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Vehicle interior noise is a harmful sound formed in the vehicle interior under the influence of engine noise, transmission system
noise, and body radiation noise during vehicle operation. The intensity of noise in the vehicle increases with the increase of vehicle
speed and engine speed, which worsens the operating environment of the vehicle and does harm to the mood, spirit, and
physiology of drivers and passengers. Because the noise is difficult to identify in the process of vehicle vibration signal
recognition, aiming at the problem of vehicle vibration signal detection under the background of strong noise, combined with
the characteristics of vehicle vibration signal, the variable step size LMS algorithm is applied to vehicle noise and vibration
signal recognition. In this paper, based on the signal eigenvalues obtained from the vibration signal characteristics in the noise
and vibration signal, the eigenvalues of the vehicle noise can be extended from the frequency domain to the complex plane
through the operation of the variable step size LMS, and the separation law corresponding to the extended vibration intensity
can be used at the same time. It is used to obtain data by the signal variable step size LMS algorithm, and the obtained optimal
separability feature is used as the characteristic parameter of the vibration signal. Finally, the results of an example analysis
show that the algorithm proposed in this paper can be used to identify different types of vehicle noise and vibration signals,
has a certain anti-interference performance against noise, and can improve the recognition rate of vehicle noise and vibration
signals.

1. Introduction

Vibration signal recognition is one of the key methods in the
vehicle noise and vibration signal recognition industry. It
has been widely used in various fields. The signal, as a carrier
of information and data transmission, contains the charac-
teristics of noise interference, which can realize the accurate
identification and detailed analysis of vehicle noise and
vibration signals, obtain the characteristics of vehicle noise
and vibration signals, and provide a basis for the effective
identification of subsequent vehicle noise and vibration sig-
nals [1]. Currently, in order to accurately identify the noise
and vibration signals of the vehicle, the characteristics of
the vibration signal of the vehicle noise and vibration signal
are generally selected to comply with the characteristics of
no change in time shift, no change in size, and no change
in phase. On the basis of meeting the above conditions, sig-
nal noise vibration signal analysis also needs to maintain

high antinoise performance and has been widely used in dif-
ferent industries. Because the noise and vibration signal
analysis process is relatively simple, the amount of computa-
tion is less, and the high-order spectrum analysis character-
istics are maintained simultaneously, so this signal analysis
process is widely used in the field of vehicle noise and vibra-
tion signal processing.

As one of the key methods in the current vehicle driving
industry, vehicle noise and vibration signal recognition has
been widely used in various industries and military fields.
As the carrier of information data transmission, the signal
contains the characteristics of the radiation source, which
can realize the accurate identification and detailed analysis
of the vehicle noise and vibration signals and obtain the bis-
pectral characteristics of the vehicle driving radiation source,
which provides a basis for the effective identification of the
subsequent vehicle noise and vibration signal radiation
source [2, 3]. In order to accurately identify the vehicle noise
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and vibration signal, the bispectral characteristics of the
vehicle noise and vibration signals are generally selected to
comply with the characteristics of no change in the time
shift, size, and phase. Signal bispectral analysis not only
needs to meet the above conditions but also needs to main-
tain high antinoise performance and has been widely used in
different industries. Since the bispectral analysis process is
relatively simple, the amount of computation is less, and
the high-order spectrum analysis characteristics are main-
tained simultaneously, so it is widely used in the field of
vehicle noise and vibration signal processing. Based on the
bispectral quadratic feature of vehicle noise and vibration
signals in the root system, the bispectral quadratic feature
of the complex diagonal tangent of the signal is obtained.
Due to the different recognition accuracy of high-
performance computing subpaths, the variable step LMS
algorithm can be used to obtain the eigenvectors of vehicle
noise and vibration signals from the high-performance com-
puting results [4–6]. Due to the problem of noise and vibra-
tion signal recognition during vehicle driving, the variable
step LMS algorithm is applied to the vehicle noise and vibra-
tion signal recognition algorithm. According to the signal
eigenvalues obtained by the diagonal slice bispectrum in
the noise vibration signal, the Chiro-Z operation can be used
to extend the eigenvalues of the bispectral diagonal slices
from the frequency domain to the complex plane, and
meanwhile, the separating degree law corresponding to
extended Bhattacharyya distance is used, to obtain data with
the signal variable step size LMS algorithm, and the optimal
separable degree feature obtained is used as the bispectral
feature parameter value, and the support vector machine is
used for testing simultaneously [7]. The radiation source
noise is mainly caused by the transmitter noise during the
driving process of the vehicle, which generally refers to the
abnormal changes caused by the amplitude, frequency, pulse
width, and repetition frequency of the vehicle noise vibra-
tion signal; that is, the noise from the radiation source is
resulted from the stability of the signal during the vehicle
driving process. Signal instability can be roughly divided
into two types: regularity and randomness [8, 9]. The insta-
bility of regularity is mainly caused by insufficient power
supply filtering and mechanical jitter. Random instability is
caused by the noise generated by the transmitter tube and
the random jitter of the modulated pulse. Nowadays, the
standards for vehicle noise and vibration signals are gradu-
ally improving, and at the same time, the requirements for
the stability of the transmitter are also increased. Therefore,
the large-scale use of main vibration amplifying transmitters
will generate noise mainly in the following three aspects: (1)
frequency domain distortion due to the amplitude-
frequency characteristics and phase characteristics of the
amplification chain. (2) The top of the modulated pulse
vibrates and the top begins to drop, which corresponds to
the time-domain distortion phenomenon caused by the par-
asitic phase or amplitude of the signal caused by the power
supply fluctuation of the transmitter. (3) Due to the insuffi-
cient frequency stability of the main control oscillator, the
phase stability is insufficient. Due to the different circuits
or devices used by different vehicle running transmitters,

the noise of different vehicles running transmitters is differ-
ent. Therefore, the incompatible modulation of the vehicle
noise vibration signal pulse is due to the transmitter noise,
because the noise is caused by different kinds of spurious
modulation. Vehicle noise and vibration signals present dif-
ferent signal characteristics [10, 11].

In this paper, based on the vibration intensity of the
vehicle noise and vibration signal, the vibration intensity of
the signal paired noise signal is obtained. Due to the differ-
ent recognition accuracy of different high-performance
computing subpaths, the variable step LMS algorithm can
be used to obtain the eigenvectors of vehicle noise and vibra-
tion signals according to the high-performance computing
results. The final experimental results show that the vibra-
tion intensity criterion is used to conduct the quadratic rec-
ognition of the characteristics of vehicle noise and vibration
signal, and the method has certain practicability.

2. Correlation Algorithm

2.1. Calculation of Noise and Vibration Signal. The noise and
vibration signals are obtained due to the two-dimensional
Fourier transform of the third-order cumulant. The calcula-
tion process is relatively simple. It can describe the nonlinear
characteristics of the vehicle noise and vibration signals in
the transmission process. Compared with the power spectrum,
the noise and vibration signals can provide the phase. In the
information, it has received a lot of references in the character-
istic analysis of vehicle noise and vibration signals. In the cal-
culation process of zero mean stable and random, the noise
and vibration signals are set as Bxðω1, ω2Þ; we can get

Bx ω1, ω2ð Þ = 〠
∞

τ1=−∞
〠
∞

τ2=−∞
c3x τ1, τ2ð Þe−j ω1τ1+ω2τ2ð Þ: ð1Þ

However, in actual engineering, the vehicle noise and
vibration signals are all discrete finite signals, and for the dis-
crete determined signal xðkÞ, the following noise and vibration
signals can be obtained:

c3x τ1, τ2ð Þ = E x tð Þx t + τ1ð Þx t + τ2ð Þf g,
Bx ω1, ω2ð Þ = X ω1ð ÞX ω2ð ÞX∗ ω1 + ω2ð Þ:

ð2Þ

In the formula, the Fourier transform of the discrete time
signal xðkÞ is performed. According to the nature of dual spec-
trum, there are six symmetry lines in the range of dual spec-
trum, symmetry line,Xðω1Þω1 = ω22ω1 = −ω2, 2ω2 = −ω1,
ω1 = −ω2, ω1 = 0, and ω2 = 0. As shown in Figure 1, the full-
duplex spectral region is divided into 12 regions.

The identification and analysis of vehicle noise and
vibration signals are shown in Figure 1, which is divided into
two steps [12]:

Step 1. Calculate the energy of each segment of the received sig-
nal sequence divided by lengthNyj =∑N1

i=1jxjN1
+ ij2N =N1N2.

Then, it will be used to find the likelihood ratio of the
sequential test.
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Step 2. Calculate the inspection statistics ΛK =∑K
j=1λjyj and

1 ≤ K ≤N2, and compare them with the thresholds A and
B and make a judgment. If B <ΛK < A is always established
and the judgment cannot be made, to ensure that the inspec-
tion result is obtained within the limited sampling signal
point, we adopt the change. The step size LMS algorithm
compares the statistics with the truncation threshold C and
makes a decision, namely,

ΛN2
= 〠

N2

j=1
λj

≥C, acceptH1,
<C, acceptH0:

(
ð3Þ

2.2. Analysis of Average Sample Size. Below, we derive and
analyze the average sample size of the proposed algorithm
in a complex electromagnetic environment and calculate
the mathematical expectation for the low signal-to-noise
ratio (ρ≪ 1) and the likelihood ratio of N1 > 10:

E λj H0j� �
≈−0:5N1ρ

2 − ρ,

E λj H1j� �
≈ 0:5N1ρ

2 + 0:5ρ:

(
ð4Þ

By substituting formula (4) into formula (1), the average
capacity samples under the dual hypothesis test conditions
can be obtained as follows:

ASNH0
=N1E N2 H0jð Þ = −

αA + 1 − αð ÞB
0:5ρ2 + ρ/N1

,

ASNH1
=N1E N2 H1jð Þ = 1 − βð ÞA + βB

0:5ρ2 + 0:5ρ/N1
:

8>>><
>>>:

ð5Þ

In summary, the results show the sample ASN, segment
length, and received noise ratio of the successive inspection cal-
culationmethod. Therefore, ASN andN1 want to obtain higher
detection results in a complex background, propose the corre-
sponding relationship of the calculation method, and conduct
an important discussion on the detection of this performance.

Conclusion 1. When the electromagnetic is in the (ρ≪ 1)
cognitive network, the calculation method for segmented
energy processing uses the average capacity sample ASN,
which is affected by the false alarm probability of the system:

α and leak detection probability β, and when the received
signal-to-noise ratio is proportional to the fragment length,
ρ is inversely proportional.

Summarizing to reduce the average sample size of the
calculation method, the smaller segment length N1 should
be selected first, provided that N1 meets the limiting stan-
dard of the central limit.

2.3. Discussion on the Best Truncated Threshold. In the suc-
cessive inspection algorithm, the inequality B <ΛK < A
related to the inspection statistics is always established
within a certain inspection time, and the determination
may not be possible. In order to obtain the inspection result
within the limited inspection time, finally the inspection sta-
tistics are compared with the reduced threshold C to obtain
the final judgment result. The following analysis of the
threshold C will be discussed [13, 14]. The probability den-
sity function of the test statistics for checking the statistical
quantity, the following inequalities describing the false alarm
probability, and the probability of missed detection of the
variable step size LMS algorithm are established:

α N2ð Þ ≤ α + exp B − 1
exp B − exp A

ðA
C
f ΛN2

H0j� �
dΛN2

,

β N2ð Þ ≤ β + exp B 1 − exp Að Þ
exp B − exp A

ðC
B
f ΛN2

H1j� �
dΛN2

:

8>>><
>>>:

ð6Þ

Among them, please refer to the appendix for the
detailed derivation process of determining f ðΛN2

jH0Þ and
f ðΛN2

jH1Þ. In order to obtain the best detection perfor-
mance, αðN2Þ + βðN2Þ must be forced to the minimum
value. Therefore, C is selected to minimize the sum of the
terms on the right side of the equation, namely,

min G Cð Þ = exp B − 1
exp B − exp A

S0 +
exp B 1 − exp Að Þ
exp B − exp A

S1, ð7Þ

where S0 and S1, respectively, represent the definite inte-
gral term in equation (6). Taking the derivative of equation
(7) G′ðCÞ = 0 to solve the equation f ðCjH0Þ/f ðCjH1Þ =
expBð1 − exp AÞ/exp B − 1, we can approximate the best trun-
cation threshold in the lowest signal-to-noise ratio (ρ≪ 1)as

C = −0:25N2ρ + AB + Bð Þ 0:25 − ρN1 + ρ2 N1 +N2
1

� �
N2 N1ρ

2 + 1:5ρð Þ : ð8Þ

In summary, the received signal is used to divide the
energy and analyze the mentioned vehicle noise signal identi-
fication and arrange the calculation method. The normal
deployment process is detected and merged successively, and
the calculationmethod and reasoning below are relatively sim-
ple. At the same time, by adopting the restriction of reduction,
it can be determined that the ideal detection result can be
obtained from the detection within the specified time range.
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Figure 1: Schematic diagram of symmetry axis of noise and
vibration signals.
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3. Recognition and Analysis of Vehicle Noise
and Vibration Signals

In the process of vehicle noise and vibration signal recogni-
tion, noise interference is mainly caused by transmitter
noise. Generally, it refers to abnormal changes caused by
the amplitude, frequency, pulse width, and repetition fre-
quency of vehicle noise and vibration signals; that is, the sta-
bility of the vehicle noise and vibration signal recognition
signal leads to the noise interference. Signal instability can
be roughly divided into two types: regularity and random-
ness. The instability of regularity is mainly caused by insuf-
ficient power supply filtering, mechanical jitter, etc. Random
instability is the random jitter of the noise generated by the
transmitter tube and the modulation pulse.

The noise output from the vehicle noise and vibration
signal identification transmitter indicates more non-
Gaussian and nonlinear characteristics, and the noise and
vibration signal analysis can maintain the amplitude and
phase information of the signal, while interference
completely suppresses the influence of Gaussian noncolor
noise on non-Gaussian signals. Bispectral can be used for
the extraction of unconscious modulation features. The con-
cept of the following noise and vibration signals is given.

Assume that the high-order cumulant ckxðτ1, τ2,⋯,τk−1Þ
is absolutely summable, namely,

〠
∞

τ1=−∞
⋯ 〠

∞

τk−1=−∞
ckx τ1,⋯,τk−1ð Þj j <∞: ð9Þ

The k-order spectrum is defined as the (k-1)-order dis-
crete Fourier transform of the k-order cumulant, namely,

Skx ω1, ω2,⋯,ωk−1ð Þ = 〠
∞

τ1=−∞
⋯ 〠

∞

τk−1=−∞
ckx τ1,⋯,τk−1ð Þ

× exp −j ω1τ1+⋯+ωk−1τk−1ð Þ½ �:
ð10Þ

Then, the noise vibration signal, the third-order spec-
trum, can be defined as

Bx ω1, ω2ð Þ = 〠
∞

τ1=−∞
〠
∞

τ2=−∞
c3x τ1, τ2ð Þ exp −j ω1τ1 + ω2τ2ð Þ½ �:

ð11Þ

From the noise vibration signal in the estimation, the
signal noise oscillation signal including phase noise can be
obtained. The discrete noise signal received by the recon-
naissance aircraft is wðnÞ Gaussian white noise signal in
the formula of xðnÞ = sðnÞ + wðnÞ. sðnÞ includes the non-
Gaussian noise signal output from the transmitter wðnÞ
and sðnÞ, which are independent of each other. Calculate

the cumulative amount of xðnÞ 3 times.

c3x τ1, τ2ð Þ = E s nð Þ +w nð Þ½ � s n + τ1ð Þ +w n + τ1ð Þ½ �f
� s n + τ2ð Þ +w n + τ2ð Þ½ �g: ð12Þ

Expand the formula (4), and then, merge into

c3x τ1, τ2ð Þ = c3s τ1, τ2ð Þ + c3w τ1, τ2ð Þ
+ E w nð Þ½ � c2x τ1ð Þ + c2x τ2ð Þ + c2s τ2 − τ1ð Þ½ �
+ E s nð Þ½ � c2w τ1ð Þ + c2w τ2ð Þ + c2w τ2 − τ1ð Þ½ �:

ð13Þ

As long as the mean of the signal and noise is zero, then

c3x τ1, τ2ð Þ = c3s τ1, τ2ð Þ + c3w τ1, τ2ð Þ: ð14Þ

Since wðnÞ is a Gaussian noise signal, c3wðτ1, τ2Þ may
not be included in the calculation. Therefore, it can be
known that the vehicle noise and vibration signal identifica-
tion signal can eliminate the white noise through the third-
order cumulant, and then, the noise and vibration signals
will be determined by c3sðτ1, τ2Þ, namely,

c3x τ1, τ2ð Þ = c3s τ1, τ2ð Þ = E s nð Þs n + τ1ð Þs n + τ2ð Þf g: ð15Þ

According to the above analysis, the characteristics of the
evaluated vibration signal are mainly composed of the char-
acteristics of the signal itself and non-Gaussian noise. There-
fore, the evaluation of the noise and vibration signals in the
vehicle noise and vibration signals is mainly based on the
unique characteristics of the signal itself, and the unique
characteristics of different vehicle noise and vibration signals
can also be obtained.

However, if the two-dimensional function can use the
full-duplex spectrum as the signal feature and generate a
two-dimensional template for matching, the amount of
calculation will be very large, which cannot meet the high
standard requirements of signal recognition. The key to
solving this problem lies in the introduction of high-
performance calculation methods for noise and vibration
signals. The two-dimensional double spectrum is con-
verted into a one-dimensional function. But, the dual spec-
trum of high-performance computing also has the
following shortcomings.

(1) The realization of high-performance computing
dual-spectrum is usually high-performance comput-
ing along each path. However, the secondary features
calculated by this mode are inconsistent with the
results to be recognized, and some dual-spectrum
points have a small effect on the results of the recog-
nition target and belong to the ordinary dual
spectrum

(2) If there is a cross term in the initial observation sig-
nal, the high-order accumulation calculated by using
the multicorrelation function will cause the cross
term to become more complicated. Because the cross
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term is generated randomly, the determined calcula-
tion method cannot be used to eliminate cross terms

In order to extract the secondary characteristics of the
dual spectrum as the feature of the dual spectrum and elim-
inate or reduce the disadvantages of the dual-spectrum pro-
cess of high-performance computing, it can be used as the
characteristic parameter of the vehicle noise and vibration
signal, and the optimal separability can be obtained in the
vibration intensity. This will effectively solve many problems
such as cross terms caused by ordinary dual-spectral points
and high-performance computing.

Suppose fxðnÞg if the k-times steady-state random pro-
cess with an average value of zero and the k-time cumulant
of the process are absolutely additable, then the Fourier
transform of the k-1 dimensional discrete time defines the
k-time spectrum of the signal as k-times cumulant Ckxðτ1,
τ2,⋯,τk−1Þ as follows:

Skx ω1, ω2,⋯,ωk−1ð Þ = 〠
∞

τ1=−∞
⋯ 〠

∞

τk−1=−∞
ckx τ1,⋯,τk−1ð Þ

× exp −j ω1τ1+⋯+ωk−1τk−1ð Þ½ �:
ð16Þ

The third-order spectrum S3xðω1, ω2Þ of the signal is
called the noise vibration signal, and Bxðω1, ω2Þ is expressed
as

Bx ω1, ω2ð Þ = 〠
∞

τ1=−∞
〠
∞

τ2=−∞
c3x τ1, τ2ð Þe−j ω1τ1+ω2τ2ð Þ: ð17Þ

Bispectral estimation is divided into direct method and
indirect method [15]. This article mainly uses direct bispec-
tral estimation. The discrete time Fourier transform of xðnÞ
can be expressed in equation (17).

Bx ω1, ω2ð Þ = X ω1ð ÞX ω2ð ÞX∗ ω1 + ω2ð Þ: ð18Þ

According to the symmetry of the noise and vibration
signal, we can get

Bx ω1, ω2ð Þ = X ω1ð ÞX ω2ð ÞX −ω1 − ω2ð Þ: ð19Þ

The noise and vibration signal graph are 3D, which is
not intuitive. The one-dimensional slice of the three-
dimensional graph of the noise and vibration signal, that
is, the characteristic of the signal to the ω = ω1 = ω2 vibration
signal, is

Bx ω, ωð Þ = X ωð ÞX ωð ÞX∗ 2ωð Þ = X ωð ÞX ωð ÞX −2ωð Þ: ð20Þ

Use the noise vibration signal method and the vehicle
noise method to perform feature extraction on several
groups of data, and the required time is shown in Table 1.

As can be seen from Table 1, the dual-spectrum diagonal
slicing method greatly reduces the calculation time. The
complexity of the algorithm can be greatly reduced only by

calculating the diagonal slice, but the dual-spectral slice is a
one-dimensional function and cannot represent all the char-
acteristics of the signal. Chirp-Z transformation adjusts the
parameters of the spiral line so that the spectrum starts or
ends at any point and expands the analysis path to supple-
ment the value of the noise and vibration signals to improve
the recognition accuracy. Therefore, the Chirp-Z transfor-
mation is used to convert the unit circle of the Z plane into
a spiral, and the resulting spiral is used to analyze the signal
spectrum.

For discrete time series of finite length xðnÞ, 0 ≤ n ≤N ;
the Chirp-Z is

X zð Þ = 〠
N−1

n=0
x nð Þz−nk , 0 ≤ k ≤M − 1: ð21Þ

In a few days, zk is the sampling point of any path on the
Z plane:

zk = AW−k, k = 0, 1,⋯,M − 1: ð22Þ

The sampling points deleted in the Z plane, the growth
rate of the spiral pass. The angular frequency difference
between two similar samples can use any value to obtain
the frequency resolution. The number of complex noise
vibrations is replaced by MD, while ensuring that the M >
of N is not the same; when in the background of N , a
detailed analysis of the frequency domain can be achieved.
Use Zo’s selection to analyze the value of each frequency
input. Therefore, when Chirp-Z converts vehicle noise, the
complex vehicle noise can be at any point in the Z plane,
and the calculation method is more active.

The noise of Chirp-Z conversion can maintain high-level
original information, and the calculation can be used imme-
diately. As the calculated data increases, the data processing
also increases. In addition, to remove the ordinary noise sig-
nal points and crossovers in the noise and vibration, differ-
ent separation methods are often used to calculate the
value of the noise and vibration signal and identify the
usability, so as to achieve the reextraction of the vibration
signal.

3.1. Vibration Kurtosis Detection. In the literature, as a char-
acteristic parameter in signal classification and recognition,
Fisher’s separation measurement is used to sort the charac-
teristics of the dual spectrum, and the dual spectrum with

Table 1: Noise vibration signal method and vehicle noise method
feature extraction time.

Algorithm
Number of data sets

200 400 800 1000

Noise vibration signal (s) 25.18 37.84 76.19 1o7.9o

Vehicle noise (s) 1o.6o 16.13 27.17 34.49
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the strongest separation is selected. Fisher measurement is

mij ωð Þ =
∑l=i,jp

lð Þ Ek B lð Þ
k ωð Þ

� �
− El Ek B lð Þ

k ωð Þ
� �h ih i2

∑l=i,jp
lð Þ vark B lð Þ

k ωð Þ
� � , ð23Þ

where pðlÞ is a random variable; BðlÞ = BðlÞ
k ðωÞ is the prior

probability; EkðBðlÞ
k ðωÞÞ and varkðBðlÞ

k ðωÞÞ are the mean and
variance of the l-th signal at the frequency ω = ðω1, ω2Þ,
respectively; and El½EkðBðlÞ

k ðωÞÞ� is the overall center of the
sample noise and vibration signals of all signals at the fre-
quency ω.

Fisher can separate the center degree of the entire signal
and the ratio of the dispersion to measure the deviation of
the average bispectrum on the frequency of a certain signal.
If there are two signal centers, the Fisher measurement value
is still 0 when the difference with the signal as a whole is
small but the dispersion is large. ω = ðω1, ω2Þ cannot show
the difference between the two signals. Misjudgments are
prone to occur in the classification and recognition process.
In other words, the Fisher measurement only reflects the
separation between two arbitrary classes or between classes
and does not consider the internal distribution characteris-
tics of each class and the separation between one class and
the other.

In order to solve this problem, the extended Bali distance
can be used as a benchmark for determining the separation
of multiple signal types. Vibration intensity is often used
for two classification problems [16, 17]. According to the
analysis of the above Fisher measurement, the vibration
intensity can be expanded as follows.

mij ωð Þ = 1
4

Ek B ið Þ
k ωð Þ

� �
− Ek B jð Þ

k ωð Þ
� �h i2

∑l=i,jvark B lð Þ
k ωð Þ

� �

+ 1
2 ln

∑l=i,jvark B lð Þ
k ωð Þ

� �
2Ql−i,jvark B lð Þ

k ωð Þ
� �1/2

8><
>:

9>=
>;:

ð24Þ

The greater the Bali distance between the two signals ði
, jÞ, the better the separability of the sample. The extended
variable distance measurement (hereinafter referred to as
BM) is used to filter the bispectral values of valuable mea-
surement objects. After resorting, the strongest type of sepa-
rable value can be selected as the feature vector for signal
classification and recognition.

Suppose there are a total of C-type signals to be identi-
fied, and the k-th group of observation data of the l-th signal

is XðlÞ
k ð1Þ, XðlÞ

k ð2Þ,⋯, XðlÞ
k ðNÞ, where N is the number of

sampling points, l = 1, 2,⋯, C and k = 1, 2,⋯,Nl (Nl is the
number of observation data of the l-th signal). The feature
vector extraction steps based on complex vehicle noise are
the following:

(a) Calculate the vehicle noise value Bðω, ωÞ of the
signal

(b) Set the various parameters in the Chirp-Z transfor-
mation. A0 = 1, W0 = e−j2π/N , and M=N are used
in the paper; that is, the signal vehicle noise is calcu-
lated on the unit circle of the Z plane

(c) Use equation (10) to calculate the extended vibration
intensity mijðωÞ of all possible category combina-
tions ði, jÞ. According to the calculated extended
vibration intensity value, the noise vibration signal
can be divided into available noise vibration signal
and unrelated noise vibration signal; it is defined as

B ωð Þ ∈
Bl,mij ωð Þ > λij,
BN ,mij ωð Þ ≤ λij,

(
ð25Þ

where in order to determine the useful and irrelevant
extended vibration intensity threshold of the noise vibration
signal λij, the threshold is obtained through a large number
of simulation experiments

(d) The classified information of the noise vibration sig-
nal Bl including ði, jÞ type signals in the selected
mijðωÞ is sorted by using the M largest extended
vibration intensity values

mij ω1ð Þ ≥mij ω2ð Þ ≥⋯≥mij ωMð Þ ð26Þ

(e) Normalize the extended vibration intensity measure-
ment value mijðωÞ:

�mij ωp

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mij ωp

� �
∑M

k=1 mij ωkð Þ� �2
vuut , p = 1, 2,⋯,M, ð27Þ

where �mijðωpÞ is the useful quantity nij of the representative
vector between the signal ði, jÞ categories. The correspond-
ing frequency fωijðpÞ, p = 1, 2,⋯,nijg is a useful frequency.
For other ði, jÞ types, the same effective frequency is acquired
once

(f) Using favorable frequencies, combine the useful fre-
quencies that can be separated from the nij strongest
classes of the finally selected i-th signal into a series
of fωijðqÞ, q = 1, 2,⋯,Qg, and combine all the corre-
sponding selected complex vehicle noise values with

the sequence fZðlÞ
k ðqÞ, q = 1, 2,⋯,Qg. When Q =

∑ði,jÞnij, k = 1, 2,⋯,Nl, the vector of the l-th signal

is displayed as fZðlÞ
k ðqÞ, q = 1, 2,⋯,Qg
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(g) Pass the acquired feature vector to the classifier to be
able to classify and recognize

3.2. Use Wavelet to Achieve Signal Denoising. If φðtÞ ∈ L2ðRÞ,
φðwÞ is its Fourier transform, when the allowable conditions are

Cw =
ð
R

φ wð Þj j2
wj j dw <∞: ð28Þ

φ is called as a wavelet generating function.
The wavelet transform of any function f ðtÞ ∈ L2ðRÞ is

defined as

WTf a, bð Þ = 1ffiffiffi
a

p
ð∞
−∞

f tð Þφ∗ t − b
a

	 

dt, a > 0: ð29Þ

In the formula, a is the scale factor and b is the time shift
factor. The function of the scale factor is to stretch the wave-
let function for multiresolution analysis.

In the multiresolution analysis and signal time-domain
decomposition, binary discrete wavelet transform is widely
used; that is, a = 2j, j ∈ z is taken, so the binary wavelet trans-
form is obtained as

WT2j bð Þ = 2−j/2
ð
R
f tð Þφ b − t

2j
	 


dt: ð30Þ

The original signal can be reconstructed by dyadic wave-
let transform, namely,

f tð Þ =〠
j∈z

ð
R
WT2j bð Þφ2j,b tð Þdb: ð31Þ

Why does the inverse wavelet function φ C(R) have n
vanishing moments, then ∀x ∈ ðx0 − δ, x0 + δÞ, there is

Wφ f
� �

a, bð Þ�� �� ≤ K ∗ aα: ð32Þ

Formula (5) points out that as the scale increases, the
amplitude value after wavelet transform shows a power
increasing trend relative to the singularity greater than zero,
and for the singularity less than zero, the amplitude value
shows a decreasing trend. The smoothing of the signal is
usually preferred, the singularity index at the singularity
point is usually greater than zero, and the noise has a nega-
tive singularity index. In this way, when the scale of the
wavelet transform increases, the mixed noise and the signal
show completely different change characteristics, and the
signal and noise can be separated based on these
characteristics.

(1) Wavelet decomposition of one-dimensional signal

(2) Noise reduction processing

Select wavelet, determine the number of wavelet decom-
position levels N , and perform N-level wavelet decomposi-
tion on the signal.

There are roughly three processing methods for noise
removal processing of the decomposed high-frequency
coefficients.

(a) Forced noise cancellation: change the high-
frequency coefficients to 0

(b) Default threshold denoising: select the default
threshold for processing

(c) Provide soft/hard threshold noise elimination: the
threshold is obtained by empirical formula, and its
value is more reliable than the default threshold

(3) The wavelet reconstruction of one-dimensional sig-
nal is based on the equation

(4) The signal is reconstructed according to the wavelet
coefficients of each layer after processing

3.3. Vehicle Vibration Signal Detection Algorithm. Vehicle
vibration signal detection uses vibration signals to deter-
mine whether there is a target. Based on the characteristics
of the target and noise vibration signal, two actual detec-
tion algorithms based on negative entropy and detection
algorithm based on power spectrum distribution are
proposed.

When the vehicle is running, the excitation added to the
wheels and tracks is a multifrequency stable excitation, and
the distance between the seismic source and the sensor
changes with time, so the sensor measures the superposition
of harmonics of each frequency.

The seismic waves caused by vehicle movement are con-
tinuous seismic waves, which mainly depend on the self-
vibration of the frame suspension system, the vibration of
the engine and the transmission system, and the excitation
of the undulating ground caused by the driving of the vehi-
cle. The signal is dominated by low-frequency components,
and the main peak frequency is about 100Hz. Figure 2
shows the time-domain waveform of the vehicle vibration
signal.

Entropy is an important metric to measure non-
Gaussianity from an informatics point of view, and it can
effectively distinguish Gaussian signals from non-Gaussian
signals. The entropy of the discrete random variable X can
be defined as

H xð Þ = −〠
i

P X = aið Þ lg P X = aið Þ: ð33Þ

In the formula, ai is the value of X.
There are two problems with the application of entropy:

(1) An algorithm is picky about the type of noise, and
the limiting noise must be Gaussian or Gauss-like
noise

(2) The algorithm still needs accurate posterior informa-
tion to determine the threshold
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The difference between negative entropy and entropy is
that the value of negative entropy relative to Gaussian vari-
ables is zero, while the value of non-Gaussian variables is
always nonnegative, and negative entropy does not change
with the change of signal amplitude. According to the above
characteristics, the algorithm based on the negative entropy
characteristic can set the threshold value in advance through
a large amount of statistical information and can obtain a
good detection effect without the need for a posteriori infor-
mation adjustment. The definition of negative entropy J is as
follows.

J xð Þ =H Xgauss
� �

−H xð Þ ð34Þ

In the formula, Xgauss is a Gaussian random vector,
which has the same mean and covariance matrix as x; the
value of xgauss can be estimated by the following formula:

H Xgauss
� �

= 1
2 lg det〠

��� ��� + n
2 1 + log 2π½ �: ð35Þ

In the formula, n is the dimension of the vector; Σ is the
covariance matrix.

Since the calculation of negative entropy depends on fac-
tors such as the preprobability density of random variables,
the analysis of negative entropy is only maintained at the
theoretical stage. In practical applications, an approximate
formula based on the following high-order cumulants is usu-
ally used to calculate negative entropy.

J x tð Þð Þ ≈ 1
12 E x3 tð Þ� 2 + 1

48K
2: ð36Þ

In the formula, E is the mathematical expectation of a
random variable. K is the peak of the random variable x:

K = E x4 tð Þ� 
E2 x2 tð Þf g − 3: ð37Þ

For steady-state random signals, signal power spectrum
analysis is one of the commonly used methods in fre-
quency domain analysis. The seismic signals caused by

vehicles within a certain distance range can be approxi-
mated as generalized and stable. In modern signal analysis,
sample data can be used to estimate the power spectral
density of a steady-state random signal, which is one of
the important research contents of digital signal process-
ing. The welch method is used to estimate the power
spectrum.

The power spectrum is defined as the Fourier transform
of the autocorrelation function, and the autocorrelation
function is an important statistic of a random signal and is
defined as follows.

rX mð Þ = E X∗ nð ÞX n +mð Þf g: ð38Þ

The definition of the power spectrum is the Fourier
transform of the autocorrelation function, namely,

PX ejw
� �

= 〠
∞

−∞
rX mð Þe−jwm: ð39Þ

Welch power spectrum estimation algorithm

(1) Divide N data into L segments; each segment of M
data is N =M ∗ L

(2) Choose an appropriate window function wðnÞ, use
this function to weight each segment of data accord-
ingly, and determine the periodogram of each seg-
ment by formula (13)

IiM wð Þ = 1
MU

〠
M−1

0
xi nð Þw nð Þe−jwn

�����
�����
2

: ð40Þ

In the formula, U = 1/M∑M−1
n=0 w

2ðnÞ is the normalization
factor.

(3) Averaging the segmented periodogram to obtain the
signal power spectrum, namely,

Pxx wð Þ = 1
L
〠
L

i=1
IiM wð Þ ð41Þ

Figures 3 and 4 are the power spectra of the vehicle
vibration signal and the environmental noise vibration
signal.

It can be seen from the above power spectrum distribu-
tion that the vibration signal of the vehicle is mainly concen-
trated below 300Hz, the power spectrum of the noise
vibration signal is relatively stable, and the energy is small,
so the threshold value within 0~500Hz is selected, and the
power spectrum on both sides of the threshold value is cal-
culated. The energy-to-energy ratio can be used as a bench-
mark to distinguish between noise and target.

Vehicle vibration signal detection algorithm based on
welch power spectrum
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Figure 2: Time-domain waveform of vehicle vibration signal.
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(1) Estimate the signal power spectrum

(2) Choose the threshold N and the energy ratio to
determine the threshold, and calculate the average
energy of the power spectrum on both sides of the
threshold:

PL =
1
N
〠
N

n=0
P2 fð Þ,

PH = 1
500 −N

〠
500

n=N
P2 fð Þ,

r = PL

PH

ð42Þ

(3) If r < r0, no target appears, and if r > r0, then a target
appears

4. Simulation Results

The power amplifier is a key component in the radio fre-
quency transmitter, and the slight difference in its hardware
is one of the main sources of the subtle characteristics of the
signal, and it can generate vehicle noise and vibration signals
through the modeling, analysis, and simulation of functional
behavior. The modeling of functional behavior does not

need to consider the functional circuit structure and compo-
nent characteristics, and it is more convenient only by ana-
lyzing the relationship between signal input and system
response. General functional modeling models include non-
storage models suitable for narrowband signals, including
storage models suitable for wideband signals, for example,
the memory polynomial model and Voltera model. Please
select memory polynomial (MP). The model generates a
simulated vehicle noise and vibration signal. When the sys-
tem input signal is xðnÞ and the output signal is yðnÞ, the
system responds to it as follows:

y nð Þ = 〠
I

i=1
〠
J

j=1
aijx n − jð Þ x n − jð Þj ji−1: ð43Þ

For the same input signal xðnÞ in the modulation mode,
assuming different types of model parameters aij, different
noise and vibration signals with nonlinear characteristics
can be obtained. The input signal xðnÞ represents the fre-
quency band modulation of the signal, which can be
expressed as

x nð Þ = s nð Þej2π f c/f sð Þ, ð44Þ

where sðnÞ represents the baseband modulation signal, f s
represents the process sampling frequency of the vehicle
noise and vibration signals, and f c represents the carrier fre-
quency of the vehicle noise and vibration signal. The base-
band signal SðnÞ is the QPSK modulation used in this
article, the signal sampling frequency f s is set to 20MHz,
the signal carrier frequency f c is set to 4MHz, and the value
of the symbol rate is set to RB=2MHz. In this article, the
polynomial order I corresponding to the signal power
amplifier is set to 3, and the delay order J is set to 3. Then,
for the signal power amplifier, model coefficients can be
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expressed as

Am =
am11 am12 am13

am21 am22 am23

am31 am32 am33

2
664

3
775 =

ami1
ami1
ami1

2
664

3
775 amj1 a

m
j2
amj3

h i
: ð45Þ

The processed data is the vehicle vibration data collected
on the spot and part of the data in the SENSIT database. The
process is described as going from no target to there, or even
disappearing of the target. The sampling frequency is
Fs =1000Hz, and 1928 points are one frame of data.

The wavelet adopts db3 wavelet to carry out 3-layer
decomposition, and the soft thresholds are, respectively,
1.456, 1.832, and 2.786. Figure 5 shows the effect diagram
of wavelet noise removal of vehicle vibration signal.

The negative entropy detection threshold detects 0.02
and 50 points once, the power spectrum detection threshold
N is 300, and the energy ratio discrimination threshold is
10,000. r0 Figure 6(a) and Figure 6(b) show the negative
entropy detection results for detecting the vibration signal
of the vehicle.

Collect 20 typical samples for simulation; false alarms
and missed alarms in the detection process are all false
detections. Table 2 compares the detection results of the
two detection algorithms under different signal-to-noise
ratio conditions.

It can be seen from the simulation results that wavelet
noise elimination can improve the accurate detection rate.
As the noise increases, the performance of the negative

entropy detection algorithm is reduced, and the perfor-
mance of the power spectrum distribution detection algo-
rithm is stable, and accurate detection rate is high.

5. Conclusion

On the premise of the conclusion of noise source identifi-
cation, the noise reduction improvement test is carried out
for the vehicle. The sound insulation between the engine
compartment and the passenger compartment is strength-
ened to reduce the transmission of engine noise from the
engine compartment to the passenger compartment. Based
on the in-depth analysis of the vibration signal character-
istics of the diagonal slice of vehicle noise vibration signal
degree, the obtained vibration intensity is optimized by
using the extended vibration intensity criterion, and the
implementation method is introduced. The correlation
between different signals is studied, and the recognition
method of different signals is given. It is simpler and more
effective than the traditional analysis method for vehicle
noise and vibration source identification and provides a
new test means for the research of vehicle vibration and
noise control. By using the actual analysis, the test results
show that the use time of the proposed method is reduced
and can also be used in multiple types of vehicle noise and
vibration signals. The obtained vibration signal character-
istics can always have good robustness in the case of low
signal-to-noise. When the signal-to-noise ratio is 0, the
recognition rate of vehicle noise vibration signal can be
greater than 90%.
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Figure 6: Negative entropy of vehicle vibration signal.

Table 2: Vehicle vibration signal detection results under different signal-to-noise ratio conditions.

Signal-to-noise ratio
(dB)

Detection method
Correct detection rate (before

denoising)
Correct detection rate (after

denoising)

4
Negative entropy detection 100% 100%

Power spectrum distribution
detection

100% 100%

-2
Negative entropy detection 75% 90%

Power spectrum distribution
detection

100% 100%

-5
Negative entropy detection 50% 80%

Power spectrum distribution
detection

90% 100%
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