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Mobile edge computing (MEC) is considered as an efective solution to delay-sensitive services, and computing ofoading, the
central technology in MEC, can expand the capacity of resource-constrained mobile terminals (MTs). However, because of the
interdependency among applications, and the dynamically changing and complex nature of the MEC environment, ofoading
decision making turns out to be an NP-hard problem. In the present work, a graph mapping ofoading model (GMOM) based on
deep reinforcement learning (DRL) is proposed to address the ofoading problem of dependent tasks inMEC. Specifcally, theMT
application is frst modeled into a directed acyclic graph (DAG), which is called a DAG task. Ten, the DAG task is transformed
into a subtask sequence vector according to the predefned order of priorities to facilitate processing. Finally, the sequence vector is
input into an encoding-decoding framework based on the attention mechanism to obtain the ofoading strategy vector. Te
GMOM is trained using the advanced proximal policy optimization (PPO) algorithm to minimize the comprehensive cost
function including delay and energy consumption. Experiments show that the proposed model has good decision-making
performance, with verifed efectiveness in convergence, delay, and energy consumption.

1. Introduction

With the development of Internet of things (IoT) andmobile
computing, mobile terminals and applications, such as
virtual reality (VR) and facial recognition applications, are
seeing increased diversity and complexity [1, 2]. Despite the
increasingly improved performance of mobile terminals,
many computing-intensive applications cannot be processed
efciently and delay results in compromised user experience
and poorer service quality. In this case, mobile edge com-
puting (MEC) comes as a solution. An emerging computing
mode, MEC is born of traditional cloud computing. Its
central goal is to expand the rich resources from the cloud
server to the user terminals so that the user can employ more
abundant resources to process their own computing tasks
nearby, thus reducing the delay and energy consumption.
Computing ofoading, a key technology in MEC, refers to
the process in which the mobile terminal assigns computing-
intensive tasks to edge servers with sufcient computing

resources through the wireless channel according to a
certain strategy, and then, the edge servers return the
computation results to the mobile terminal [3]. Te com-
puting ofoading problem can be transformed into an
optimization problem in a specifc environment, but due to
the complexity of the MEC environment, it is challenging to
address this problem by traditional approaches [4].

In practice, many computing tasks are not completely
independent from each other, but involve multiple subtasks
(such as VR/AR and face recognition). Te input of some
tasks comes from the output of other tasks, that is, some
tasks need to be processed before the current task can be
executed. If the dependency between the tasks is not con-
sidered, the application may fail to run properly. Te of-
loading of dependent tasks is generally modeled as a DAG to
achieve fne-grained task ofoading [5]. However, as the
number of task nodes increases, it is difcult to obtain the
optimal ofoading strategy for all subtasks [6]. Most existing
works in this regard use heuristic or metaheuristic
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algorithms [7–10]. Specifcally, in order to minimize the
application delay, reference [7] designs a heuristic DAG
decomposition scheduling algorithm, which considers the
load balance between user devices and servers. In reference
[8], a heuristic algorithm is proposed to solve the task
ofoading problem of mobile applications in three steps to
minimize the system energy consumption under delay
constraint. Reference [9] considers that some tasks in DAG
can only be executed locally, so as to minimize the waiting
delay among tasks executed locally. Tis problem is modeled
as a nonlinear integer programming problem and approx-
imated by a metaheuristic algorithm. However, these
methods cannot fully adapt to dynamic MEC scenarios
because of the contradiction between fexibility and com-
putational cost when designing heuristics [10].

Boasting the strengths of both deep learning and rein-
forcement learning, DRL has strong perception and deci-
sion-making ability, so it has been widely studied and
applied [11] to complex decision-making problems with
high-dimensional state/action spaces, such as games [12]
and robots [13]. Trough continuous interaction with the
environment, the DRL model learns appropriate strategies
(what actions to perform in a given environment) with the
goal of maximizing long-term returns. Considering indi-
visible and delay-sensitive tasks and edge load dynamics, a
model-free distributed algorithm based on DRL is proposed
in reference [14]. Each device can determine its ofoading
decision without knowing the task model and ofoading
decision of other devices. In order to cope with the challenge
of task dependence and adapt to dynamic scenarios, a new
DRL-based ofoading framework is proposed in reference
[15], which can efectively learn the ofoading strategy
uniquely represented by a specially designed sequence-to-
sequence neural network. Considering the limited perfor-
mance of a traditional single-type ofoading strategy in a
complex environment, reference [16] designs a dynamic
regional resource scheduling framework based on DRL,
which can efectively consider diferent indexes. Mobile edge
computing with the energy harvesting function is considered
in reference [17]. In order to solve the challenge of coor-
dination between continuous and discrete interaction space
and devices, two dynamic computing ofoading algorithms
based on DRL are proposed. Simulation results show that the
proposed algorithm achieves a better balance between delay
and energy consumption.

In the present work, a graph mapping ofoading model
based on deep reinforcement learning is proposed. First, the
mobile terminal is modeled as a directed acyclic graph
(DAG). Ten, the DAG task is transformed into a subtask
sequence vector in order of priority. Finally, the policy
function based on the recurrent neural network (RNN) is
input to obtain the ofoading strategy. Te proposed model
employs the proximal policy optimization (PPO) algorithm
to minimize the comprehensive cost function including
delay and energy consumption. Te major contributions of
this paper are as follows:

(1) Considering the inherent task dependency of mobile
applications, we innovatively propose a DRL-based

task ofoading model, which leverages of-policy
reinforcement learning with RNN to capture
dependencies.

(2) We design a new encoding method to encode DAG
into task vector, including task profle and depen-
dency information, which can transform DAG into
RNN input without loss of fdelity.

(3) We introduce an attention mechanism to solve the
problem of performance degradation caused by the
incomplete capture of feature information in long
sequences. To efectively train the model, we use an
of-policy DRL algorithm with a clipped surrogate
objective function to make the algorithm have strong
exploration ability and prevent the training from
getting stuck in the local optima.

2. System Model

Figure 1 shows the MEC scenario considered in the present
work. Te mobile terminal (MT), as the end user, is the
service requester and generates computing tasks according
to the program (path planning and object identifcation)
called by the user. Tese applications have internal de-
pendency, so in the present work, computing ofoading is
defned as sequential ofoading of subtasks. Subtasks are
transmitted to the edge base station (BS) for execution.
Finally, the processed result will be sent back to the MT.Te
system model of this work will be described in detail.

2.1. Task Model. Each MT generates a computing-intensive
application with N tasks, as shown in Figure 2. We modeled
the application as a DAG, and G � (V, E); the vertex set V �

v1, v2, . . . , vN  represents each computation task; and the
edge set E � e � (vi, vj)|(i, j) ∈ (1, 2, . . . N) × (1, 2, . . . N) 

represents the dependency between computation tasks,
where vi is a direct predecessor to vj, and vj is a direct
successor to vi. In particular, a task without a predecessor
task is called an entry task, and a computing task without a
successor task is called an exit task [18].

Each computing task in G is represented by a tuple vi �

(ci, di, qi), which represents the number of CPU cycles re-
quired, the size of input and that of output data, respectively.
Te input data generally include the source codes and related
parameters in the application program, while the output
data refer to the data generated by the predecessor task [19].
Each task has two computing modes as follows: the task is
processed on MT (which is termed local computing) and
then transmitted to the base station (BS) for processing
through the wireless channel before being returned to MT,
i.e., ofoading computing. Te computation mode of all
tasks can be represented as a list A � (a1, a2, . . . , aN) and
ai ∈ 0, 1{ }, in which 0 indicates local computing and 1 in-
dicates ofoading computing. When the computation tasks
are intensive, since the execution of task vi may need to
queue up in the task queue, and considering the restriction
of dependency relationship, the execution of task vi needs to
meet two conditions as follows:
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(1) all predecessors to task vi have been completed
(2) the resources required for task vi are idle.

In order to better represent the computing model and
communication model, the following defnitions are frst
given:

Defnition 1. Te completion time of task vi in the wireless
uplink and downlink channel is expressed as FTs

i and FTr
i ,

respectively, and the completion time of task vi on MT and
BS is expressed as FTl

i and FTo
i , respectively.

Defnition 2. Te available time that task vi can use the
wireless uplink and downlink channels is denoted as ATs

i

and ATr
i , respectively, and the available time of task vi can

use the computing resources on MT and BS is expressed as
ATl

i and ATo
i , respectively.

Te available time represents when the resource is idle
and depends on the completion time of the immediate
precursor task of task vi on that resource. If the precursor

task does not utilize the resource, we set the completion time
on that resource to 0.

2.2. Local Computing Model. If vi is computed locally, the
start time of task vi depends on the completion time of its
precursor task and the available time of MT. Te precursor
task may be computed in the MT or BS. In this case, the
completion time in MT is equal to the start time plus the
local execution delay.

FTl
i � max max FTl

p, FTr
p , max ATl

p, FTl
p   + T

l
i, (1)

where vp is the direct predecessor task of vi. If vp is computed
locally, FTr

p � 0; if vp is computed remotely, FTl
p � 0. While

MT is processing other tasks, vi needs to queue and cannot
be executed immediately. Te local execution delay of vi is
Tl

i � di/fl, where fl represents the computing capacity of
MT.Meanwhile, the energy consumption is El

i � k · ci · (fl)2

, where k is dependent on the efective capacitance coef-
cient of the chip structure used.

2.3. Ofoading Computing Model. If vi chooses ofoading
computing, MT frst needs to send vi to BS through the
wireless uplink channel, but it can only be sent when all the
precursor tasks have been executed and the uplink channel is
available; then, the completion time of the wireless uplink
channel is equal to the start time plus the sending delay.

FTs
i � max max FTl

p, FTr
p , max ATs

p, FTs
p   + T

s
i . (2)

According to Shannon’s theorem [20], the uplink rate
from MT to BS is as follows:

rup � w · log2 1 + p ·
g

σ2
 , (3)

where w, p, g, and σ2 represent system bandwidth, trans-
mission power of MT, channel gain, and noise power, re-
spectively.We assume that the uplink rate and downlink rate

v2

v1

v5

v3

v4

v7

v6

Mobile Terminals Applications Dependent Subtasks

(2) (3)(2) (3)

(1) Offloading(5) Return

(2) Waiting
(4) Transmission(4)

(4) 

(3) Execution

Figure 1: MEC scenario.
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Figure 2: Structure of a directed acyclic graph (DAG).
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of a wireless channel are equal, then rdown � rup. Te
transmission delay of MT sending data to BS is Ts

i � di/rup,
and the corresponding energy consumption is Es

i � ps · Ts
i ,

where ps represents the transmission power.
After BS receives vi, if the conditions are met, it can

execute vi. In this case, similarly, the execution completion
time in BS is equal to the start time plus the execution delay
on BS.

FTo
i � max max FTs

i , max FTo
p , max ATo

p, FTo
p   + T

o
i . (4)

Te delay of execution of vi in BS is To
i � ci/fs, where fs

represents the computing capacity of BS. Similarly, the
completion time of BS sending the processing results back to
MT through the wireless downlink channel is as follows:

FTr
i � max FTo

i , max ATr
p, FTr

p   + T
r
i . (5)

Te return delay is Tr
i � qi/rdown and the energy con-

sumption is Er
i � pr · Tr

i .

2.4. ProblemDescription. According to the abovementioned
analysis, the delay of executing a DAG task is as follows:

TA � max
vi∈K

max FTl
i, FT

r
i  , (6)

where K is the set of all exit tasks, and the sum delay is equal
to the time required to process till the last exit task.

Te energy required to consume is as follows:

EA � 
N

i�1
Ei � 

N

i�1
E

l
i · Ι ai�0( ) + E

o

i
· Ι ai�1( ) , (7)

where Eo
i � Es

i + Er
i represents the energy consumption re-

quired for ofoading computing, Ι(Δ) is an indicator func-
tion whose value is equal to 1 when condition Δ is satisfed,
otherwise, its value is 0.

To measure the quality of an ofoading strategy, we
defne a comprehensive cost function [21, 22], and the ul-
timate goal is to minimize the comprehensive cost value.

CC � α · TA +(1 − α) · EA. (8)

where TA and EA represent the required delay and energy
consumption, respectively, and α is the balance factor, which
is valued in the interval [0, 1]. Tis weighted sum method is
efective and easy to implement, so it has been widely used.
Te balance factor refects that user preferences can be
adjusted dynamically. However, the ofoading problem of
general DAGs is NP-hard [23], so it is difcult to fnd an
optimal ofoading strategy with appropriate time
complexity.

3. Graph Mapping Offloading Model
Based on DRL

Tis section mainly introduces in detail the graph mapping
ofoading model based on DRL. First, to facilitate the
processing of DAG tasks, the DAG tasks are converted into
subtask sequence vectors by the heterogeneous earliest fnish

time (HEFT) algorithm. Tis step acts as a data pre-
processing step, after which the subtasks are processed with
reference to the vector, and the computing process is de-
tailed through an example. Ten, the ofoading problem is
described as a Markov decision process (MDP), and the
corresponding state space, action space, and reward are
analyzed. Finally, the structure of the graph mapping of-
loading model is introduced, which is based on an encoding-
decoding framework with the attention mechanism and
trained by the proximal policy optimization (PPO)
algorithm.

3.1. DAG Instance. In order to satisfy the dependency
constraint between subtasks in the application program, we
prioritize tasks in descending order based on their sequence
values, which is defned as follows:

rank vi(  �
T

o
i , ifvi ∈ K,

maxvj∈succ vi( ) rank vj  + T
o
i , ifvi ∉ K.

⎧⎪⎨

⎪⎩
(9)

Te priority is calculated in a similar way to the HEFT
algorithm [24], where succ(vi) represents the direct suc-
cessor task set of task vi, To

i is the execution cost of task vi,
which can be calculated as follows: To

i � Ts
i + Tb

i + Tr
i , the

shortest delay (without queuing) obtained by ofoading the
task. We treat the sort order as an execution order vector,
represented by O � [o1, o2, . . . , on], where oi represents the
ith task to be executed. Table 1 shows the execution delays of
tasks on the MT and BS. According to formula (9), the
execution order vector O � [v1, v2, v4, v5, v3, v6, v9, v8, v7, v10]

can be obtained.
Te DAG in Figure 2 is used as an example, and we

briefy illustrate the execution of the task. Tis application
program G is composed of 10 subtasks. It is assumed that the
ofoading strategy vector is A � [0, 1, 1, 1, 0, 0, 1, 0, 1, 0], and
Figure 3 shows the task execution process based on O and A.
For example, if task v5 is ofoaded to the BS, its available
time is ATs

9 � 6s and its completion time is FTr
9 � 14s. From

Figure 3, we know that the execution latency of DAG task is
TA � 20s.

3.2. Structure of the Markov Decision Process. Each task is
connected to a virtual machine to provide private com-
puting, communication, and storage resources, so the pa-
rameters of the network environment are considered to be
static. Terefore, we establish MDP from the perspective of
DAG task.

State space: Te state space is a sequence of information
about DAG tasks and ofoading decisions of historical
subtasks. Te policy set of the history subtask is represented
by A1∼i, then

state � G, A1∼i . (10)

Action space: Since each subtask either selects local
computing or ofoading computing, the action space is
expressed as follows:
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action � 0, 1{ }. (11)

Reward: When task vi is completed according to strategy
ai, the total delay increment is △Ti and the required energy
consumption is Ei. Terefore, the reward function can be
defned as follows:

r
T
i � −△Ti,

r
E
i � −Ei.

(12)

3.3. Model Design. Te graph mapping ofoading model is
based on an encoding-decoding framework that incorpo-
rates the attention mechanism [25]. Te underlying idea of
the model is to use two RNNs, one as an encoder and the
other as a decoder. Te task vector is input into the encoder,
where the feature information of the task is extracted; then,
feature decomposition is performed through the decoder
and the ofoading decision is output. However, this simple
encoding-decoding framework is instable in remembering
previous feature information in long input sequences, which
may lead to poor performance of the model. Te attention
mechanism is hence introduced in our work to solve this
problem. Te attention mechanism can reduce the infor-
mation loss in the simple encoding-decoding framework by
calculating the correlation between the hidden state of each
step in the decoder and the hidden state of each step in the
encoder and by assigning a corresponding weight value to
the extracted features. As shown in Figures 4 and 5, the
specifc process is as follows.

At time step i, the encoder transforms the input task
vector vi and the hidden state hi−1

en of the last time step into
the hidden state hi

en of the current time step, namely, hi
en �

fen(vi, hi−1
en ), where fen represents the encoder network.

Ten, the weight of the hidden states of each time step of the
encoder is calculated, and cj � 

N
i�1 ξjih

i
en is obtained to form

a context vector C � [c1, c2, . . . , cN], where ξji represents the
weight of each hidden state of the encoder, which is nor-
malized to the alignment vector by SoftMax operation. In
each time step j of decoding, the hidden state h

j

de of the
decoder at this step is not sent to the output layer at frst but
calculates the score with each hidden state of the encoder,
that is, the alignment vector
alignj � [score(h

j

de, h1
en), . . . , score(h

j

de, hi
en)] is obtained. In

the present work, the score function is defned as a trainable
neural network [26], which represents the correlation be-
tween the hidden state of each time step in the decoder and
the hidden state of each step in the encoder.

At the time step j, the decoder transforms the corre-
sponding context value cj, the last hidden state h

j−1
de , and the

last output result aj−1 into the current hidden state h
j

de �

fde(h
j−1
de , aj−1, cj). In the fnal output, the decoder obtains

the strategy π(aj|sj;ω) through the SoftMax layer and se-
lects the action through aj � argmaxπ(aj|sj;ω).

Te state value V(st; θ) can be calculated by the critic
network, where θ is the parameter of the critic network. Te
network is composed of a recurrent neural network and a
full connection layer, which is initialized by the fnal hidden
state of the encoder in the actor network. A history of-
loading policy whose fnal hidden state is mapped to a state
value through the full connection layer is entered.

3.4. Model Training. PPO is a reinforcement learning al-
gorithm based on the actor-critic (AC) framework proposed
by OpenAI, which mainly consists of three networks: one
critic network and two actor networks (actor network and
old actor network).Te old actor network is used to generate
training data, while the actor network uses the generated
training data for training. Compared with the previous trust

Table 1: Task execution delay(s).

Task Tl
i Ts

i Tb
i Tr

i

v1 2 1 1 1
v2 6 1 3 1
v3 4 2 2 1
v4 2 2 1 2
v5 2 1 1 1
v6 4 2 2 1
v7 8 1 4 1
v8 2 2 1 1
v9 6 4 3 1
v10 2 1 1 1
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Figure 3: An example of DAG task execution.
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region policy optimization (TRPO) algorithm, PPO is easier
to implement and has good performance, which solves the
problem that the policy gradient algorithm is difcult to
determine the step size and the update diference is too large
[27]. In order to control the updated step of the policy, PPO
adopts the clipped surrogate objective function, as shown in
the following formulae:

L
CLIP
t (θ) � E 

N

t�1
min prt(θ)At st, at( , clip(·)At st, at( (⎡⎣ ⎤⎦,

clip prt(θ), 1 − ε, 1 + ε( ,

prt(θ) �
π at|G, A1∼N; θ( 

π at|G, A1∼N; θol d( 
.

(13)

Te clip function clip(·) aims to limit the value of the
importance of sampling weight prt(θ), where ε is the
hyperparameter controlling the clip range.Temin function
minimizes the original item and the truncated item, that is,

the truncated item will limit its value when the ofset of the
policy update exceeds the predetermined interval.

Te actor network and the critic network in the PPO
algorithm share network parameters, and its training and
optimization objective function is defned as follows:

L
PPO
t (θ) � E L

CLIP
t (θ) − c1L

VF
t (θ) + c2S st(  , (14)

where LCLIP
t (θ) and LVF

t (θ) are the loss functions of the actor
network and the critic network, respectively; S(st) is the
cross entropy loss, which is used to improve the strategy
exploration ability; c1 and c2 are constants. Te PPO al-
gorithm is based on an actor-critic (AC) architecture, so it
needs to optimize these two groups of parameters,
respectively.

For the actor network, general advantage estimation
(GAE) is used as an estimation function of their loss
functions to balance variances and bias. It borrows the idea
of the time-series diference algorithm and is expressed as
follows:

A
GAE(c,λ)
t � 

N−t+1

k�0
(cλ)

kδV
t+k, (15)

where A
GAE(c,λ)
t is the advantage function and δV

t+k is the
timing diference error, and the calculation formula is as
follows:

δV
t+k � rt + cV st+1(  − V st( . (16)

For the critic network, its loss function is expressed as
follows:

L
VF
t (θ) � E V st; θ(  − V

targ
st(  

2
, (17)

where Vt arg(·) is the estimated value of the value function
and is defned as follows:

V
π∗

st(  � 
N−t+1

k�1
c

k
rt+k. (18)

Table 2 shows the training process of the proposed al-
gorithm. Te old actor network is used for sampling and the
actor network for training. Te proposed algorithm alter-
nates between the exploration stage (lines 5–9) and the
optimization stage (lines 10–13). In the exploration stage, D
episodes are collected in each time step using the old actor
network. GAE estimates A

GAE(c,λ)
t for each time step in each

episode and the value Vπ∗(st) for each state is also calculated.
In the optimization stage, the batch sample data are sampled
from the experience pool, and the objective function is
optimized in round H according to the sampling data. Ten,
the old actor network is updated with the updated actor
network to ensure that the old actor network collects data
with the new parameters in the next sampling stage.

4. Simulation Results and Discussion

Te simulation experiment is completed on a workstation
with Intel Core I7–9700H 3.6GHz CPU and 8GB memory.
Te virtual environment is TensorFlow-GPU-1.x. Te

h1
de h2

de hN
de

h1
en h2

en hN
en

a1 a2 aN

v1 v2 vN

C=[c1, c2, ..., cN]

+
ξ1 ξ2 ξN

c1 c2 cN

Task Vector

Encoder

Decoder

Context Vector

Strategy Vector

Actor Network

...

Figure 4: Actor network in GMOM.
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...
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de hN
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hN
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v(s1) v(s2) v(sN)

A=[a1, a2, ..., aN]

Figure 5: Critic network in GMOM.
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encoding-decoding framework contains two RNNs, one as
an encoder consisting of 256 hidden units and two fully
connected layers; the other RNN acts as a decoder and
consists of 256 hidden units, 1 full connection layer, and 1
SoftMax layer. Tanh is used as the activation function and
Adam as the optimizer. Te discount factor c is set to 0.95.
Te maximum number of episodes is set to 2000. Other
parameters are shown in Table 3.

A popular method is employed here to generate various
DAGs to simulate applications with dependencies [28]. Te
parameters of DAG are shown in Table 4, where fat and
de nsity determine the width, weight, and dependency of
DAGs, respectively.

4.1. Performance Indicators

4.1.1. Comprehensive Cost. We set a weight space
Ω � [α1, α2, . . . , α|Ω|], and given a weight value αi, we frst
consider the optimization goals T

αi

A and E
αi

A for the time
delay and energy consumption, respectively. According to
the abovementioned description, the comprehensive cost
function is as follows:

CCαi
� αi · T

αi

A + 1 − αi(  · E
αi

A . (19)

Ten, we calculate the average completion time (ACT),
the average energy consumption (AEC), and the average
comprehensive cost value (ACC), respectively.

AEC �
1

|Ω|

αi∈Ω

E
αi

A ,

ACT �
1

|Ω|

αi∈Ω

T
αi

A ,

ACC �
1

|Ω|

αi∈Ω

CC
αi

αi
.

(20)

4.1.2. Network Usage. Te network resource usage (NU)
depends on the amount of data transferred between MTand
BS. Tus, NU is defned as follows:

EA �
1

|Ω|

αi∈Ω

1
ACT



N

i�1
T

s
i · di + T

r
i · qi(  · Ι ai�1( ). (21)

4.2. Parameter Analysis. In this section, we compare the
performance of the model with varied parameter values by
taking the reward values as indicators. Figure 6 shows the
infuence of the learning rate in the optimizer on algorithm
performance. It can be seen that systems with a too large or
too small learning rate will not be rewarded very much.
Meanwhile, considering the training efciency and other
factors, we set the learning rate to 0.001. Te sampling ef-
fciency in the case of a small batch size is relatively low, and
a large batch size may lead to frequent selection of old
samples in the experience pool. Terefore, the batch size is
set to 500 in the present work.

4.3. Indicator Analysis. To gain insights into the proposed
GMOM model, the following methods are implemented for
comparison.

4.3.1. Greedy. Greedy decisions are made about subtasks
based on estimates of the local and ofoading computing
completion time for each subtask.

Table 2: Training process of the GMOM model.

Algorithm GMOM
(1) Initialize the initial network parameter θ that the actor network and the critic network share randomly
(2) Initialize the parameter θol d of the old actor network with θ
(3) For iteration� 1, 2, . . . do
(4) for t� 1, 2, . . ., N do
(5) for i� 1, 2, . . ., D do
(6) the whole episode is collected with the old actor network, and the obtained data is stored in the experience pool D
(7) calculate the GAE function value for each time step according to formula (14), get A

GAE(c,λ)
t and cache it

(8) calculate the value in each state according to formula (17) and get Vπ∗(st)

(9) end
(10) for j� 1, 2, . . ., H do
(11) sample batch size sample data to optimize the objective function, update the actor network
(12) end
(13) Synchronize the parameters of two actor networks, i.e., θol d←θ
(14) end
(15) end

Table 3: Parameters of the simulation experiment.

Parameter Value Parameter Value
rdown, rup {4.5, 8.5, 12.5, 16.5} Mbps σ2 10−6W
w 0.6MHz fl 0.6 GHz
ps 1.2W fs 6GHz
pr 1.1W k 10−26

Table 4: Specifcs of DAG instances.

Instance N Fat Density ci(cycle/ sec) di(kb) qi(kb)

DAG-1 10 0.6 0.3 [107, 108] [5, 50] [0.5, 5]
DAG-2 10 0.6 0.7 [107, 108] [5, 50] [0.5, 5]
DAG-3 20 0.6 0.7 [107, 108] [5, 50] [0.5, 5]
DAG-4 30 0.6 0.7 [107, 108] [5, 50] [0.5, 5]
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4.3.2. HEFT. All subtasks are prioritized according to the
earliest completion time, and then, the subtasks with a
higher priority are allocated with resources with the smallest
estimated completion time for processing.

4.3.3. DQN. Long and short-termmemory is combined with
DQN to solve the ofoading problem of dependent tasks in
the heterogeneous MEC environment, with the goal of
minimizing completion delay and energy consumption at
the same time.

4.3.4. RL-DWS. To solve the problem of dynamic prefer-
ence, multiobjective reinforcement learning with dynamic
weights is proposed, and the change in the weight is mea-
sured by learning the Q value of multiobjectives.

Figure 7 shows the training results of two networks. As
shown in Figure 6, the system reward increases sharply in the
initial 200 episodes before the growth rate levels of, and this
is also manifested in the loss value. Finally, the loss of the
value network and policy network approaches 0, indicating
that the algorithm in the present work has good
convergence.
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Figure 6: Te reward under diferent parameters in DAG-3. (a) Rewards under diferent learning rates. (b) Rewards under diferent batch
sizes.
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Figure 7: Te loss of the policy network and the value network in the training process of GMOM. (a)Te policy network loss. (b)Te value
network loss.
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First, the transmission rate is set at 4.5Mbps and the
performance of diferent algorithms under diferent DAGs is
compared, where Ω � [0, 0.2, 0.5, 0.8, 1]. Figure 8 shows the
corresponding ACT, AEC, and ACC values of diferent
algorithms. As shown in Figure 8(a), our proposed algo-
rithm can always obtain the minimum ACT, indicating that
it obtains a smaller execution delay compared with other
algorithms. Some algorithms, such as RL-DWS and DQN,
perform well in terms of energy consumption, but poorly in
terms of delay for DAG-4. HEFT and Greedy have similar
performance in terms of delay and energy consumption for

DAG-1 and DAG-3. Te baseline algorithm underperforms
in balancing is delay and energy consumption; our algo-
rithm, however, shows good performance in terms of all the
three evaluation indicators. In Figure 8(b), GMOMperforms
best in most DAGs (except for DAG-1). Although RL-DWS
obtains the minimum AEC in DAG-1, its corresponding
ACT is larger. In Figure 8(c), ACC of GMOM is also the
smallest, indicating that GMOM can also perform best when
comprehensively measuring delay and energy consumption.

Figure 9 represents NU values achieved by all algorithms
discussed in our work. It shows that our algorithm gets a
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Figure 8: ACT, AEC, and ACC of all algorithms under diferent DAGs. (a)Te ACTof all algorithms. (b)Te AEC of all algorithms. (c)Te
ACC of all algorithms.
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smaller NU value, indicating its better performance in task
ofoading betweenMTand BS than other baselines, which is
conducive to the utilization of network resources.

Ten, DAG 1–4 are tested with weight α � 0.2 to compare
the average performance of diferent algorithms at diferent
transmission rates. At a small rate of transmission, ofoading
fromMTto BS will sufer a high transmission delay; however,
at a higher rate, the delay will decline. Our goal is to design an
efcient algorithm to accommodate diferent transmission
rates. In Figure 10(a), RL-DWS fails to learn an efective
strategy, and its performance is worse than that of HEFT
when the rate increases from 4.5Mbps to 8.5Mbps. On the
contrary, our algorithm has better adaptability than all
baselines and approaches the optimal solution at all rates. In
Figures 10(b) and 10(c), DQN is superior to RL-DWS on
AEC, but the results in Figure 10(a) are opposite. Meanwhile,
Figure 10(c) shows that ACC of all algorithms decreases as the
transmission rate increases. Tis is because as the commu-
nication cost declines the transmission rate increases, of-
loading tasks to edge servers may be benefcial.

Te weight refects the importance of delay under a par-
ticular ofoading strategy. At a small weight value, the of-
loading strategy should be selected to reduce the delay.
Figure 11 shows the trend of changes in ACT and AEC as the
weight of the delay increases. Overall, ACT decreases while
AEC increases, because as the weight increases, the number of
subtasks selecting local computing decreases, while the number
of subtasks opting for ofoading computing increases. Tis is
mainly becauseMT has amuch lower computing capacity than
BS. However, ofoadingmore subtasks to BSwill lead to higher
energy consumption. Terefore, the time delay and energy
consumption can be efectively balanced through edge-end
collaborative processing of tasks.

5. Conclusion

In the present work, the ofoading problem of dependent
tasks in the mobile edge computing environment is studied
to balance delay and energy consumption. We propose a
graph mapping ofoading model based on deep reinforce-
ment learning; specifcally, the ofoading problem is
modeled as an MDP, and RNN is combined to approximate
the policy and value function of MDP, and it is combined
with an encoding-decoding framework that introduces the
attention mechanism to train the model with a popular
proximal policy optimization algorithm. Simulation ex-
periments show that the proposed algorithm has better
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stability and convergence and can obtain an approximately
optimal solution.

In order to meet the expected large number of demand
services, the research of future generation wireless network
(6G) has been initiated, which is expected to improve the
enhanced broadband, massive access, and low latency ser-
vice capability of the 5G wireless network, which is benefcial
for the mobile edge network [29]. However, 6G networks
tend to be multidimensional, ultradense, and heterogeneous,
so artifcial intelligence (AI), especially machine learning
(ML), is emerging as a solution for intelligent network
orchestration and management. For example, intelligent or
intelligent spectrum management can be achieved using
deep reinforcement learning, especially for random state
measurement problems, which also has potential.
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