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With the rapid growth of science and technology, machine learning and big data analysis have developed more and more di�cult.
Similarly, data also become di�cult to process and classify due to the fact that the data dimension is becoming larger and larger.
Furthermore, aiming at the defect due to the amount of data the clustering using speedy examine, search, and discovery of density
peaks (also known as DPC) does not adjust to data sets with large dimensions (high-dimensional). �erefore, in this paper, we
suggest an optimization procedure, which we pronounce as t-dpc, and is founded on the t-sne dimension lessening technique, and
which can also optimize the technique for estimation of the Gaussian kernel function, using uni�ed measurement criteria in
solving density. In the simulation based experiments, using two di�erent data sets i.e., the UCI standard data set, and the arti�cial
data set, the proposed DPC procedure is associated with the classical t-dpc algorithm.�e empirical evaluation and investigational
outcomes illustrate that the proposed method of t-dpc not merely acclimatizes to the high-dimensional data sets, nevertheless it
also increases the e�ectiveness of the classical DPC technique.

1. Introduction

In recent years, due to the speedy growth of information
networks, big data, and internet technology, the develop-
ment of data presents an explosive growth mode. People’s
daily behavior can be quanti�ed as data onto a certain form,
but these data are often disordered and irregular. Over
time, these data will accumulate more and more, and the
era of big data came into being [1, 2]. One of the most
widely used is Taobao. Taobao automatically pushes peo-
ple’s favorite products according to people’s consumption
habits, which not only brings consumers their favorite
products but also improves the sales volume of Taobao to a
certain extent. �erefore, big data analysis technology and
the ability to obtain e�ective information on big data have
become the top priority of people’s research [3]. As an
imperative and essential data mining technology, cluster
analysis plays a precise imperative role in data mining and
analysis. It has been used in many �elds and plays an ir-
replaceable role [4].

An enormous quantity of data has been produced in the
network era, and these data are often unpredictable.
�erefore, it is almost impossible to label these data in
advance, but cluster analysis should be carried out according
to the internal relationship of the data [5]. For example, for
the takeout service born in the Internet era, because busi-
nesses cannot obtain the classi�cation attributes of users in
advance, the takeout platform can only cluster the data
generated by users according to users’ consumption habits.
Finally, the takeout platform will automatically push the
takeout that users may like according to the characteristics of
taste, category and evaluation [6]. Compared with the
classi�cation algorithm, the unsupervised data mining
technology of clustering algorithm also saves a lot of time of
the training samples, because the classi�cation algorithm
needs to experiment on the training data �rst, extract the
characteristics of the training data, and then apply it to the
test data onto processing and analysis, and the clustering
algorithm can process all data objects together [7–9].
However, according to the di�erent data objects in all walks
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of life, different clustering procedures have been suggested
one after another. In the development and speedy growth of
the clustering mechanisms and algorithms, many typical
clustering algorithms have been born one after another, such
as the well-known and most widely used KMeans [10],
DBscan [11], FCM [12], and AP [13] algorithm. However,
clustering analysis is also affected by the distribution
characteristics of actual data, and various problems have
been encountered in the process of clustering development.

Some algorithms cannot identify complex manifold clus-
ters, some algorithms cannot effectively deal with noise points,
some algorithms have too high time complexity to meet the
timeliness of big data clustering, some algorithms have pa-
rameter sensitive problems, and there are too many factors
requiring human interference. -erefore, aiming at the
problems encountered in the development of this series of
clustering algorithms, more and more improved algorithms
proposed [14, 15]. Facing the defect that the DPC approach
does not acclimatize to high-dimensional data sets, in order to
resolve this difficult task. In this paper, we suggest an opti-
mization algorithm called t-dpc. -e t-dpc algorithm starts
with the t-sne technique for dimension reduction, improves the
estimation approach of the Gaussian kernel function, and uses
unified measurement criteria to calculate the density. At the
same time, the proposed t-dpc method and the DPC approach
are matched to/with the F-measure index and the NMI index,
in terms of, the UCI standard data set, and artificial data set,
correspondingly.-e concluding investigational outcomes and
findings reveal that the t-dpc approach not merely acclimatizes
to huge and high-dimensional data sets, nevertheless also
develops the effectiveness of the classical DPC method.

-e key and fundamental offerings of this research are
given as follows: (1) we put forward an optimization algo-
rithm, known as t-dpc, which is constructed on t-sne ap-
proach for dimension reduction; (2) we propose a method
that also enhances the estimation mechanism of the Gaussian
kernel function, using unifiedmeasurement criteria in solving
density; (3) using artificial dataset and UCI standard dataset,
the DPC algorithm is matched with the t-dpc algorithm; and
(4) the simulation and empirical outcomes deliberate that the
suggested t-dpc technique not merely familiarizes to the huge
and high-dimensional data sets, nonetheless it also progresses
the effectiveness of the classical DPC method.

-e remaining part of this manuscript is arranged as
follows: the optimized DPC method, i.e., t-dpc, and its
working mechanism is offered in Section 2. -e experi-
mental simulations and empirical evaluation of high-di-
mensional data processing are discussed in Section 3.
Moreover, the attained outcomes are also deliberated in
Section 3. To conclude, Section 4 completes this study and
offers several future research insights and suggestions.

2. Optimized DPC Algorithm

2.1. Algorithm Introduction. Rodriguez [16] (2014) proposes
a clustering algorithm based on density peak, which has
attracted many people’s attention. -e idea of Alex’s algo-
rithm is to calculate the similarity by taking the distance
between two points of interest, in a particular data set, as a

measure, which can be adapted to clusters of any shape. -e
distance between two data points in the aforementioned data
collection, which is largely unaffected by enormous and
high-dimensional data, is the fundamental concept and
foundation of the classical DPC technique. -e algorithm
cluster center has the following characteristics: (1) each
cluster’s cores are separated by locally low density areas and
(2) the distance between them is considerable. -e DPC
method introduces two variables, i.e., one is distance δ, and
the other is local density ρ. For an arbitrary sample i of the
data set, its local density ρ calculation is as follows:

ρi � 
j≠ i

x dij − dc 
x(x) � 1, x< 0,

x(x) � 0, x≥ 0.
 (1)

Equation (1) is a truncated kernel function. Further-
more, dij is the Euclidean distance between i and j in the
sample, dc is the truncated distance, and x is the criterion for
judging that a particular value is greater than another and
vice versa [17].

Han et al. [17] also suggested using the Gaussian kernel
function to calculate the local density as a different way to
compute it, as shown in the following equation:

ρi � 
j≠ i

e
− dij/dc( 

2

. (2)

-e distance is defined as given by the following formula:

δi � min
j: ρj > ρi

dij . (3)

-e maximum local density points are

δi � max
j

dij . (4)

-eDPC algorithm, suggested in this paper, helps to obtain
the peak density of decision graph. According to the calculated
local density ρ and distance δ, and subsequently draw a de-
cision diagram（ρ-δ）. In DPC algorithm, the points of large
local density and distance are selected as the cluster center [18].
And then, each remaining point is assigned to the cluster where
the density is higher than him and the nearest data point is
located. Finally, the noise points are excluded.

2.2. Algorithm Optimization. With the rapid growth of data
volume, the diversity of data is becoming stronger and
stronger. As a result, most of the data onto life is rough data
onto higher dimensions. However, DPC algorithm is
powerless in the face of such high-dimensional data. To solve
this problem, in this paper we adopt the t-sne dimension
reduction mechanism which is constructed on radial
transformation to systematize and normalize the data and
optimize the suggested technique of forming t-dpc. -e
algorithmic flow of the suggested t-dpc method is as follows.

2.2.1. T-Sne Method Is Used for Data Standardization and
Normalization. -e input of the method are high-dimen-
sional datasets denoted by X � x1, . . . , xn, and the output of
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the approach are low-dimensional datasets which is char-
acterized by YT � y1, . . . , yn. -e process is as follows.

-e SNE is the conditional probability that exchanges
the high-dimensional Euclidean distance amongst data
points of the similarity; that is, after a high-dimensional
data set is given, the conditional probability is used to
represent the similarity from point to point. -is meaning
can be understood as follows: if the neighbor is selected by
the Gaussian distribution centered on, the probability that
selects as its own neighbor is. If the data points are close,
they are large. On the contrary, if the data points are very
far away, they can be close to infinity [19]. -e parameter is
the variance between as the central point, which changes
from the change of position. -e definition of the condi-
tional probability is illustrated mathematically, as shown in
the following formula:

p(j/i) �
exp −xi − xj

2/2δ2i 

k≠iexp −xi − xk
2/2δ2i 

. (5)

In the following formula, the conditional probability
distribution of the low-dimensional data point is determined
and relates to the high-dimensional data point.

q(j/i) �
exp −yi − y

2
 

k≠iexp −yi − yk
2

 
. (6)

-e above two formulas represent the similarity, so both
and are 0. At that moment, the distance amongst the two
distributions Kullback Leibler diversities is enhanced, and its
objective function is defined as shown in the following
formula:

C � KL PiQi � 
i


j

p(i/j)log
p(i/j)

q(j/i)

⎞⎠.⎛⎝ (7)

Since, the conditional probability is not equal to, a large
amount of calculation is required in gradient calculation
[20]. -e core of klt-e is to find the divergence of probability
distribution by replacing the principle of probability E-T
distribution. -e optimized objective function changes, as
shown in the following formula:

C � KL(PQ) � 
i


j

p(j/i)log
pij

qij

. (8)

-e calculation formulas for and shown in formula (8)
have also changed accordingly. After the change, the cal-
culation formulas are respectively as follows:

pij �
p(i/j) + p(j/i)

2
, (9)

qij �
1 + yi − yj

2
 

− 1

k≠1 1 + yk − yl
2

 
−1. (10)

2.2.2. Iterations after T-sne Optimization. Calculation under
low dimension according to formula (10), and then the
gradient is calculated. -e gradient calculation formula is as
shown in the following formula:

δC

δY
� 4

j

pij − qij  yi − yj  1 + yi − yj
2

 
− 1

. (11)

Formula (10), for example, must be included to the
gradient descent process since it is very simple for it to go
into the local optimal solution in the course of the op-
timization progression, as illustrated in (12) formula (12).
-is should be noted that the innovative low-dimensional
data set can be obtained rendering to the following
formula:

Y
(t)

� Y
(t− 1)

+ η
δC

δY
+ a(t) Y

(t− 1)
− Y

(t− 2)
 , (12)

where Y(t) talks about the solution of the t iterations.
Similarly, Y exemplifies the learning frequency and a(t)

characterizes the momentum of the t iterations. So far, the
data standardization process is accomplished [21]. -is
should be highlighted here for the sake of understanding that
the standardized data adapts to the DPC method while
maintaining the majority of the properties of the original
data set.

2.2.3. Find the Values of T-dpc, Local Density, And Standard
Deviation δ. First of all, read the points of the data, and
then determine the distance amongst the points, and gauge
the value of t-dpc. Secondly, after manipulating the t-dpc
value, protect and store the distance from a particular point
j to another specified point i, that is, a reduced amount of
than the ixj in the Z list to obtain a new Gaussian kernel
function formula. Next we use, for instance, formula (12) to
determine the local density, and use formula (3) to calculate
the δ.

ρi � 
j≠ i

e
− z[j]/dc( ) 2

. (13)

2.2.4. Complete Clustering According to the Subsequent DPC
Algorithm. -e subsequent DPC algorithm includes:
drawing the decision diagram, manually selecting the
clustering center, assigning points, and calculating noise
points. Finally, clustering can be completed.

3. Experimental Simulation of High-
Dimensional Data Processing

3.1. Simulation Environment. -e experiment is completed
by the software pycharm, and the experimental language is
Python 3. Note that, all the experiments were completed on a
computer with hardware configuration as follow: the CPU
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model is i5-3337u with approximate spped of 1.80GHz, and
the system memory was 8GB.

3.2. Data Acquisition and Pre-processing. With the purpose
of confirming the legitimacy, as well as, the correctness of
outcomes related to the suggested t-dpc method, we intend
to select three (3) artificial data sets [22] and 5 standards
[23]. -e UCI data set is tested, and the parameters of
various investigational data sets are specified away in Table 1.
We assume that the data is in clean form and does not
require any preprocessing method.

3.3. 5e F-Measure Metric. -e F-measure index or evalu-
ation metric is a frequently used assessment benchmark,
particularly in the field of information retrieval and learning,
which is weighted and balanced by precision and the recall.
Furthermore, it is regarded as a manually labeled known
cluster, and is the cluster designed at the completion of the
clustering technique. -e recall metric is also very com-
monly used in the learning assessment. -e correctness or
the accuracy rate is shown in formula (12), and the recall rate
is shown in the following formula:

P Pj, Ci  �
Pj ∩Ci





Ci




. (14)

R Pj, Ci  �
Pj ∩Ci





Pi




. (15)

-e comparison of F evaluation indexes of clustering
results is shown in Table 2. Furthermore, Figure 1 shows
the F evaluation values for both algorithms over different
data sets. Note that, the higher values are better than the
lower values. We can observe better values for the sug-
gested t-dpc method as compare to the classical DPV
approach.

-is can be easily comprehended from the outcomes
reported in Table 2 that for the three synthetic data sets, the
F-measure index of DPC algorithm changes little compared
with that of t-dpc algorithm. -at is because it does not
need to be reduced by t-sne, so the accuracy basically does
not change. -e change is comparatively more pronounced
for high-dimensional UCI data sets. When compared to the
F index before to the reduction of dimension, the values of
all four data sets had significantly improved by approxi-
mately 7.0 percent, 5.2 percent, 1.1 percent, and 5.4 percent,
correspondingly. Clearly, the performance of the data after
t-SNE reduction method for dimension is better than the
classical DPC approach.

3.4. Results of the NMI Evaluation Indicators. -e idea of
standard mutual information from descriptive information
theory is utilised to quantify the similarity between two data
distributions [24]. Presume that X and y are the distribution
of n samples, as shown in the following formulas:

H(X) � 
X

i�1
P(i)log(P(i)). (16)

H(Y) � 
Y

j�1
P′(j)log P′(j)( . (17)

In formulas (16) and (17), P(i) � |Xi|/N, P′and(j).

� |Yj|/N. -is should be noted that the mutual information
(MI) amongst the X and Y is illustrated mathematically as,
for example, given by the following formula:

MI(X, Y) � 
X

i�1


Y

j�1
(i, j)log

p(i, j)

p(i)p
，

(j)
 P. (18)

In formula (16), P(i, j) � |Xj ∩Xi|/N. -e next task is to
standardize the mutual information (NMI) [25], such as
illustrated mathematically in the following formula:

NMI(X, Y) �
MI(X, Y)
����������
H(X)H(Y)

 . (19)

-e comparison results of NMI evaluation indicators are
shown in Table 3. A graphical view of the attained results is
shown in Figure 2. We can easily observe that the proposed
t-dpc algorithm has similar values to the classical dpc al-
gorithm; however, we noted that our method outperforms
the dpc, in particular, for larger data sets.

Table 3 reveals the coincidence degree amongst the
original, high-dimenstional, data set and the clustered, low-
dimensional, data set. -is should be observed that the NMI
metric of the PID data set, wine data set, and the waveform
data set under the suggested t-dpc method is lower than that
which we observed under the classical DPC approach by
4.9%, 3.9%, and 3.6%, respectively. In fact, this shows that
the coincidence degree of these four data sets is lower than
that of the untransformed data set. Furthermore, we rose
various parametric values in the residual two synthetic data
sets, as well as, the iris data sets. In other word, in fact the
aggregate data set and the d31 data set were increased by
approximately 0.1% and 0.2%, correspondingly. Similarly,
the iris data set was increased by approximately 7.3%. -e
R15 dataset did not alter, though. -e synthesis demon-
strates that when the dimension is high, the coincidence
degree of the data set will drop, and when the dimension is
low, the coincidence degree effect is better.

3.5. Results of Algorithm Efficiency. In our simulations, an
average of 20 running periods is used as the final running
time to reveal the correctness of the investigational out-
comes, and the findings are displayed in Table 4. Further-
more, Figure 3 shows the running time of both algorithms
over different data sets. Note that, the lower values are better
than the higher values.

-e assessment amongst the t-DPC approach and the
classical DPC method, in terms of time efficiency, is shown
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in Table 4. �e new Gaussian kernel function has signi�-
cantly reduced the whole running time. �e t-DPC method
runs approximately 116.1 s, 5 s, and 3 s faster than the
classical DPC technique in the simulated three di�erent data
sets i.e., d31, aggregation, and R15, respectively. Further-
more, we observed that the standard set waveform and the
PID were both improved at the same time, as are 334.5 s and
3 s, correspondingly. �e wine dataset and the iris dataset,

however, show no change for the reason of the little amount
of data points in the data set. According to the aforemen-
tioned experimental �ndings and our deep analysis, the
t-dpc technique is more suited for enormous data sets
(several dimensions) than the small and only large data sets
(have few dimensions). �is major reason for this claim is
that it can upsurge e�ectiveness and therefore, better suited
for data from the actual world.

Table 1: �e parameters of various investigational data sets.

Dataset Aggregation D31 R15 PID Wine Iris Waveform Seed
Record 788 3100 600 768 178 150 5000 210
Attributes 2 2 2 8 13 4 21 7
Clusters 7 31 15 2 3 3 3 3

Table 2: Comparison of the t-dpc and DPC methods for various data sets using the F assessment metric of the clustering outcomes.

Dataset Aggregation D31 R15 PID Wine Iris Waveform Seed
DPC 0.997 0.969 0.996 0.515 0.672 0.786 0.357 0.317
T-DPC 0.999 0.971 0.998 0.658 0.729 0.899 0.418 0.302

0

0.2

0.4

0.6

0.8

1

1.2

aggregation D31 R15 PID wine iris waveform seed

DPC
T-DPC

Figure 1: Comparison of the F assessment metric of clustering outcomes using di�erent data sets [the higher values are better than the lower
values].

Table 3: Comparison of the suggested t-dpc and the classical DPC methods using the NMI evaluation indicators.

Dataset Aggregation D31 R15 PID Wine Iris Waveform Seed
DPC 0.995 0.934 0.993 0.427 0.437 0.723 0.391 0.333
T-DPC 0.998 0.938 0.997 0.380 0.399 0.799 0.358 0.316
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Figure 2: Comparison of the suggested t-dpc and the classical DPC methods using the NMI evaluation indicators.

Table 4: Comparison of running time of the two algorithms.

Dataset Aggregation D31 R15 PID Wine Iris Waveform Seed
DPC 22.2 310.2 14.2 23.5 3.5 3.1 846.7 3.7
T-DPC 17.2 194.1 11.2 20.5 3.5 3.1 512.2 3.5

1

10

100

1000

aggregation D31 R15 PID wine iris waveform seed

T-DPC
DPC

Figure 3: Comparison of running time of the two algorithms over di�erent data sets [the lower values are better than the higher values].
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4. Conclusions and Future Research

-e method of clustering involves grouping the data set into
various clusters based on how similar the data samples are to
one another. -e data objects belonging to various clusters
must be as dissimilar from each other as feasible, while the
data objects belonging to the same cluster must be as similar
as possible. Compared with the classification algorithm,
clustering analysis does not need to understand the classifi-
cation attributes of data in advance. It is unsupervised. -ese
data objects are divided completely according to the internal
relationship between data objects, which is more in line with
the development characteristics of the information age. -is
study analyses the time efficiency of the t-dpc algorithm and
the DPC algorithm before using two efficient indexes to
evaluate, namely the NMI index, and the F-measure index, to
confirm the validity of the clustering effect of the t-dpc
technique. Finally, this paper evaluates and analyses them as a
whole according to the experimental results.-is paper found
that the effect of the t-dpc method and the DPC approach on
low-dimensional data has no obvious change, nonetheless it
has a relatively good enhancement, in particular, on very
high-dimensional data sets. -en, the density calculation
formula is unified and integrated into the t-dpc to improve the
calculation effectiveness under enormous data sets.

In this paper, we have done some research on the op-
timization of DPC algorithm, and achieved some results, but
there are still many deficiencies, which need to be further
improved and improved. Although, the t-SNE algorithm and
DPC algorithm have been preliminarily combined, the
applicability of the combined algorithm needs to be im-
proved. How to effectively combine the advantages of the
algorithm and improving the applicability of the binding
algorithm becomes a focus on the following research. Be-
cause, the DPC algorithm research involves the distance
matrix calculation, therefore the improved algorithm is not
out of this category and big data processing complexity and
real-time implementation is of great challenge. Furthermore,
this article is a kind of simple and shallow application,
therefore how the algorithm can be applied to real life
scenarios, to help people improve their quality of life, also
will be the important direction of our future research.

Data Availability

-e data used to support the findings of this study are in-
cluded within the article.
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