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With the rapid development of power grids, it is essential for these grid enterprises to pay more and more attention to the
comprehensive reduction of power loss. Due to a large number of medium voltage power network based on distribution
phenomenon nodes and power loss, it is di�cult to collect accurate data of more than 20% of the total power loss of the network
based on distribution phenomenon. Based on the above problems, it is signi�cant to propose a method to quickly and accurately
predict the losses in line of the 10 kV network based on distribution phenomenon. �e improved BP neural network model and
adaptive evolutionary algorithm programming can e�ectively analyze the 10kV transmission and distribution problems and
reduce the line loss in the transmission project. �e line loss prediction model mainly includes data cleaning, electrical
characteristic index system, determination of the number of nodes in the BPNN hidden layer, and losses in line prediction. For
this purpose, AGA-BPNN is proposed in this paper. Additionally, cable quality, power factor management, and reduction
resistance are some parameters that can help lower the losses in lines. �e author studies the performance of the losses in the line
prediction model before and after the improvement of BPNN to validate the application impact of the AGA-BPNN algorithm in
losses in line prediction of a 10 kV network based on distribution phenomenon. �is technique has bene�ts of rapid convergence
and great accuracy over ordinary BPNN. �e simulation and computation of the example validate the suggested approach.

1. Introduction

�e size of the network based on distribution phenomenon
and the amount of power equipment rise in tandem with the
economy. Because of its high proportion (more than 20%) in
the entire power network grid, it is vital to decrease losses in
the 10 kV network line based on distribution phenomena. In
addition, due to the popularity of automatic data acquisition
equipment, traditional losses in line computation methods
are incapable of mining the relationship between vast
amounts of data and losses in line. As a result, arti�cial
intelligence algorithms are increasingly being utilized to
assess 10 kV network based on distribution phenomenon
losses in line. For this purpose, the selection of control
parameters in genetic algorithms is essential. �e 10 kV
system has been used as a test subject. Di�erent selection of
control parameters will signi�cantly impact the performance
of genetic algorithms [1]. In the optimization process,

crossover probability plays a leading role in the genetic
operation. It controls the frequency of the crossover oper-
ation. A signi�cant crossover probability can fully cross the
generations of the population, but the possibility of de-
struction of the excellent model in the population increases,
resulting in signi�cant di�erences between the previous and
subsequent generations, to make the search move towards
aimless randomization. If the crossover probability is lower,
the di�erence between generations is more negligible, so a
continuous solution space is maintained. It also raises the
chances of obtaining the best global answer.�e second issue
is that the rate of population evolution is too slow [2, 3]. If
the crossover probability is too low, more individuals will be
copied directly to the next generation, and the genetic search
may be at a standstill [4]. An adaptive genetic algorithm
(AGA) was proposed by Srinivas [5]. �e basic idea is that
the crossover and mutation probability can change with the
change in �tness. When each individual's �tness in the
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population tends to be consistent or locally optimum, the
crossover and mutation probabilities are increased to avoid
slipping into local optimization, which results in an early
phenomenon. When each individual's fitness in the pop-
ulation is somewhat dispersed, the crossover and mutation
probabilities are lowered, killing the good and conserving
the bad [6].

(e power generation and transmission system
transmits power to users through the network based on
distribution phenomenon, and the network based on
distribution phenomenon is directly connected to users at
the end of the power network. Due to the characteristics of
low voltage levels, aging equipment, and extended power
supply radio, the losses in line of the network based on
distribution phenomenon are more serious, accounting
for more than 20% of the losses in line of the power
network at each voltage level [7, 8]. In addition, due to the
problems of many branches of 10 kV network based on
distribution phenomenon lines, various load properties,
incomplete historical data, and detailed losses in line
statistics, the automation degree of a distribution system
is relatively backward compared with the leading trans-
mission network, and the detailed calculation parameters
and data of losses in line are difficult to be accurately
collected. However, the traditional theoretical losses in
the line calculation method requires detailed network
based on distribution phenomenon structure parameters,
physical equipment parameters, and power grid operation
parameters. (is conventional approach necessitates a
large labour and a lot of material resources, yet it has a low
computation accuracy [9]. (erefore, how to accurately
predict and evaluate the losses in line of a network based
on distribution phenomenon has become the main
influencing factor in identifying the losses in line of a
network based on distribution phenomenon and provides
a practical reference to the formulation of measures to
reduce the losses in line of the network based on distri-
bution phenomenon. It is one efficient method for re-
ducing network line rate losses due to distribution
phenomena and improving operational efficiency. (e
advantage of AGA-BPNN’s weight and threshold method
is that the weight and threshold of the traditional BP
neural network (BPNN) to be optimized are globally
searched for the optimal solution by AGA, and the op-
timal chromosome is reassigned to BPNN to obtain the
trained network, which overcomes the shortcomings of
the traditional gradient descent method. It is easy to fall
into local minimum and slow convergence speed and
improves the accuracy of losses in line prediction [10]. (e
examination of actual sample data from a 10 kV network
based on distribution phenomenon in a given area reveals
that the proposed technique has excellent validity, rea-
sonableness, and practicability, according to the final
results.

(e rest of the research paper is organized as follows.
Section 2 explains the AGA-BPNN, its initialization,
adaptive variations, and other functions. Section 3 sheds
light on losses in line prediction and its methodology.
Section 4 contains the conclusion of this research.

2. AGA-BPNN (Adaptive Genetic Algorithm-
Backpropagation Neural Network)

(is section describes the AGA initialization, adaptive
variation on crossover probability and mutation probability,
AGA fitness function, and convergence conditions. AGA-
BPNN model is used to predict the line loss of 10kV power
grid. (ese functions will help explain the complete process
of adaptive genetic algorithm-backpropagation neural net-
work. (e explanation is as follows.

2.1. AGA Initialization. Set maximum generation selection
times of AGA as N. (e weight and threshold of BPNN are
encoded in real numbers to construct the chromosome of
AGA, as shown in Figure 1.

Initialize the population K possessing P chromosomes.
(e P chromosome in the population i is Pi, i ∈ [1, K],
which constitutes a set of feasible solutions to the weight and
threshold of BPNN.

D � n × m + n × l + n + l, (1)

where n is the determined number of hidden layer nodes, m

is the number of input layer nodes, and l is the number of
output layer nodes.

2.2. Adaptive Variation on Crossover Probability and Muta-
tion Probability. (e traditional genetic algorithm adopts
fixed crossover probability and mutation probability, which
is not conducive to the population’s diversity and the al-
gorithm’s convergence [11]. AGA is used to dynamically
adjust the crossover and mutation probabilities with pop-
ulation evolution in order to represent the demands for
optimization in different evolutionary periods and improve
the algorithm’s search efficiency and performance. (e
crossover probability Pc and mutation probability Pm

change dynamically with the evolution of the population, as
shown in the following equation:

Pc �

Pc1 − Pc2

1 + Kc

+ Pc2, f≤fav,

Pc2, f≤fav,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

kc � exp C 1 −
2 f′ >fav( 

fav − fmin
  ,

Pm �

Pm1 − Pm2

1 + Km

+ Pm2,

Pm1,

f>fav,

f≤fav,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

kc � exp C 1 −
2 f>fav( 

fav − fmin
  ,

(2)

where f is the fitness of the individual to be mutated, fav is
the average fitness of all individuals in the population,fmin is
the smallest individual fitness in the population, Pc1, Pc2,
Pm1,Pm2, andC are constants,Pc1 is 0.9 or 1, Pc2 is a constant
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in the interval [0.5, 1], Pm1 is 0.1, Pm2 is a constant in
[0.05, 0.1], and C is 0.90.

2.3. AGA Fitness Function and Convergence Conditions.
Set the total number of sample lines of the 10 kV network
based on distribution phenomenon asp, j is one of the
sample lines j ∈ [1, p], the chromosome Pi (the weight and
value of BPNN) optimized by AGA iteration is reassigned to
BPNN to create the optimized network, and the losses in line
evaluation value j of the line are gained after entering the
electrical index data of the yij sample line. If the true value of
the losses in the sample line is yij, the fitness function F(i) of
AGA is defined as

F(i) �
1
p



p

j�1
yij − yij 

2
Fmin � min(F), (3)

where i ∈ [1, K] and K are AGA population sizes, and the
convergence criterion of AGA is set as follows:

Fmin ≤ a, (4)

where Fmin is the mean square deviation from the losses in
line evaluation value yij of AGA-BPNN algorithm and the
actual losses in line value yij. (e smaller the value of Fmin,
the closer the algorithm’s evaluation value for losses in line
and the lesser the actual loss in line value.

2.4. AGA-BPNN Line Loss Prediction Model. According to
the set fitness function F, the advantages and disadvantages
of each chromosome of the population of the AGA algo-
rithm are evaluated, and the selection, crossover, and mu-
tation operations are carried out to realize the continuous
evolution of the population [12]. (e convergence condition
of the AGA algorithm is that the chromosomes in the
population meet formula (4) or the number of iterations of
the algorithm reaches the setN. After the final optimization
of AGA, the weights and thresholds that meet the set
convergence conditions are assigned to BPNN to obtain the
final AGA-BPNN losses in the line prediction model. (en,
input the electrical characteristic index data on the test
sample set into the established losses in line prediction
model to obtain the losses in line evaluation value yij. By
comparing and assessing the relative error percentage of the
losses in line evaluation value yij, yij of the test sample set
and the actual losses in line values yij, EC analyzes the

prediction accuracy and calculation speeds of the losses in
line prediction model.

EC �
yij − yij





yij

× 100. (5)

2.5. Losses in Line Prediction of 10 kV Network Based on
Distribution Phenomenon. After the test of the step test
sample set, the established 10kV network based on distribution
phenomenon losses in line prediction model has good pre-
diction performance. (e model can be applied to losses in line
prediction. (e electrical characteristic index data onto 10kV
losses in line with unknown losses in line are inputted into the
losses in line prediction model to obtain the losses in line
prediction value.(e basic idea behind utilizing AGA-BPNN to
forecast losses in line rate of a 10kV network based on dis-
tribution phenomenon is to abstract the losses in line prediction
problem of a 10kV network based on distribution phenomenon
from a regression analysis problem, take the electrical charac-
teristic index as the independent variable of the regression
analysis problem, and take the losses in line of 10kV network
based on distribution phenomenon as the dependent variable.
(rough AGA-BPNN learning of the training sample set and
fitting the nonlinear relationship between the independent
variable and the dependent variable to evaluate the online loss
rate of the test sample set, the unknown online loss can be
effectively predicted.

3. Losses in Line Prediction

(is section explains the data cleaning, electrical charac-
teristic index, determining the BPNN hidden layer nodes,
and the improvement effect of AGA on BPNN. After ana-
lyzing all these parameters, we will be able to accurately
predict the losses in lines. (e complete explanation is as
follows.

3.1. Data Cleaning. (e original big data directly collected
from the existing 10 kV network based on distribution
phenomenon usually has the characteristics of incom-
pleteness, inconsistency, and content fuzziness [13]. It is
challenging to meet data analysis requirements of reducing
losses in line and energy saving in the network based on
distribution phenomenon. (erefore, it is necessary to clean
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the original data to improve the data quality and ensure the
reliability of data analysis. Abnormal conditions in the
process of data acquisition may lead to abnormal data. It will
cause varying degrees of interference in the subsequent data
analysis, resulting in inaccurate or even wrong data analysis.
(e data must be processed and cleaned [14, 15]. To more
efficiently and reliably enhance data quality and validate the
beneficial impact of BPNN, this paper uses the data cleaning
method based on K-nearest neighbor to clean the data
collected from the 10 kV network based on distribution
phenomenon and verifies the effect of data cleaning with the
actual data. (e data cleaning designed by the author in-
cludes four steps.

(i) (e first step is to check the dataset and eliminate
the duplicate data onto the dataset, to reduce the
data analysis workload.

(ii) (e second step is the data integrity test to improve
the accuracy of data analysis.

(iii) (e third step is to check the validity and consis-
tency of data to reduce the interference of un-
qualified data in data analysis.

(iv) (e outlier detection algorithm based on the
K-nearest neighbor is proposed in the final step.

3.2. Electrical Characteristic Index. After data cleaning, the
error data, defect data, and outlier data in the original data
are eliminated. (e quality of experimental data has been
dramatically enhanced to meet the requirements of algo-
rithm verification. Using an existing 10 kV network based on

distribution phenomenon as an example, the best electrical
condition indicators in this paper are monthly active power
supply, public transformer monthly active power supply,
monthly reactive power supply, total capacity of the public
transformer, and number of public sets with the most ex-
tended compact length [16]. (ese usual electrical indica-
tions are considered the AGA-BPNN input, and the losses in
line of the 10 kV network based on distribution phenom-
enon are considered the AGA-BPNN output [17, 18].

3.3. Determining the Number of BPNN Hidden Layer Nodes.
BPNN includes the input layer, hidden layer, and output
layer. (e input layer and output layer have only one layer.
Once the research object is determined, the number of nodes
is also determined; that is, the number of nodes in the input
layer varies on the number of electrical condition indicators,
and the number of nodes in the output layer is 1. (e
number of hidden layers and nodes is often challenging to
determine. (eoretically, it has been demonstrated that a
three-layer BPNN may approach any non-linear function
with any precision. Considering the complexity of the
network, one hidden layer is generally used. (e selection of
the number of hidden layer nodes is shown in Figure 2.
Firstly, due to the stated problems, this paper uses the
empirical formula to practically determine the proper
number of hidden layer nodes and then uses the (x) cross
method to further determine the number of hidden layer
nodes combined with the actual data of a 10 kV network
based on distribution phenomenon, using the following
empirical formula:

n �

���������������������������������������

0.43m + l + 0.12l
2

+ 2.54m + 0.77l + 0.35 + 0.51


n � n, (6)

where n is the determined number of hidden layer nodes, m

is the number of input layer nodes, and l is the number of
output layer nodes. When calculating the value of n, round
up n,.

According to formula (6) and the number of electrical
characteristic indexes adopted by a 10 kV network based on
distribution phenomenon, the number of BPNN hidden
layer nodes determined is

n � ⌈0.43m + l + 0.12l2 + 2.54m + 0.77l + 0.35⌉ + 0.51

� ⌈0.43m + l + 0.12 × 12 + 2.54 × 6 + 0.77 × 1 + 0.35⌉ + 0.51

� ⌈4.86⌉ � 5.

(7)

In the vicinity of 5 nodes in the hidden layer of 10kV
distribution network, BPNN with different structures are
used to learn and predict the sample data to find the best BP
neural network structure. Figure 3 depicts the computation
results.

As can be seen from Figure 3, for a 10 kV network based
on distribution phenomenon, when the online evaluation

error of BPNN is the smallest, the online prediction per-
formance is the best. (erefore, the number of hidden layer
nodes n is identified as 6; when n is greater than the de-
termined optimal value, the BPNN losses in line prediction
model are over-adapted. When n is less than the determined
optimal value, the BPNN losses in line prediction model are
under-fitted. In both cases, the losses in line evaluation error
will decrease from the increase in the distance between n and
the optimal value.

3.4. Improvement Effect of AGA on BPNN. In order to an-
alyze the improvement effect of AGA on BPNN, three
hundred and thirty lines of a 10 kV network based on
distribution phenomenon are divided into a training sample
set and a test sample set according to the ratio of 10 :1 to
satisfy the open set test criteria. (rough comparative
analysis, we found that AGA-BPNN had the smallest online
loss. (e results are shown in Table 1.

From the distribution of losses in line evaluation errors
of test samples in Table 1, under different convergence
criteria, the proportion of lines with losses in line evaluation
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Table 1: Evaluation error distribution of test sample set.

Prediction relative error EC (%) EC< 5 5≤EC< 10 EC≥ 10

Convergence criterion ε

0.0035 AGA-BPNN 35 50 15
BPNN 20 20 60

0.004 AGA-BPNN 40 20 40
BPNN 15 25 60

0.005 AGA-BPNN 45 15 40
BPNN 20 15 65

0.006 AGA-BPNN 25 45 30
BPNN 20 10 70

Table 2: Losses in line evaluation results of test sample set (unit: 104 kW · h/%).

Line number Actual losses in line value
Losses in line prediction

AGA-BPNN BPNN
Estimate Error Estimate Error

No.14 2.523 2.523 2.504 0.75 2.835
No.18 5.488 5.488 5.438 0.91 5.121
No.59 2.215 2.215 2.394 8.08 1.578
No.67 3.054 3.054 2.995 1.93 3.602
No.115 3.896 3.896 4.106 5.39 4.437
No.136 3.156 3.156 3.150 0.19 3.370
No.212 2.476 2.476 2.457 0.77 2.631
No.244 0.703 0.703 0.619 11.95 1.014
No.269 0.773 0.773 0.800 3.49 0.991
No.294 0.571 0.571 0.552 3.33 0.852
No.326 0.768 0.768 0.674 12.24 1.046
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error less than 5% AGA-BPNN is more significant. And
AGA-BPNN with evaluation error greater than 10% is less
than BPNN. (erefore, the overall accuracy of losses in line
evaluation of AGA-BPNN is higher than that of BPNN.
Taking the convergence criterion of 0.005 as an example, the
losses in line evaluation results in AGA-BPNN and BPNN
are further analyzed. (eir average evaluation errors are
7.12% and 22.77%, respectively. (e losses in line evaluation
results of the test sample set are shown in Table 2 and
Figure 4.

In Figure 4, the AGA-BPNN evaluation value is closer to
the actual losses in line value as a whole, and the accuracy of
the AGA-BPNN algorithm is higher.

4. Conclusion

In this paper, the isolated points in the original data are
detected and eliminated by data cleaning technology, pro-
viding the groundwork for theoretical study into losses in
line prediction in a 10 kV network based on distribution
phenomenon.(en, the best electrical characteristic index of
the 10 kV network based on distribution phenomenon is
introduced as the input of AGA-BPNN, and the best net-
work structure of BPNN is determined by using the cross-
verification method, trial and error method, and actual data
prediction verification. Based on the distribution phe-
nomenon, the test sample set prediction results and the
distribution of prediction results of a 10 kV network were
analyzed, the better improvement effect of AGA on BPNN is
verified, and the application effects of four standard neural
networks in losses in line prediction of 10 kV network based
on distribution phenomenon are compared and analyzed.
Taking a 10 kV network based on distribution phenomenon
as an example, it is found that AGA-BPNN has better ac-
curacy and convergence. Finally, the AGA-BPNN method is
applied to losses in line prediction to verify the practicability
of the proposedmethod. It can be seen that this paper applies

the proposed method of a 10 kV network based on distri-
bution phenomenon and takes the line of unknown losses in
line as an example to predict the losses in line, which has
high practical significance.

At the moment, we should focus on various factors in
AGA, such as population size, selection operator, chro-
mosomal cod mode, and so on. (e author employs the
empirical findings of his investigation. Future research
should investigate the influence of these factors on the
optimization abilities of genetic algorithms in different
populations and evolutionary stages, as well as the optimal
values of these parameters under various scenarios. In ad-
dition, there is still much room for improvement in AGA.
(e author believes that it can be improved in the two cases
of premature and local convergence. So far, there are mature
methods of small-scale path analysis, but if there is a large
population, the application of the current method will be
limited, and there will be evolutionary stagnation or linear
programming.
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