prey, and attacking prey. Many
studies about WOA have been presented. Generally, these
studies can be classified into two categories. One is to apply
applying the WOA to solve some practical issues. )e other
one is to improve the performance of WOA with some

strategies. A modified WOA named chaotic WOA (CWOA)
[8] was proposed by Kaur and Arora in 2017. )e CWOA
introduces chaos theory into WOA. )e main parameter of
WOA is tuned by chaotic map to control exploration and
exploitation. In [9], Lévy flight trajectory-based WOA
(LWOA) is presented. )e Lévy flight trajectory is used to
increase the diversity of the population and enhance the
performance of jumping out of local optimal solutions. )e
balanced variant of WOA (BWOA) proposed in [10] in-
troduced Lévy flight and chaotic local search into WOA to
enhance the inclusive exploratory and neighborhood-in-
formed capacities of the conventional technique. Chen [11]
proposed a modified WOA based on adaptive convergence
and Lévy features (IWOA). )e adaptive convergence op-
erator is used to balance the local and global optimization
ability and the Lévy flight mechanism is introduced to
improve global searching ability. For solving the large-scale
global optimization problems, a modified self-adaptive
WOA (MWOA) [12] is proposed. A nonlinear dynamic
strategy is applied to update the control parameter and
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balance the exploration and exploitation abilities. )e Lévy-
flight strategy is utilized to enhance the search performance
and a quadratic interpolation method is adopted to improve
the exploitation ability of the algorithm. For solving high-
dimensional function optimization problems, AWOA based
on Lamarckian learning (WOALam) [13] brought in the
evolutionary theory of Lamarck to enhance the local search.
Trivedi et al. [14] proposed an adaptive whale optimization
algorithm (AWOA) with a randomization technique. )e
results show that the performance of AWOA is better than
the performance of the standardWOA. Sun et al. proposed a
whale optimization algorithm based on quadratic interpo-
lation (QIWOA) [15]. A modified exploration process and
quadratic interpolation are used to improve the exploitation
ability and the search accuracy. A reinforced variant of
WOA named RDWOA [16] was proposed in 2019. A
strategy of random spare or random replacement is used to
enhance the convergence speed. In addition, a strategy of
double adaptive weight is introduced to improve the ex-
ploration ability in the early stage and exploitative ability in
the later stage. Trivedi et al. [17] proposed a hybrid PSO-
WOA. )e PSO operator is used in exploitation phase and
the basic WOA operator is adopted to explore in uncertain
environments. )e experimental results reveal the effec-
tiveness of PSO-WOA compared to standard PSO and
WOA. Wei et al. [18] proposed a modified WOA based on
different searching paths and perceptual disturbance
(PDWOA). Several spiral curves have been tested and the
results show that the equal-pitch of Archimedean spiral
curve is more capable than other types of spiral curve.
Mafarja and Mirjalili [19] proposed a hybrid SA-WOA al-
gorithm. In order to enhance the exploitation of WOA, the
simulated annealing (SA) algorithm is introduced into the
algorithm by searching the most promising regions located
by basic WOA. An improved whale optimization algorithm
(IWOA) [20] is proposed in 2016. Inertia weight, as a new
parameter, is introduced to adjust the best solution in each
iteration. Abdel-Basset et al. [21] proposed a memetic al-
gorithm combining theWOAwith a Tabu Search for solving
quadratic assignment problems.

In addition, WOA has been applied to many engi-
neering problems. Oliva et al. [22] used an improved
chaotic whale optimization algorithm to estimate the pa-
rameters of solar cells. )e design problem involves the
solution of the complex nonlinear and multimodal ob-
jective functions. )e proposed algorithm solves the design
problem with the chaotic map and automatically adapt
parameters. Zhang et al. [23] proposed an enhanced whale
optimization algorithm (EWOA) to optimize the flow shop
construction scheme. )e enhanced WOA with Lévy flight
is used to improve the robustness and efficiency of the
existing construction stage and zone optimization ap-
proaches. Bentouati et al. [24] proposed a new variant
WOA with pattern search algorithm (PS). )e results prove
the effectiveness and the performance of the proposed
algorithm for solving the optimal power flow problem. Abd
Elaziz and Oliva [25] proposed an enhanced WOA based
on opposition (OBWOA).)e opposition-based learning is
used to enhance the exploration of the search space.

OBWOA has the exploration abilities for different
benchmark optimization functions and has been applied to
estimate three different diode models of solar cells. Aljarah
et al. [26] applied WOA to neural networks training. )e
proposed algorithm has been tested on 20 datasets. )e
results showed that the proposed method can obtain the
best solutions and outperform the other compared algo-
rithms on convergence speed. Medani et al. [27] proposed a
modified WOA to solve the optimal reactive power dis-
patch problem. )e results show that the proposed algo-
rithm is more desirable than two comparative algorithms.

Prestack seismic inversion technology is an important
seismic inversion technology to solve the problems of res-
ervoir lithology and fluid prediction in oil and gas explo-
ration and development. Physical properties obtained by
general prestack inversion methods provide many detailed
subsurface characteristics, but the method is not mature and
limited by the high resolution, low speed, and poor stability
of prestack inversion. Currently, this technology is in the
research stage. Some inevitable technology problems should
be solved before its large-scale applications [28, 29].

Many researches on solving the problems of prestack
inversion by optimization algorithms have been studied. Xia
et al. [30] and Sen [31] improved the speed and stability of
prestack seismic waveform inversion by using the step in-
version method. Simulated annealing (SA) and genetic al-
gorithm (GA) have been successfully used in prestack
seismic waveform inversion. Ingber and Rosen [32] con-
ducted a comparative study on SA and GA. )e experiment
results proved that both algorithms could achieve global
optimization and the speed of fast simulated annealing
(VFSA) was the fastest. Liu et al. [33] proposed a new
adaptive genetic algorithm for seismic inversion to over-
come slow convergence rate and falling into local optimal
solutions. Wu et al. [34] proposed a parameter inversion
method based on improved differential evolution algorithm.
)e proposed method was effective in solving parameter
inversion problems of prestack seismic data.

WOA has a good convergence rate, but the performance
of WOA in finding the global optimal solution of the
multimodal problems with many local optimal solutions is
not ideal. In order to enhance the global search ability and
solve the prestack seismic waveform inversion, a modified
whale optimization algorithm named OCDWOA is pro-
posed in this paper. )ere are four operators used in the
proposed algorithm. Nonlinear parameter design is intro-
duced to balance the ratio of exploitation phase and ex-
ploration phase. Density peak clustering strategy is adopted
to decompose population into numbers of groups for en-
hancing the diversity of population. Opposition-based
learning method and differential evolution are used to
improve the search performance. Experiments on 19 opti-
mization benchmark functions and a seismic inversion
problem indicate the effectiveness of the proposed algo-
rithm. )e proposed algorithm OCDWOA represents
outstandingly the experiments. )e results demonstrate that
the proposed algorithm OCDWOA can solve the seismic
inversion problem successfully.

)e main contributions are summarized as follows:
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(1) )e opposition-based learning method adopted by
OCDWOA could avoid the solutions trapping into
local optimal, which improves the ability of global
search.

(2) )e nonlinear parameter design of a in OCDWOA
could achieve the global exploration in early stage
and local exploitation in late stage.

(3) Density peak clustering strategy is adopted to de-
compose population into numbers of groups, which
enhances the diversity of population.

(4) )e proposed OCDWOA has an outstanding per-
formance of solving seismic inversion problem,
which verifies its universality for solving practical
engineering problems.

)e rest of this paper is organized as follows. Section 2
describes the WOA algorithm. Section 3 explains the pro-
posed algorithm and the operators. )e experimental results
and comparisons are shown in Section 4. Finally, in Section
5, the conclusions are presented.

2. Whale Optimization Algorithm

WOA is a kind of population-based meta-heuristic algo-
rithm. WOA simulates the hunting mode of humpback
whales, which includes encircling prey, bubble-net attacking
method, and search for prey.

2.1. Encircling Prey. WOA supposes that the optimal solu-
tion with the best fitness in current population is the prey.
All the other solutions will encircle the prey and update
themselves toward the optimal solution. )e mathematical
model of encircling behavior is as follows:
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where t indicates the number of the current iteration,X is the
current solution, X∗ is the best solution in the population,
and A
⇀
and C
⇀
are the coefficient vectors calculated as follows:
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where a
⇀ is linearly decreased from 2 to 0 over the iterations

and r
⇀ is a random vector in [0, 1].

2.2. Bubble-Net Attacking Method. In order to simulate the
behavior of bubble-net attacking, shrinking encircling
mechanism and spiral updating position are designed as
follows.

2.2.1. Shrinking Encircling Mechanism. )e mathematical
model of shrinking encircling mechanism is defined as
equations (1) and (2). Because of a

⇀ is linearly decreased from

2 to 0, the value of A
⇀
is in the range of [−1, 1]. )e current

solution can update itself toward the best solution with a
random step.

2.2.2. Spiral Updating Position. )e new position of current
solution updated with the best solution is obtained as
follows:
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where b is constant for defining logarithmic spiral and l is
randomly generated number in the range [−1, 1]. To balance
the two models, a selection parameter p is set. )e selection
parameter p in WOA is 0.5; there is a probability of 50% to
choose either the shrinking encircling mechanism or the
spiral updating position model. )e finial mathematical
model of bubble-net attacking is as follows:
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where p is a random number in [0, 1].

2.3. Search forPrey. In nature, whales will go away from each
other and randomly search for a new prey. In order to
simulate the search behavior, a random search operation is
used in the exploration phase when |A|≥ 1. )e current
solution will update with a random solution in the current
population instead of the best solution. )e mathematical
model is as follows:
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where X
⇀
rand is a random solution in the current population.

)e pseudocode of the WOA is shown as Algorithm 1.

3. The Proposed Approach

)is section introduces a modified WOA named OCD-
WOA. Four strategies are introduced into the WOA. Op-
position-based learning method (OBL) is used to initialize
population and randomly update solutions in each iteration.
Nonlinear parameter design is introduced to balance the
ratio of exploitation phase and exploration phase. Density
peak clustering strategy is adopted to decompose population
into numbers of groups for enhancing the diversity of
population. )e effect of differential evolution (DE) is to
exchange information between groups and improve the
ability of jumping out of the local optimal solutions.

3.1. OCDWOA. )e pseudocode of the OCDWOA algo-
rithm is shown as Algorithm 2.
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Opposition-based learning is used to initialize the
population (see lines 1–6 of Algorithm 2) and to estimate the
opposition solutions (see lines 39–46 of Algorithm 2). )e
fitness of each solution in the population is calculated and
the best solution is found (see lines 7-8 in Algorithm 2). )e
parameters a, CR, A, C, l, and p are updated (see lines 10 and
13 in Algorithm 2). )e population is decomposed into k
groups by density peak clustering algorithm (see line 11 of
Algorithm 2). )e mutation operator of DE is introduced
into the proposed algorithm (see lines 20–23 of Algo-
rithm 2). A solution Xi is updated by r1 and r2 under
mutation operator, where r1 is from the group including Xi
and r2 is from the groups excluding Xi (see lines 14-15 of
Algorithm 2). With the increase of iterations, the operation
probability of DE declines. )e basic three operators of
WOA are used in lines 25-26, 29–31, and 34-35, respectively.
)e encircling prey is used in lines 25-26, the search for prey
is introduced in lines 29–31, and the spiral updating position
is applied in lines 34-35.

3.2. Opposition-Based Learning Method. It has been tested
that opposition-based learning (OBL) method proposed by
Rahnamayan et al. [35] is helpful for avoiding trapping into
local optimal solutions.

A solution Xi in d-dimension search space is denoted as
X∗i � {Xi,1, Xi,2, Xi,3, . . ., Xi,d}. )e opposition point X∗i of Xi
can be calculated as

Xi,j
′ � Xub,j + Xlb,j  − Xi,j, (8)

where Xub,j and Xlb,j denote the upper and lower bound of j-
th dimension.

OBL is used in the initialization step and solution update
step at the end of each iteration. In the initialization step,
OBL can generate a new solution on opposition side and
enhance the diversity in the search space. In solution update
step at the end of each iteration, OBL can generate a new
solution on opposition side and choose the better solution
between the new solution and the original solution. OBL can
help WOA improve the search performance and jump out
the local optimal solutions.

3.3.Nonlinear ParameterDesign. An exponential function a
⇀

is introduced into the modified WOA. )e value of coef-
ficient vector A

⇀
controls the proportion of exploitation phase

and exploration phase. )e nonlinear parameter design a
⇀ is

designed as follows [36]:

a � amin + amax − amin(  × e
− 2t/Max iter

, (9)

where amin and amax denote the minimum and maximum of
a
⇀, t is the number of the current iteration, and Max_iter is
the maximum iteration.

A large value of a
⇀ generates a large step size in ex-

ploitation phase, which can improve the searching speed. A

Input: Population size N
)e halting criterion
Output: )e best solution X∗

Generate the initial population Xi (i� 1, 2, . . ., N)
(1) Calculate the fitness for each solution in the population
(2) Find the best solution X∗ with the best fitness
(3) while the halting criterion is not satisfied do
(4) Update a
(5) for i� 1 to N do
(6) Update A, C, l and p
(7) for j� 1 to m do
(8) if p< 0.5 then
(9) if (|A|< 1) then
(10) D � |C · X∗(j) − Xi(j)|

(11) Xi(j) � X∗(j) − A · D

(12) else if (|A|≥ 1) then
(13) Select a random solution Xrand
(14) D � |C · Xrand(j) − Xi(j)|

(15) Xi(j) � Xrand(j) − A · D

(16) end if
(17) if p≥ 0.5 then
(18) D′ � |X∗(j) − Xi(j)|

(19) Xi(j) � D′ · ebl · cos(2πl) + X∗(j)

(20) end if
(21) end for
(22) Evaluate the fitness for Xi
(23) end for
(24) Find the best solution X∗

(25) end while

ALGORITHM 1: WOA.
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small step size with a small value of a
⇀ can be helpful for the

exploration phase.

3.4. Density Peak Clustering. A density-based clustering
strategy named density peak clustering algorithm [37] is used in
the proposed WOA. )e density peak clustering algorithm

defines two important parameters for each solution i: the
density ρi and distance δi. A scatter graph called decision di-
agram is constructed based on these two parameters. )e de-
cision diagram could decide the center of each clustering group
and assign the remaining solutions to each clustering center.

)e mathematical model of the density ρi of the ith
solution used in this paper is as follows:

Input: Population size N
Group size k
)e halting criterion

Output: )e best solution X∗

(1) Generate the initial population Xi (i� 1, 2, . . ., N)
(2) for i� 1 to N do
(3) if (rand< 0.6)
(4) Generate new solution with OBL
(5) end if
(6) end for
(7) Calculate the fitness for each solution in the population
(8) Find the best solution X∗ with the best fitness
(9) while the halting criterion is not satisfied do
(10) Update a and CR
(11) Decompose population into k groups by density peak clustering algorithm
(12) for i� 1 to N do
(13) Update A, C, l and p
(14) R1 is the group with Xi and R2 are the groups without Xi
(15) Select randomly r1 from R1 and r2 from R2
(16) jrand � randint (1, m)
(17) for j� 1 to m do
(18) if p< 0.5 then
(19) if (|A|< 1) then
(20) if rand (0, 1)≤CR and j�� jrand then
(21) Update F
(22) Select randomly r1 from R1 and r2 from R2
(23) Ui(j) � X∗(j) + F[Xr2

(j) − Xr1
(j)]

(24) Else
(25) D � |C · X∗(j) − Xi(j)|

(26) Xi(j) � X∗(j) − A · D

(27) end if
(28) elseif (|A|≥ 1) then
(29) Select a random solution Xrand
(30) D � |C · Xrand(j) − Xi(j)|

(31) Xi(j) � Xrand(j) − A · D

(32) end if
(33) if p≥ 0.5 then
(34) D′ � |X∗(j) − Xi(j)|

(35) Xi(j) � D′ · ebl · cos(2πl) + X∗(j)

(36) end if
(37) end if
(38) end for
(39) for i� 1 to N do
(40) if (rand< 0.6)
(41) Generate new solution Oi with OBL
(42) if Oi is better than Xi then
(43) Xi �Oi
(44) end if
(45) end if
(46) end for
(47) Find the best solution X∗ with the best fitness
(48) end while

ALGORITHM 2: OCDWOA.
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ρi � 
j

e
− dij/dc( 

2

, (10)

where j represents the j-th solution in current population,
and i≠ j, dij is the Euclidean distance between i-th and j-th
solutions, and dc is a pre-set cut-off distance. A moderate
value of dc could make the average number of neighbors
around 1% to 2% of the population size.

)e distance parameter δi denotes the minimum dis-
tance among the i-th solution and the j-th solution, where
the local density of j-th solution is higher than that of the i-th
solution. )e equation of δi is as follows:

δi � min
j: ρj > ρi

dij . (11)

Figure 1(a) shows the distribution of 28 solutions in two
dimensions and Figure 1(b) is the decision diagram obtained
by these 28 solutions. In Figure 1(b), the horizontal axis is ρ
and the vertical axis is δ. )e solutions with both large values
of ρ and δ are defined as the clustering centers. In Figure 2,
the 1st and 10th solutions with both large density and
distance will be selected as the clustering centers. )e 26th,
27th, and 28th solutions have large distance and low density,
and the 7th and 8th solutions have large density and low
distance. )erefore, these solutions cannot be selected as the
clustering centers.

According to the rules of selecting the clustering centers,
a modified equation of calculating quality of solutions is
designed as follows:

Qi � ρi · δi. (12)

In this paper, a modified model of cut-off distance dc is
introduced [38]. )e transition distance Dis is calculated as
follows:

Dis � 1 − e
− d2

ij
/2

. (13)

)e cut-off distance dc is calculated as follows:

dc �
Dismax + Dismin

2
, (14)

where Dismax and Dismin are the maximum andminimum of
transition distances in the current iteration.

3.5. Differential Evolution. For enhancing abilities of
searching and jumping out of the local optimal solutions, the
DE operator is introduced in this paper. )e crossover and
mutation operators in differential evolution (DE) [39] are
calculated as follows:

Ui(j) � X
∗
(j) + F × Xr2

(j) − Xr1
(j) , (15)

where Xr1
and Xr2

are the j-th dimension of the r1-th and r2-
th solutions, respectively, U is the offspring, and F is the
zoom factor. CR is the crossover probability updated as an
exponential function:

CR � 0.9 × e
− 3t/Max_iter

. (16)

4. Experiment Results and Discussion

4.1. Parameter Settings and Benchmark Functions. In this
section, in order to analyze the performance of the proposed
algorithm, 19 benchmark functions [40] F1–F19 have been
used. )e expressions of all the functions are given in Ta-
ble 1. F1–F7 are the unimodal functions with only one global
optimal solution. F8–F12 are the multimodal functions with
many local optimal solutions. )ese functions can test the
performance of jumping out the local optimal solutions.
F13–F19 are the fixed-dimension multimodal functions,
which can evaluate the convergence property of an
algorithm.

)e proposed OCDWOA is compared with the classical
WOA and its typical variants, such as OWOA [41], OEWOA
[42], and IWOA [43]. )e parameter b is set to 1 for all the
algorithms. )e parameter a

⇀ decreases linearly from 2 to 0
for WOA, OWOA, and IWOA. For OEWOA, the parameter
a
⇀ nonlinearly decreases from 2 to 0. For IWOA, the
crossover probability CR is set to 0.9, and the zoom factor F
is random within (0.2, 0.8).

For all the algorithms, population size is 30 and maxi-
mum iteration is 500. )e experiment is repeated 30 times
for each benchmark function.

4.2. Experiment Results. )e statistics of the experimental
results is demonstrated in Table 2. )e best fitness, mean
fitness, and standard deviation of OCDWOA and each
compared algorithm are given.

For F6, F9, F11, F12, F13, F15, F17, and F18, the performance
of OCDWOA is the absolutely best. For F14, the results
obtained by all the variants of WOA are comparable. For F1,
F2, F3, F4, F5, F10, and F16, OCDWOA obtains the second
rank. For the simple functions F1 and F2 without any local
optimal solution, OCDWOA is worse than OEWOA. )e
DE operator used in OCDWOA can enhance the search
performance. )e convergence speed would be reduced,
though the operation probability of DE declines in explo-
ration phase. For the nonseparable unimodal functions F3,
F4, and F5, OCDWOA is only worse than IWOA. For the
multimodal function F16, the result reveals the positive
influence of DE.

For F7 and F8, the performance of OCDWOA is similar
to ones of OWOA and OEWOA. For F10, OCDWOA gets
the second rank. For F8 and F10, IWOA can get the optimal
solution. However, IWOA fails in solving the function F7.
)e mean value and standard deviation value of IWOA are
also not ideal. It shows that the DE operator is helpful for
jumping out the local optimal solutions, but the stability may
be impaired for the multimodal functions with easy or few
local optimal solutions. In OCDWOA, the clustering op-
erator and reducing the operation probability of DE can
drop off the influence of DE. )e DE operator can improve
the performance of jump out the local optimal solutions.)e
DE operator and OBL can enhance the search performance
of algorithm. Dynamical adjustment of a

⇀ can avoid pre-
mature convergence. )e clustering operator enhances in-
formation exchange between solutions.
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Figure 1: (a) Solution distribution in two dimensions. (b) Decision diagram for each sample point.
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Figure 2: Continued.
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)e results analyzed by the Wilcoxon rank-sum test are
shown in Table 3. In the Wilcoxon rank-sum test, a sig-
nificance level is set to 0.05. In Table 3, “+,” “−,” and “� ”
indicate that the result of the proposed algorithm OCD-
WOA is significantly better, significantly worse, and sta-
tistically similar to that of the compared algorithm,
respectively. For most test functions, the performance of
OCDWOA is significantly better or statistically similar to the
other variants of WOA.

)e convergence curves and boxplots are shown in
Figures 2 and 3, respectively.

In Figure 2, for most functions, the convergence curves
of OCDWOA are better or statistically similar to ones of the
other variants of WOA. For F3 and F4, the convergence
curves of OCDWOA are stabler than those of IWOA, but
the convergence rates of OCDWOA are slower than those
of IWOA. In OCDWOA, the solutions selected in the
crossover and mutation operators of DE are based on the
clustering. )e clustering operator reduces the randomness
of the DE operator. )e stability of OCDWOA has been
improved.

In Figure 3, for most functions, the stability of OCD-
WOA is better or statistically similar to the stability of the
other variants of WOA. Only for F3 and F4, the stability of
OCDWOA is worse than the stability of IWOA.

4.3. Application of Seismic Inversion Problems

4.3.1. Seismic Inversion Problem. Seismic inversion is the
key technology of quantitative reservoir prediction and
prestack waveform inversion [44] is a newly developed
seismic inversion technique. In prestack waveform inver-
sion technique, the complex wave propagation effect is
considered and the complete waveform information is fully
used. )e prestack waveform inversion method assumes
that each CMP/CDP point of underground medium layer
structure with local one-dimensional or level uses the
reflectivity method forward prestack data [45].)e prestack
waveform inversion method searches the best fitting with
the actual prestack seismic data of underground through
genetic algorithm, simulated annealing, and other global
optimization algorithms [46]. At present, there are many
problems in prestack waveform inversion technology that
need to be further studied and the resolution of prestack
waveform inversion technology needs to be improved. )e
existing optimization algorithms used in prestack wave-
form inversion are mainly traditional intelligent optimi-
zation algorithms.)ese algorithms are prone to premature
convergence and local optimal solution when dealing with
large data volume, highly nonlinear, multiparameter, and
multiextremum prestack waveform inversion problems.
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Table 2: Results of OCDWOA and compared algorithms.

Function Algorithm Best Mean Std

F1

WOA 3.45E− 84 1.84E− 74 6.85E− 74
OWOA 3.67E− 87 1.54E− 72 6.15E− 72
OEWOA 8.10E − 104 3.41E − 87 1.61E − 86
IWOA 3.88E− 31 4.18E− 28 1.52E− 27

OCDWOA 1.16E− 94 2.68E− 82 8.18E− 82

F2

WOA 3.76E− 59 4.29E− 49 2.30E− 48
OWOA 8.72E− 58 3.71E− 50 9.41E− 50
OEWOA 8.88E− 68 2.26E − 59 1.15E − 58
IWOA 6.02E− 20 6.36E− 19 6.72E− 19

OCDWOA 1.85E− 63 1.86E− 56 4.92E− 56

F3

WOA 29331.39043 46962.31228 11654.1269
OWOA 23102.63585 45115.1214 9775.63579
OEWOA 10896.08787 37765.42249 12462.65209
IWOA 0.0204919 4.761001851 12.20526468

OCDWOA 9123.146589 30378.88003 11250.945

F4

WOA 2.845944535 53.98492009 28.64604813
OWOA 0.221683283 54.59717151 28.7671405
OEWOA 0.395500666 51.05649771 30.09654391
IWOA 2.53E− 05 1.43E − 03 1.46E − 03

OCDWOA 0.091259942 27.15705548 22.72468237

F5

WOA 27.05096579 27.98206458 0.492345074
OWOA 27.0462713 27.8628119 0.3574981
OEWOA 27.47961584 28.17255965 0.377986162
IWOA 24.72608991 26.21998458 1.236007685

OCDWOA 26.94330849 27.75236194 0.519791973

F6

WOA 0.039352423 0.308186276 0.178197178
OWOA 0.058900257 0.229444501 0.138575416
OEWOA 0.094203593 0.471932521 0.211010397
IWOA 0.132553897 0.634850188 0.363709611

OCDWOA 0.011880743 0.177746121 0.202309313

F7

WOA 7.31E− 05 3.49E− 03 4.08E− 03
OWOA 9.68E− 06 1.20E− 03 2.15E− 03
OEWOA 1.78E− 05 8.51E − 04 9.84E − 04
IWOA 0.001170766 0.004571304 0.003016255

OCDWOA 1.19E− 05 8.98E− 04 1.21E− 03

F8

WOA 0 5.68E− 15 2.29E− 14
OWOA 0 0 0
OEWOA 0 0 0
IWOA 0 22.36681071 24.91175078

OCDWOA 0 0 0

F9

WOA 8.88E− 16 4.32E− 15 2.55E− 15
OWOA 8.88E− 16 3.85E − 15 2.48E− 15
OEWOA 8.88E− 16 4.20E− 15 2.27E− 15
IWOA 2.22E− 14 4.29E− 14 1.27E− 14

OCDWOA 8.88E− 16 4.44E− 15 2.09E − 15

F10

WOA 0 0.014239143 0.055902557
OWOA 0 0.006369305 0.034886118
OEWOA 0 0 0
IWOA 0 0.005601519 0.009188179

OCDWOA 0 0.00307175 0.016824667

F11

WOA 0.003303307 0.020703883 0.013561528
OWOA 0.002886391 0.011523424 0.008134223
OEWOA 0.008832644 0.022931786 0.008957016
IWOA 0.01289871 0.04121751 0.023964971

OCDWOA 0.000984744 0.008086227 0.00817336
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Table 2: Continued.

Function Algorithm Best Mean Std

F12

WOA 0.091759692 0.476972639 0.2731912
OWOA 0.071293381 0.343978384 0.176667484
OEWOA 0.264598322 0.558788251 0.219290838
IWOA 0.360052384 0.826186996 0.250307701

OCDWOA 0.008972727 0.315016992 0.165937507

F13

WOA 0.998003838 3.087707817 3.643013869
OWOA 0.998003838 1.527492833 0.770156088
OEWOA 0.998003838 1.991064676 1.244254244
IWOA 0.998003838 5.491627348 4.859439425

OCDWOA 0.998003838 1.328819151 0.7056337

F14

WOA 0.000309354 0.000754701 0.000591433
OWOA 0.000308046 0.000692785 0.000506369
OEWOA 0.000308042 0.000599412 0.000433827
IWOA 0.000307494 0.005763864 0.008959844

OCDWOA 0.000308015 0.00068318 0.000396378

F15

WOA −1.031628453 −1.031628453 7.57E− 10
OWOA −1.031628453 −1.031628453 1.10E− 09
OEWOA −1.031628453 −1.031628453 5.29E− 10
IWOA −1.031628453 −1.031628453 2.29E− 10

OCDWOA −1.031628453 −1.031628453 3.68E − 11

F16

WOA 0.397887358 0.397894412 1.60E− 05
OWOA 0.397887358 0.397899721 2.59E− 05
OEWOA 0.397887358 0.397916992 0.000107977
IWOA 0.397887358 0.397887585 5.13E − 07

OCDWOA 0.397887358 0.397888516 2.38E− 06

F17

WOA 3.000000001 3.000043872 7.74E− 05
OWOA 3.00000002 3.000044635 0.000152146
OEWOA 3.000000001 3.000123665 0.000226823
IWOA 3 8.400000042 20.55035867

OCDWOA 3.00000001 3.000006355 1.60E − 05

F18

WOA −3.862688519 −3.857262065 0.007143618
OWOA −3.862781863 −3.861815423 0.003572799
OEWOA −3.862782142 −3.85726697 0.019011496
IWOA −3.862782147 −3.862521555 0.001426916

OCDWOA −3.862782147 −3.862775916 9.47E − 06

F19

WOA −3.321580972 −3.223597877 0.10220952
OWOA −3.321545137 −3.244143349 0.085289027
OEWOA −3.320833167 −3.213034803 0.091087411
IWOA −3.32199476 −3.270086944 0.060385879

OCDWOA −3.321994702 −3.278324784 0.058345799
)e bold values mean the best results.

Table 3: )e Wilcoxon rank-sum test results of OCDWOA and compared algorithms.

OCDWOA-WOA OCDWOA-OWOA OCDWOA-OEWOA OCDWOA-IWOA
Comparison +/�/− +/�/− +/�/− +/�/−
Result 14/5/0 10/9/0 11/6/2 10/4/5
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Figure 3: Continued.
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Figure 3: Boxplots of OCDWOA with respect to other algorithms. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f ) F6. (g) F7. (h) F8. (i) F9. (j) F10. (k)
F11. (l) F12. (m) F13. (n) F15. (o) F16. (p) F17. (q) F18. (r) F19. (s) F19.

Table 4: Values of the theoretical geological model.

VP (m·s−1) VS (m·s−1) ρ (g·cm−3)
Layer 1 1980 851 2
Layer 2 2185 1605 2.2
Layer 3 1983 856 2
Layer 4 2200 1622 2.2
Layer 5 2437 1510 2.3
Layer 6 2663 1380 2.4
Layer 7 1983 851 2
Layer 8 2437 1501 2.3
Layer 9 1980 856 2
Layer 10 2656 1380 2.4
Layer 11 1983 851 2
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In this paper, a theoretical geological model with 11
layers is established [47]. Each layer in the model contains 3
parameters: velocity of longitudinal wave (VP), velocity of
shear wave (VS), and density (ρ). )e values of model are

shown in Table 4.
In this paper, the reflection coefficients of the model will

be calculated by Zoeppritz equation as follows:

RP
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, (17)

where VP1, VS1, and ρ1 are the parameters of the up-layer,
VP2,VS2, and ρ2 are the parameters of the low-layer, θ1 and θ2
are the incident angle and the refraction angle of the P-wave,
respectively, and Φ1 and Φ2 are the incident angle and the
refraction angle of the S-wave, respectively.
Φ1, θ2, and Φ2 are calculated as follows, respectively:

ϕ1 � arc sin θ1(  ×
VS1

VP1
 ,

θ2 � arc sin θ1(  ×
VS2

VP1
 ,

ϕ2 � arc sin θ1(  ×
VP2

VP1
 .

(18)

Incident angles θ1 of 50 reflection coefficients are from 1°
to 50°.)e 50 seismic records are obtained by convolving the
reflection coefficients with the Ricker wavelet with 35Hz as
follows:

S � R∗Rw, (19)

where S is the seismic record, R is the reflection coefficient,
and Rw is the ricker wavelet (35Hz).

)e 50 seismic records will be divided into three groups.
)e three groups are small incident angle group (Group 1),
medium incident angle group (Group 2), and large incident

angle group (Group 3). Group 1 consists of the seismic
records whose incident angles are from 1° to 15°. Group 2
consists of the seismic records whose incident angles are
from 16° to 32°. Group 3 consists of the seismic records
whose incident angles are from 33° to 50°. Superimposed
seismic records S1, S2, and S3 are obtained by synthesizing
three groups of seismic records, respectively. )e super-
imposed seismic records S1(X), S2(X), and S3(X) of the
solution X are obtained the same way as the model.

)e fitness of the solution X is expressed as follows:

FSI(X) �
1
3

S1(X) − S1
����

����2 + S2(X) − S2
����

����2 + S3(X) − S3
����

����2 . (20)

4.3.2. Experiment Results. )e experiment is repeated 10
times for each algorithm. Table 5 shows the best fitness,
mean fitness, and standard deviation of test results on
seismic inversion problem. )e convergence curves and
boxplots are shown in Figure 4. From the test results, the
performance of OCDWOA for seismic inversion problem is
the best.

In Table 5, the best fitness, mean fitness, and standard
deviation of OCDWOA are all obviously smaller than those
of the comparative algorithms. In Figure 4(a), the conver-
gence rate of OCDWOA is better than those of the com-
parative algorithms. )e convergence curve of OCDWOA is

Table 5: Results of different algorithms.

Problem Algorithm Best Mean Std

Seismic inversion

WOA 0.007178754 0.0124127116 0.0038698430
OWOA 0.006168262 0.0119509070 0.0053173170
OEWOA 0.006901579 0.0112028011 0.0035417924
IWOA 0.006136581 0.0128976065 0.0041582246

OCDWOA 0.002662229 0.0055975119 0.0019518514
)e bold values mean the best results.
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stable. In Figure 4(b), the stability of OCDWOA is the best
among the comparative algorithms.

5. Conclusions

In this paper, amodifiedWOAnamedOCDWOA is proposed.
In order to balance the exploitation phase and exploration
phase, a nonlinear parameter design is used. OBL, DE operator,
and a density-based clustering strategy are introduced into the
proposed algorithm to improve the performance of the search
phase and the ability of jumping out of the local optimal so-
lution. )e proposed algorithm is tested on 19 optimization
benchmark functions and a seismic inversion problem. )e
proposed algorithm is compared with WOA and the other
three variants of WOA. Experimental results show that the
proposed algorithm can enhance the performance of WOA
and is better than other compared algorithms.

Our future work will pay attention to the following two
points: first, we would like to research the relation between the
parameters and the performance of theOCDWOA. Second, we
would like to apply the OCDWOA to machine learning.
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