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Matrix multiplication has been implemented in various programming languages, and improved performance has been reported in
many articles under various settings. Matrix multiplication is of paramount interest to machine learning, a lightweight matrix-
based key management protocol for IoT networks, animation, and so on. �ere has always been a need and an interest for
improved performance in terms of algorithm implementation. In this work, the authors compared the run times of matrix
multiplication in popular languages such as C++, Java, and Python. �is analysis showed that Python’s implementation was poor
while Java was relatively slower compared to the C++ implementation. All the aforementioned languages use a row-major scheme,
and hence, there are many cache misses encountered when implemented through simple looping. In contrast, the authors show
that by changing the loop order, more performance gains are possible. Moreover, we evaluated the performance of matrix
multiplication by comparing the execution time under various loop settings.�e authors observed tremendous performance gains
due to better spatial locality. In addition, the authors also implemented a parallel version of the same algorithm using OpenMP
with eight logical cores and achieved a speed-up of seven times compared to the serial implementation.

1. Introduction

With the emergence of smart devices in many application
areas, such as healthcare, location-based services, and self-
driving vehicles heavily depends on the e�cient processing
of data produced by these devices. Processing such data are
very challenging, especially when data is produced in zet-
tabytes. On the other hand, the performance of an appli-
cation is no more linearly linked to the processor clock
frequency as it was a norm until 2004, where doubling the
system speed would roughly result in a 50% performance
gain. However, in 2004, the chip manufacturers encountered
a “Power Wall” and faced fundamental constraints in power
delivery and heat dissipation. “Power Wall” refers to the
di�culty of scaling the performance of computing chips and
systems due to fundamental constraints imposed by physics.
�is limitation on increasing processor frequency intro-
duced the era of multicore computing, where multiple cores
run an application in parallel for better performance.
Multicore systems and even low-end small devices such as
tablets and smartphones, which have two or more cores,

currently dominate the computing domain. On the other
hand, writing algorithms to fully exploit these multicore
systems remains a challenging task.

With multicore systems, personal computers today o�er
the computation power of supercomputers. Such speed
provides many prospects for performing computationally
extensive operations. To exploit this facility, several serial
applications present the opportunity to write parallel ver-
sions, especially in applications where it is of principal in-
terest to exploit the potential parallelism in the application.
�is trend of parallel processing theoretically shows linear
performance gains with an increased number of processors
at an abstract level and excellent performance when run as a
parallel system. However, not all code can run in parallel
and, hence, serial parts seriously limit the system perfor-
mance. Unlike serial counterparts where performance is
measured through complexity analysis, the performance of
parallel systems is evaluated through Amdahl’s or Gus-
tafson’s laws [1, 2].

Traditionally, until 2002, the majority of computer
systems had one processor, and accordingly, sequential
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algorithms were developed. Today, the latest computers,
which consist of multiple processing elements (either
multiple CPU cores or GPU), are more powerful due to
multiple processing units. Understandable serial codes are
slow as they need to process the instructions one by one, in
contrast to a parallel execution where multiple instructions
are processed simultaneously. $e performance of many
serial programs can be improved by exploiting the parallel
architectures, which can be in terms of loop reorder,
pipelining, and speculation, and so on. It is worth noting that
not every program can be converted in parallel, and there are
cases where the parallel version exhibits poor performance
compared to the serial version. With the latest computing
architecture and parallel languages, tremendous improve-
ments have been reported for machine learning, AI, a
lightweight matrix-based key management protocol for IoT
networks, graphics, computational photography, and
computer vision by exploiting parallelization [3–7].

Benefits such as power efficiency, resource pooling, cost
reduction, system availability, and improved computational
power can be obtained with cloud computing infrastructure.
All such benefits attract computer scientists, systems engi-
neers, the research community, and high-performance
computing (HPC) customers to the cloud domain. On the
other hand, HPC programs often use a large number of
processors to lower the run times of tasks. An issue with such
processors is synchronization, in addition to communica-
tion overheads. It has been reported in [3] that shifting an
HPC application to the cloud environment can negatively
impact the aforementioned difficulties and even introduce
additional issues of virtualization, multitenancy, network
latency, and so forth.

In this paper, we limit our analysis to a multicore system
by observing the program behavior and changing loop or-
derings [4–7]. We apply a parallel construct for matrix
multiplication to gain better performance. In this work, we
study the following:

$e impact of loop reordering on performance
Parallel implementation under OpenMP framework to
illustrate the speed-up obtained through parallelism

$e remaining part of this paper is divided into four
sections as. In the background Section, we discuss the
groundwork, followed by an explanation of the row and
column major order of data in the memory in the impact of
row-major programming constructs Section. We discuss the
behavior of matrix multiplication for a square matrix by
changing the loop ordering. In the Discussion Section, we
provide the parallel version of the code and discuss the
experimental results. $e paper then offers a conclusion as
the last section.

2. Background

Until the beginning of the 21st century, advances in tech-
nology would simply be considered an increase in the clock
speed. Naturally, the software would effectively “speed-up”
automatically over time because of running faster proces-
sors. $e clock speed of microprocessors increased

exponentially through the 1990s and beyond, but after 2004,
it reached a limit due to physics, and the clock speed is now
limited by power consumption/heat dissipation. With little
improvement in clock speed, such performance gain con-
venience is no longer an option for software engineers.

As a solution to lower power consumption, the dynamic
voltage scaling concept was introduced in CMOS technol-
ogies. $e literature shows that the relationship between
frequency and voltage in modern processors [8] can be
written as: E = P∗T, where “E” denotes the power con-
sumption, “P” represents the average power, and “T” is the
time taken for this average power.

Today, advances in technology mean increased paral-
lelism and not enhanced clock speed. $us, exploiting such
parallelism is one of the outstanding challenges of modern
computer science.

$e parallel programming and parallelization of the
tasks are done for the main purpose of allowing tasks to be
executed at the same time by utilizing multiple computer
resources and multiple cores on the same CPU.$is process
is very critical, especially for large-scale projects where speed
is needed. Parallel programming is making its way into
various domains, ranging from drug discovery to data an-
alytics to the animation industry. All these applications are
computation intensive and traditional sequential code be-
comes inefficient. However, just increasing the number of
processors does not always guarantee performance gains and
depends on the nature of the problem to be parallelized.
Parallel implementation is prone to overheads such as: task
start-up, time, synchronization, SATA communications,
and software overhead imposed by parallel languages, li-
braries, operating system, and so on. When a parallel code is
developed, these factors need to be considered carefully.

In the parallel programming literature, a massive parallel
system means that the hardware of a given parallel system is
comprised of many processing elements, and currently, the
largest parallel computers include processing components in
the range of hundreds of thousands to millions. Similarly,
embarrassing parallel applications refer to a set of appli-
cations where independent tasks can run simultaneously and
there exists very little to no need for coordination between
the tasks. Another term that is used in the parallel pro-
gramming domain is “scalability,” which points to a parallel
system’s ability to demonstrate an adequate increase in
parallel speed-up. Such a situation is understandable with
the addition of more resources. Factors that contribute to
scalability include algorithms, overheads, hardware, the
characteristics of a program, and so forth. In parallel pro-
gramming, efficiency is defined as the amount of work
needed to be done, while “performance” points to how fast
an algorithm can finish a particular work. A faster imple-
mentation is not necessarily an efficient one, where efficiency
points to the full exploitation of available hardware
resources.

In a program running on a parallel system, it is possible
that some instructions need to be accomplished in sequence.
$is sequential execution has a limiting factor on program
speed-up such that even adding more processors may not
make the program run any faster. For instance, if a program
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takes 20minutes to finish using a serial code with one thread,
and when the 5 minute portion of the code cannot be made
parallel, the remaining 15 minutes of processing can be
written as parallel code. In such situations, irrespective of
how many threads are devoted to the parallelized execution
of this program, the minimum execution time cannot be less
than 15 minutes. For such evaluation of a program in the
parallel computing domain, Amdahl’s law [1] is used and can
be represented as follows:

S � 1/((1 − p) + p/speed), (1)

where S shows the theoretical speed-up of the execution,
speed represents the speed-up of the part of the task that
benefits from improved system resources, and P is the
proportion of the execution time that the part benefiting
from the improved resources originally occupied.

One of the most important criteria in parallel computing
is to actually measure how much faster a parallel algorithm
runs with respect to the best sequential one. $is measure is
known as “speed-up.” In other words, speed-up is the gain in
speed made by a parallel execution compared to a sequential
execution. Any program that results in higher speed is not
necessarily efficient. $e efficiency of a program is described
as using p processors, or how effectively all system hardware
elements are being utilized. If the efficiency is 1.0, then it is
the maximum theoretical efficiency and shows the optimal
usage of computational resources available for execution. If
speed-up is not greater than linear, the efficiency will be less
than or equal to 1.0, and this is normally the situation in
practical cases.

In computer science, matrix multiplication is of great
interest to many application areas, and a lot of work has been
done in this regard in the literature [3, 9–23]. It has been
shown that the number of processes does not necessarily
result in performance gain. Recently, the authors in [3]
measured the speed-up and efficiency of a matrix multi-
plication benchmark running on Amazon EC2. $eir ex-
periment shows why the performance of HPC applications
on the cloud is not predictable due to the shared resources
and multitenant environment of the cloud [3]. Various
improvements in matrix multiplication have been discussed
in the literature [16, 24, 25], and further gains are possible
using GPUs [26–29]. Recently, for more secure communi-
cation between these IoT devices, the authors in [30] ex-
tended the work by proposing a lightweight matrix-based
key management protocol for IoT networks.

OpenMP is an open specification for multiprocessing
and offers a standard API for defining multithreaded,
shared-memory programs [31].$e OpenMP high-level API
consists of 80% preprocessor (compiler) directives, 19%
library calls, and around 1% of environment variables. $is
framework presents the fork-join model of parallel execu-
tion. OpenMP is an API that is portable, supports threading,
and can work with shared-memory programming specifi-
cations with “light” syntax. It is to be noted that the exact
behavior depends on the OpenMP implementation and the
number of threads. OpenMP is an advanced API and works
for both C and C++; and it requires compiler support. Since
a program can have serial and parallel sections, OpenMP

allows a programmer to separate a program into serial re-
gions and parallel regions, hide stack management, and
provide synchronization constructs. As a potential draw-
back, OpenMP cannot detect dependencies in the code nor
guarantee speed-up. In addition, it cannot provide freedom
from data races, and it is the responsibility of the pro-
grammer to avoid such cases.

3. Impact of Row-Major
Programming Constructs

In the computer science domain, two methods exist for
storing multidimensional arrays, such as matrices, in linear
storage and in random access memory. $ey are called
column-major and row-major orders. $ese methods are
different in the way in which elements are stored contigu-
ously in the memory. In column-major order, elements are
arranged consecutively along the column, while elements are
arranged consecutively along the row under row-major
sequence. Python, C, C++, Objective-C, and Java implement
the column-major order when storing elements in memory,
while FORTRAN, MATLAB, Julia, and Pascal use the col-
umn-major order.

In row-major order, elements are placed in memory as
shown in Table 1, where the entire row is placed at one
location in the memory, ignoring the cache line size such
that there are multiple rows of the matrix. Table 2 represents
the representation of the elements of Matrix C in cache,
where a minimal block of data is transferred between the
memory and the cache in a better algorithm, and the entire
block of memory is placed in the cache line i.e., the word
length and block length are of the same size in this paper.We
then study the effect of spatial locality on program
performance.

We name the first Matrix A, the second B; the product of
Matrixes A and B is stored in Matrix C, as shown in Figure 1.
It can be seen that under the j, k, i loop ordering, the
program takes the longest due to poor placements of ele-
ments in memory. In Figure 2, we can see B has excellent
spatial locality, but the code is dominated by two other
Matrices A and C, where the placement is poor and, hence,
the program shows worse case behavior when implanted in
C, C++, Python, or Java.

As an alternative, we implemented the program as
follows, written in C++ in Figure 3.We can now visualize the
memory layout in Figure 4, where Matrix B offers poor,
Matrix A offers good, while Matrix C presents the best
spatial locality for the elements. In Figure 4, it can be seen
that for Matrix C, the elements are placed n elements apart,
and that is why there is a miss, which takes more time for the
system to load the value. For Matrix B, it is relatively closer,
as only a desired number of steps are taken, but for Matrix C,
only one location is updated, and hence, it offers an excellent
spatial locality.$is program improves the performance by a
factor of three when the matrix is of dimension 4096 and
implemented in C++.

We then rewrote the code and adjusted the loop order
(see Figure 5). $is arrangement did not affect the cor-
rectness of the program. $e aim of this arrangement was to
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obtain a better spatial locality, as the program takes much
less time compared to the counterpart implements. $e
corresponding spatial locality for Figure 5 is shown in
Figure 6. It can be seen that since Matrixes C and B offer
good spatial locality, Matrix A has excellent spatial locality,
and hence, this arrangement surpasses its other counterparts
in performance. $eoretically, the code shown in Figure 5 is
approximately 14 times faster than the one implemented in
Figure 2 due to better spatial locality. $is arrangement
favors row-major languages, while it will hurt the perfor-
mance of column-major languages due to the inappropriate
memory layout of array elements.

4. Discussion

$is experiment was conducted on Windows 10 and the
system information is shown in Table 3. $e complexity of
the program is 2n3, where n represents the loop iterations.
Our analysis shows that Python’s implementation is poor in
all three languages. While Java is relatively slow compared to
the C++ implementation. $is study is limited to matric
multiplication and test programs written in C++. Java and
Python to perform matrix-matrix multiplication as follows:

(i) Dimensions of each matrix are n×n and the ele-
ments/values of the matrix are of type double.

(ii) Populate each matrix with randomly generated
values, etc.

(iii) Add the necessary code to measure the time taken
by the matrix-matrix multiplication.

(iv) Observe the behavior of loop reordering.
(v) Evaluate the performance gains with parallel

implementation in OpenMP.

We first ran sequential versions of the program while
changing the matrix size n from 500 to 2500 in steps of 500.
We recorded the time to perform matrix-matrix multipli-
cation for each execution. It is worth noting that interpreters
can easily support high-level programming features [5]. $is
is due to the flexibility with which the interpreter reads,
interprets, and performs each program statement and up-
dates the machine state. However, the features of dynamic
code alteration come at the cost of performance loss. $is is
why Python is the slowest in this class. While Python is
interpreted, Java overcomes this drawback with a just-in-
time compiler feature. Since C++ is compiled, it presents the
best performance. In Table 4, we show our results where the
runtime for C++, Java, and Python is extracted for a matrix
starting from size 500 to 2500.

$e just-in-time compiler of Java can recover some of
the performance lost by interpretation. In Java, when the
code is executed for the first time, it is interpreted first.
Interestingly, the system keeps information about how often
various pieces of code are executed. Whenever a piece of
code executes frequently, the code is compiled to machine
code in real time, and the next executions of that code use the
more efficient compiled version [3].

We further studied the behavior of C++ by changing the
loop order. In matric multiplication, there exist combina-
tions where changing the order of the loops will not affect the
correctness of the program. In the following experiment, we
showed such combinations and provided the performance of
the code (see Table 5). In all the aforementioned three
programming languages, matrices were placed in row-major
order. It is worth mentioning that the matrix size was the
same for all experiments under C++, Java, and Python, while
the time varied significantly due to the arrangements of the
matrix elements in the memory. As discussed earlier, the
poor arrangement of elements results in more cache misses
and thus the program takes more time, while an excellent
arrangement guarantees improved performance. $e par-
allel version of the code is shown in Figure 7, where pragma
“omp parallel for” is used. When this code runs on real
hardware, the number of threads, which depends on the
hardware and operating system, becomes of interest for
performance. In Figure 7, we did not specify the number of
threads, but the code can run on any system where more
threads will definitely enhance the execution of the code
significantly.

$e results show the improvement of code in C++ over
Java and Python. In our last experiment, we extracted results
for a parallel code written in C++. We used the pragma “#
pragma omp parallel for” in the parallel implementation of
the code. $e parallel matrix multiplication program with
the support of OpenMP, shows a noticeable gain in speed-up
for varying matrix sizes. $rough our analysis, we conclude
that the row-major policy is better for the matrix multi-
plication using the loop ordering i, k, j. It is worth noting that
although i, j, k order is the natural one and easy to

Table 1: Matrix representation and placement in memory with
row-major order.
Row 1
Row 2
Row 3
. . .

Row n
Memory: Row 1 Row 2 Row 3

Table 2: Representation of elements of Matrix C in cache.

Matrix C Cache line
C [0][0] C [0][1] C [0][2] C [0][n] Cache line-0
C [1][0] C [1][1] C [1][2] C [1][n] Cache line-1
C [2][0] C [2][1] C [2][2] C [2][n] Cache line-2
. . . . . . . . . . . . . . .

C [n][0] C [n][1] C [n][2] C [n][n] Cache line-n

For (j=0; j<n; j++){
For (k=0;k<n; k++){

For (i=0; i<n; i++){
C[i][j]=A[i][k]*B[k][j];}}}

Figure 1: Matrix multiplication with orders j, k, and i.
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understand, it results in poor memory layout, and therefore,
the performance is poor. $e order i, k, j places the data in
such a way that the cache hit is increased, and thus, more

gains are observed. Considering the i, k, j order as the most
suitable looping order, we recommend this strategy for
improved performance, irrespective of serial and parallel
versions. We show our results for both serial and parallel
implementation in Table 6. Hence, we implemented the best
serial code, which was i, k, j ordering, and hence, the results
were superior.

After implementing the code using the OpenMP
framework, it is observed that the execution time of the
parallel version is approximately seven times better than the
execution time of the serial one, and thus, an improvement
of around seven times has been obtained. It is worth noting

Matrix A

Memory layout for Matrix A for Figure 1

n elements 

Matrix B

Memory layout for Matrix B for Figure 1 

Matrix C

Memory layout for Matrix C for Figure 1

Figure 2: Spatial locality of Matrixes A, B, and C++ using j, k, and i ordering.

For (i=0; i<n; i++){
For (j=0;j<n; j++){

For (k=0; k<n; k++){
C[i][j]=A[i][k]*B[k][j];}}}

Figure 3: Matrix multiplication with orders i, j, and k.
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that the efficiency is achieved mainly due to the algorithm,
while the system performance depends on the data structure.
It can be noted that the performance is not linear in our
experimentation, and this is understandable. In theory, the
speed should be eight times faster as we have eight cores on
the system, but since there are communication, synchro-
nization, etc., overheads involved, and speed-up is not linear,

Matrix A

Memory layout for Matrix A for Figure 3

Matrix B

Memory layout for Matrix B for Figure 3

Matrix C

Memory layout for Matrix C for Figure 3

Figure 4: Spatial locality of Matrixes A, B, and C using i, j, and k ordering.

For (i=0; i<n; i++){
For (k=0;k<n; k++){

For (j=0; j<n; j++){
C[i][j]=A[i][k]*B[k][j];}}}

Figure 5: Matrix multiplication with orders i, k, and j.
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Matrix A

Memory layout for Matrix A for Figure 5 

Matrix B

Memory layout for Matrix B for Figure 5

Matrix C

Memory layout for Matrix C for Figure 5

Figure 6: Spatial locality of Matrixes A, B, and C using i, k, and j ordering.

Table 3: Experimental setup.

Item Specification
Processor Intel ® core (TM) i7-8650U
Installed memory (RAM) 16GB
System type 64- Bit operating system
Base speed 2.11GHz
Cores 8
Logical processors 16
Virtualization Enabled
Cache (L1, L2, and L3) 256KB, 1MB, and 8MB
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a seven-time improvement is still achieved with parallel
implementation using i, k, and j orders.

5. Conclusions

We implemented matrix multiplication for row-major order
languages and observed that C++ is more efficient in terms
of runtime. $e performance gap in programming lan-
guages, such as C++, Java, and Python, is due to the use of
interpreters and compilers. Since C++ becomes compiled to
machine language, it is the fastest. As a workout solution, the
just-in-time feature of Java makes it faster than Python for
matrix multiplication. We observed that the layout of ele-
ments in the memory has a large impact on the

computational cost of a program. $e parallel imple-
mentation of C++ is obtained in a speed-up of a factor of 7.0.
As a future work, it will be interesting to extend this work to
implement applications such as chess, binary decision di-
agrams, and logistic regression, and so on.
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