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The leaf area index (LAI) is an important physiological parameter that characterizes the growth of crops. Traditional
measurement could not meet the demands of large-scale accurate monitoring. QGA-ELM and LS-SVM algorithm combined
with UAV remote sensing images was used to achieve the goal of building large-scale fast inversion modeling of LAI in this
paper. Linear and nonlinear models were constructed for comparing the correlation between six spectral indices and LAI by
categorizing the nitrogen level. The LS-SVM model was constructed to replace traditional linear model, the determination
coefficient of correction set and prediction set (R2C and R2P) were 0.6496 and 0.6814; and the root mean square error of
correction set and prediction set (RMSEC and RMSEP) were 0.5702 and 0.6842, respectively. The results showed that the
inversion of edge objects in noncrop areas was not so stable. In order to address the problem, an improvement based on the
extreme learning machine (ELM) and quantum genetic algorithm (QGA) with probabilistic evolution were used to combine
with LS-SVM for overcoming the problem which the hidden layer connection weight and threshold randomly generated and
solve the problems of slow regression of nonlinear data and insufficient model generalization ability. Compared with
traditional linear and nonlinear regression, the QGA-ELM combined with LS-SVM showed the following: (1) improving the
optimization ability greatly and avoid the prematurity of GA (genetic algorithm) effectively. The generalization performance
has also been enhanced. (2) R2P of prediction set was 0.6686, and RMSEP was 0.8952 which could reflect the growth and
distribution trend of rice in the regional scale. (3) Adapting different fertilization gradients (deficiency to excess) could provide
basis for LAI inversion in different varieties and accumulated temperature zone of rice. The results above showed that QGA-
ELM combined with LS-SVM could improve the stability of the model greatly and provide reference significance for rice
growth inversion.

1. Introduction

The leaf area index (LAI) is the main variable of crop growth
monitoring [1]. Accurate estimation of LAI could provide an
important basis for pest, growth monitoring and biomass,
and yield estimation [2, 3]. Traditional measurement
methods mainly used by manual which has lots of limita-
tions [4]. The vegetation indexes (VI) such as NDVI, RVI,
and NDRE which has highly correlation with LAI is gradu-
ally used for the inversion research recently [5]. The com-
monly used LAI inversion methods include linear
regression, power function regression, and exponential func-
tion regression [6]. However, these models usually could not

represent well the nonlinear relationship between VI and
LAI. With the rapid development of artificial intelligence
(AI), more and more intelligent algorithms were applied to
the LAI inversion model in recent years; Zhang et al. [7]
used the SVM to invert LAI of summer maize, Yao et al.
[8] used random forest (RF) to estimate LAI of forest land
by remote sensing, and Wang et al. used the back propaga-
tion neural network (BPNN) to estimate LAI of maize at dif-
ferent growth stages [9]. Although the above intelligent
algorithms had achieved highly inversion accuracy, but there
were still much disputes that could not be ignored for that
the RF could not make predictions when the data range
exceeds the training set, showing over fitting caused by
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specific noises [10]. The selection and optimization of SVM
kernel function parameters and parameter penalty terms
had a significant impact for the modeling [10]. BP network
needed a large number of training samples and has the
drawback of lower training speed, easy to fall into local opti-
mization, etc.

To solve the problems mentioned above, LAI during dif-
ferent growth period of rice obtained by unmanned aerial
vehicle (UAV) remote sensing was chosen as the research
object, the nitrogen level classification was realized by image
and spectrum [11], and the inversion model was optimized
in this paper. The extreme learning machine (ELM) com-
bined with quantum genetic algorithm (QGA) [12] with
probabilistic evolution was used to overcome the problem
that connection weights of hidden layers and threshold were
randomly generated in the traditional model and solved the
problems of slow regression of nonlinear data and insuffi-
cient generalization ability of model. The accurate inversion
and verification of LAI were completed combined with LS-
SVR model, and the inversion accuracy, generalization per-
formance, and stability of the model were improved greatly.

2. Materials and Methods

2.1. Research Design. The research area is located in Dehui
Rice planting Park of Fangzheng in Heilongjiang Province
(Northeast of China); the covering area was about 9000
mu. There was no stress water, fertilizer, disease, and insect
pests in the experimental area that could ensure that the rice
experimental area was fully grown naturally. The field in the
experimental area was divided neatly. Nitrogen was distrib-
uted step by step in the plot, and potassium fertilizer was
evenly applied twice at jointing stage and heading stage (a
total of 75 kg/ha). The experiment lasted from May to Sep-
tember 2018. The experiment was divided into 48 sample
units in the field, and the cultivator Wuyoudao 4 was
planted. The ground sampling time was within two days
after the flight monitoring. Five nitrogen evaluation criteria
were set for nitrogen content in rice: severe deficiency of
N0, deficiency of N1, partial deficiency of N2, moderate
amount of N3, and excessive amount of N4 to simulate the
growth of rice in natural ecology. Nitrogen fertilizer was
evenly applied to each plot at 40%, 30%, and 30% at regreen-
ing stage, jointing stage, and heading beginning stage,
respectively.

2.2. Research Samples. The experimental data were collected
from 48 sample sites on June 15, July 7, July 26, and August
16 of 2018, respectively, corresponding to the tillering, joint-
ing, booting, heading, flowering, filling, and fruiting stage of
rice. LAI, NDVI, and RVI of rice were collected each time.
Specific collection methods were as follows:

A 100 cm × 100 cm quadrat was set in 48 plots, and the
number of rice plants in the quadrat was recorded. Then, 3
japonica rice plants were randomly selected from each quad-
rat, and the total number of leaves, leaf length, and leaf
width of each rice plant was recorded to calculate the leaf
area of each rice plant. The calculation formula of LAI is

as follows [13]:

LAI = 0:75 × ρ ×
∑m

i=1∑
n
j=1 Lij × Bij

� �
m

, ð1Þ

where 0.75 is the correction coefficient, ρ is the rice
planting density, m is the number of rice plants in the plot,
n is the number of leaves per rice plant, Lij is the length of
the rice leaf, and Bij is the maximum leaf width in the
formula.

30 rice canopy leaves were evenly collected in each quad-
rats at the same time, and the NDVI and RVI values in the
middle of the leaves were obtained using the CGMD active
light source equipment made by Nanjing Agricultural Uni-
versity, and the average values were, respectively, used as
the effective NDVI and RVI values in an experimental plot.

2.3. Research Tools. The fixed-wing UAV was selected as the
remote sensing platform for the research. The wingspan was
about 4 meters, the fuselage was about 6 meters, the maxi-
mum takeoff weight was 30 kg, and the flight speed was
between 70 and 120 km/h. The UAV was equipped with
the pylon and automatic navigation system, and POS infor-
mation was recorded during the flight. The UAV was
equipped with high-definition digital camera Sony 5100
and 6-channel multispectral camera Micro-MCA6 Snap to
obtain a multispectral image data in RAW format. Table 1
lists the parameters of the Micro-MCA6 Snap camera.

2.4. Data Processing and Analysis

2.4.1. Image Stitching Preprocessing. The image range
obtained by UAV remote sensing was limited due to the
constraints of data acquisition height ,and lens focal length
which makes the UAV could not fully cover the required
monitoring regional scale. Requiring the synthesis and join-
ing together of the remote sensing image collected for solv-
ing the problem of getting all the information in large
regional scale, multiple remote sensing images were fused
into one image with panoramic effect image Mosaic is the
process of automatically stitching image sequences with cer-
tain overlapping areas into a panoramic image with a wide
field of view. UAV flight image requires a high coincidence
rate between adjacent images. 60% course overlap rate and
30% side overlap rate at least should be achieved in general.
The UAV flight experiment meets the requirements of image
Mosaic.

The three-channel images of feature bands synthesized
in PixelWrenc2 software were firstly converted from RAW
data format to TIFF format. Then, the initial image stitching
was completed in the Pix4D Mapper. Figure 1 showed the
sparse digital surface model in the stitching process. Feature
points were extracted and separately spliced using the opti-
mized SIFT algorithm to solve the phenomenon of lost
image in the edge part; finally, a complete image was synthe-
sized in the Pix4D Mapper; initial mosaic image and opti-
mizing feature points maps are shown in Figure 2.
Geometric correction and radiometric correction are carried
out to prevent distortion and at the same time eliminate the
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characteristic distortion caused by atmospheric transmis-
sion, sensor itself, terrain, and other systematic and nonsys-
tematic reasons. The geometric correction error of the image
was confirmed to be less than 0.5 pixels [14] based on 30
ground control points and map coordinates near the test
area.

2.4.2. Digital Image Preprocessing. RGB image was a color
space model represented by three-dimensional coordinate
system, but the representation of image details was not so
complete; HSV color space transformation was carried out
on the image for solving the problem mentioned above
which could achieve more accurate effect in the classification
of ground object model. The formula for HSV color space
conversion from RGB color space was as follows:

H =

60 G − B
max −min

, R =max

60
2 + B − Rð Þ
max −min

,G =max

6
4 + R −Gð Þ
max −min

, B =max

H = 360,H < 0

8>>>>>>>>><
>>>>>>>>>:

,

V =max/255,

S =
max −min

max
:

ð2Þ

HSV color space is an inverted cone model; the color
space model is shown in Figure 3.

H represents different colors, ranging from 0 to 360.
Among them, 0 and 360 represent blue, 120 represents
green, and 240 represents red. S represents different shades
of color, ranging from 0.0 to 1.0. The higher the value is
H, the purer the color is S. V indicates the change in bright-
ness. The value ranges from 0 to 1. The higher the value, the
brighter the color. The RGB image of the core area of the
park in August 2018 was taken as an example to complete
HSV color conversion.

3. Results and Discussion

3.1. Analysis of Rice Nitrogen Levels Based on
Supervised Classification

3.1.1. Support Vector Supervised Classification. Traditional
inversion models usually did not decompose the nitrogen
level in the test area. A large amount of near-earth data
was usually used for comparison. The representativeness
and universality of the model could not be used to determine
the regional differences. The classification of nitrogen level
based on image and spectrum was carried out for specific
test areas in the research. The experimental fields with differ-
ent fertilization treatments, different growth conditions, and
different nutritional compositions were classified from the
image perspective; the representativeness of the model was
clarified; and the later model improvement was provided
with judgment basis and data support. The growth of crops
which were treated with different fertilization can effectively
determine growth state, and the classification of nitrogen
levels could effectively reflect LAI distribution characteristics
and features [15]. For getting the preliminary understanding
of the growth of rice in the study area, ten fields of research
areas were taken as examples to classify rice canopy nitrogen
in ENVI, and the RGB images, multispectral images, and
HSV images were classified, respectively. Exploring the clas-
sification effect of different images and algorithms in nitro-
gen classification, the supervised classification (training
classification method) used in this paper and the process of
remote sensing images are shown in Figure 4.

SVM is a machine learning method based on statistical
learning theory [16]. It could spontaneously find a support
vector with greater distinguishing ability for each

Table 1: Specifications of the Micro-MCA6 Snap camera.

Project Parameter

Sensor type CMOS

Sensor size 6.66∗5.32mm

Number of lenses 6

Effective pixels 1.3 million

Image resolution 1280∗1024
Image format RAW, DCM

Channel center wavelength 490 nm, 550 nm, 680 nm, 720 nm, 800 nm, 900 nm

Camera weight 0.7 kg

Memory card 16 GB SD memory card per channel (6 in total)

Other Remote shutter and external GPS module

Figure 1: Orthomosaic and the corresponding sparse digital
surface model (DSM) before densification.
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subcategory and constructed a classifier from this, thereby
maximizing the interval between each subcategory, so it
has a higher classification accuracy. SVM was used to clas-
sify nitrogen levels in this paper, and the samples for super-
vised classification were defined by using the ROI tool which
was from the ENVI software. The classification category was
determined with different features; regardless of crop growth
state, supervised samples selection results are shown in
Figure 5.

RGB images, multispectral image, HSV color space
image, and NDVI images were classified and used to explore
the features which is most suitable for classification. Multi-
spectral was selected and gaved up hyperspectral was mainly
due to the NDVI was composed by the fixed band of red and
near-red band. The hyperspectral camera has the features of
comprehensive and continuous spectral; the wavelength
range covers from 400 to 1000 nm which is suitable for the
searching and selecting of characteristic bands. However,
due to the requirements of overweight and high stability,
the acquisition process and data transmission are not easy

to achieve. In contrast, the multispectral camera has 6 chan-
nels and 12 bands, which can complete red, near red, and
other bands, making it more suitable for agricultural pro-
duction monitoring parameters such as leaf area index or
biomass. The classified images of ground features by SVM
are shown in Figure 6.

3.1.2. Classification of Accuracy Evaluation. Using classifica-
tion statistical tools in ENVI software to construct a confu-
sion matrix for the evaluation of nitrogen level
classification accuracy is shown in Table 2. The selection of
samples in the training area was the most important factor
that affects the classification results in SVM supervised clas-
sification. In the classification process, there was less manual
intervention, so the error caused by human factors could be
ignored that could be seen from the classification results that
the RGB image has poor classification ability for N0 and N2
subcategories, which may be related to the growth of rice in
the area to be classified. The mapping accuracy of the N3

(a) PIX4D Mapper initial mosaic image (b) PIX4D Mapper after optimizing feature points

Figure 2: PIX4D Mapper splicing image.
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and N4 subcategories could reach more than 95%; HSV
images are similar to RGB images, and the classification abil-
ity of low-nitrogen subcategories was poor. The classification
effect of the high nitrogen subcategory was better; MS
images also achieve a better classification effect, and the clas-
sification of the N2 subcategory has obvious advantages.
Horizontal comparison of all classifications of N0-N4 sub-
categories shows that the overall recognition of N0, N1,
and N2 subcategories was not so well which means that it
was difficult to accurately distinguish the state of nitrogen
deficiency at the level of low-altitude remote sensing images.

3.2. Construction of LAI Inversion Model

3.2.1. LS-SVM Linear Model Construction. LS-SVR includes
least squares and support vector machine which is mainly
based on the machine learning method in statistical learning
theory. The biggest difference between LS-SVR and SVM is
that replacing the loss function of the original method,
which greatly facilitates the solution process of lagrange

multiplier. LS-SVR algorithm has fewer parameters to be
selected compared with other algorithms and the parameters
that could significantly affect the accuracy of the model only
include kernel function type, penalty coefficient C, and ker-
nel function parameter g which has better stability and faster
operation speed. At the same time, LS-SVR could also
reduce the computational complexity through support vec-
tor and has the ability of the kernel to fit samples at high lat-
itude; during the calculation, extracting factors could solve
the long time-consuming and complex data fitting problem
which reduced the data dimension.

The correlation between vegetation characteristic spec-
tral band [17]and rice leaf LAI was analyzed firstly. A variety
of broad-band indices such as normalized vegetation index
(NDVI) and ratio vegetation index (RVI) are selected for
the LAI estimation model in this article. The spectral index
is shown in Table 3.

The method of comparing the correlation between VI
and LAI was the same as that of the chlorophyll method.
Using the sample area of the training set collected on the

(a) RGB image nitrogen level classification image (b) Multispectral classification of nitrogen levels classification image

N0
N1
N4

N1
N3
Non crop area

(c) HSV image nitrogen level classification image

Figure 5: Nitrogen level classification image.
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ground, the independent variable x was set to each VI, and
the dependent variable y was set to LAI, and the fitting
model was established based on the empirical model analysis
method. The model determination coefficients R2 and RMSE
were used as the correlation evaluation criteria to evaluate

the fitting results of the six indices in Table 4, and then the
best VI for retrieving the LAI of japonica rice was obtained.

The VI used for LAI inversion in the table all reached the
significant level of P = 0:05, when the coefficient of determi-
nation R2 of the empirical model was higher and the RMSE

(a) Classification of nitrogen levels in RGB images (b) Classification of nitrogen levels in multispectral images

N0
N1
N4

N1
N3
Non crop area

(c) HSV image classification of nitrogen levels

Figure 6: Nitrogen classification based on SVM.

Table 2: Confusion matrix of SVM classification.

Type
RGB image HSV image Multispectral image

C a O b P c U d C a O b P c U d C a O b P c U d

N0 50.54 11.54 88.46 49.46 100.0 100.0 0.00 0.00 47.46 10.58 89.42 52.54

N1 36.36 53.33 96.58 95.76 66.67 91.67 8.33 33.33 40.82 51.67 48.33 59.18

N2 0.00 100.0 0.00 0.00 100.0 100.0 0.00 0.00 66.67 98.53 1.47 33.33

N3 4.24 3.42 96.58 95.76 67.72 64.96 35.04 32.28 5.54 5.34 94.66 94.46

N4 1.37 1.64 98.36 98.63 0.00 0.27 99.73 100.0 2.01 1.92 98.08 97.99

Noncrop 0.56 0.00 100.0 99.44 100.0 100.0 0.00 0.00 0.56 0.00 100.0 99.44

Total
Total accuracy %ð Þ = 92:60 Total accuracy %ð Þ = 63:91 Total accuracy %ð Þ = 92:14
Total accuracy %ð Þ = 0:8811 Total accuracy %ð Þ = 0:4152 Kappa coefficient = 0:8736
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was smaller. Among the 6 cropping indices, NDVI, RVI,
NRI, and s_REP have better inversion effects on rice LAI,
with a determination coefficient R2 above 0.52, and a root
mean square error between 0.64 and 0.90. The two VIs,
GNDVI and NPCI, are not very effective in the inversion
of LAI from heading to filling stage of japonica rice. The
coefficient of determination R2 was below 0.5, and the root
mean square error was between 0.9 and 1.0. Among them,
the NDVI has the best inversion effect. The model determi-
nation coefficient R2 was 0.6912, and the root mean square
error RMSE was 0.6405, which is the best among the 6
VIs, so the NDVI was selected for the inversion of field
japonica rice LAI in this paper.

The predictive ability of samples was tested in the
unknown verification area in order to test the prediction
accuracy of each index model. The verification set sample
area (20) were used as the object, and the VI models are used
to predict the verification set samples. Set the independent
variable x as the actual measured canopy LAI of japonica

rice and the dependent variable y as the LAI value in the
same area obtained from the inversion of each VI model
for fitting regression, with the model determination coeffi-
cient R2 and the root mean square error RMSE as the main
indicators, and combine the slope and offset of the fitting
equation to evaluate the accuracy of the prediction model.
The inversion models results are shown in Table 5.

The prediction results of each VI for the unknown sam-
ple subset are quite different. The determination coefficient
R2 of the NDVI and RVI index models was more than 0.5,
the RMSE of the RVI index reached 0.6248, the slope of
the NRI index was 0.8164 in the prediction models, and
the offset was 1.394 at least. Table 5 showed that the index
models built underestimate the LAI value from heading to
grain filling period in this paper. A comprehensive compar-
ison of the various indexes shows that the model determina-
tion coefficient R2 of the NDVI index was 0.5485, the root
mean square error RMSE was 0.7399, the slope was 0.6945,
and the offset was 0.9751. Therefore, the prediction effect
of the inversion model based on the NDVI index was better.
Comprehensively compare the fitting results of the VI on the
training set and the validation set, and select the NDVI as
the optimal index for retrieving the rice canopy LAI.

3.2.2. Evaluation of the Estimation Ability of Each Model for
Different Levels of LAI. For studying the predictive ability of
each index model for LAI values in different intervals, all
sampled LAI values are divided into three subsets: LAI <
4:4, low interval LAI sample subset; 4:4 ≤ LAI < 5:5, medium
interval LAI sample subset; and LAI ≥ 5:5, a subset of LAI
samples in the high interval. Each index model is used to
predict the LAI of each sample interval in turn, and the
actual measured value and the predicted value are fitted,
and the RMSE of the fitting result is used as the evaluation
basis, when the RMSE of each subset is in good agreement
which indicates that the VI had a better ability to predict
LAI in different intervals from Figure 7.

With the increase of the LAI value, the estimation of the
LAI by the VI showed saturation to varying degrees. RMSE
values of prediction results are shown in Figure 7; NRI index
has the best consistency among the six indexes which means
that the NRI index performs better in LAI estimations in dif-
ferent intervals. The S_REP index has good estimation abil-
ity for LAI samples in the mid-range, but its range was the
largest among the 6 VIs, which was 0.1751. The estimation

Table 3: Spectral index for rice LAI inversion.

Object Formula Provenance

Ratio vegetation index (RVI) ρNIR/ρR Pearson et al. (1972)

Normalized vegetation index (NDVI) ρNIR − ρRð Þ/ ρNIR + ρRð Þ Rouse et al. (1974)

Green normalized vegetation index (GNDVI) ρNIR − ρGð Þ/ ρNIR + ρGð Þ Gitelson et al. (1996)

Optimizing soil regulation vegetation index (NPCI) ρR − ρBð Þ/ ρR + ρBð Þ Schleicher et al. (1994)

Nitrogen balance index (NRI) ρ−ρRð Þ/ ρR + ρGð Þ Penuelas J, et al. (2001)

Approximate red edge position index (s-REP) ρ710 + ρ800ð Þ/2 − ρ710½ �/ ρ730 − ρ710ð Þ This article

Note: ρNIR,ρR,ρG, and ρB represent the reflectivity of the rice canopy near infrared, red, green, and blue bands, respectively.

Table 4: LAI inversion models and their spectral index evaluation
indicators.

Vegetation index Model R2 RMSE

RVI y = 0:1798x + 2:917 0.6373 0.7759

NDVI y = 8:5154x − 1:8625 0.6912 0.6405

GNDVI y = −9:278x + 0:9815 0.4539 0.9521

NPCI y = 10:09x − 3:482 0.4978 0.9131

NRI y = 11:17x + 0:971 0.5616 0.8531

s-REP y = −0:0186x + 8:315 0.5282 0.885

Table 5: LAI inversion models and their spectral index evaluation
indicators.

Vegetation index Model R2 RMSE

RVI y = 0:5323x + 2:561 0.5002 0.6248

NDVI y = 0:6945x + 0:9751 0.5485 0.7399

GNDVI y = 0:8x + 1:456 0.3530 1.2720

NPCI y = 0:4653x + 2:873 0.3036 0.9798

NRI y = 0:8164x + 1:394 0.4298 0.8867

s-REP y = 0:5023x + 2:344 0.4191 0.8949
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ability was affected by the sample interval; NDVI predicts
the middle and low LAI sample intervals.

The independent variable x was selected NDVI index as
the previous research method, and the dependent variable y
was the measured LAI value of field japonica rice. 40 sam-
ples of the training set are used to establish the LAI inversion
LS_SVR model as shown in Figure 8.

Note: y is the estimated value, X is the ground measured
value, R2 represents the determination coefficient of the fit-
ting model of the training set, and RMSE is the correspond-
ing root mean square error.

Radial basis kernel function and grid search method to
obtain the global optimal solution of the penalty coefficient
c and the RBF parameter g were used in this model; among
them, c = 7:5, and g = 0:65. Fit the measured values of the
training set samples with the estimated values of the NDVI

empirical model and the LS_SVR model, and the results
are shown in Figure 9. The measured and predicted values
of the two models on the training set reached a significant
level of P = 0:05. Compared with the empirical model, the
slope of the equation of the LS_SVR model was closer to 1,
and the offset was smaller, indicating that the predicted
LAI value was closer to the true value. The LS_SVR model
has a more obvious optimization effect on the sample inter-
val below LAI< 5. The NDVI linear model and the LS_SVR
model were fitted to the measured and predicted values of
30 samples of the verification machine to test the prediction
effects of the two models on the unknown samples. The fit-
ting effect is shown in Figure 10. The closer the measured
value and the estimated value are to the diagonal line of y
= x, the more accurate the estimation accuracy was. Both
models underestimate the measured values of validation sets

RVI NDVI GNDVI NPCI NRI s_REP
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Figure 7: RMSE values of prediction results for sample subsets with different LAI concentrations.
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from the perspective of slope; the LS-SVR model performs
better than linear that could be also seen form the offset
(both less than 1); the LS-SVR showed better prediction abil-
ity. The prediction of this model was good; from the deter-
mination coefficient and root mean square error of the
fitting result, the R2 of the LS_SVR model of the NDVI index

is closer to 1, and the RMSE is smaller than that of the
empirical model. Therefore, the LS_SVR model performs
LAI inversion results.

3.2.3. Improved Nonlinear Model Construction Based on
ELM-QGA. In view of the problem that traditional quantum
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Figure 9: Measured value versus predicted value of the linear and LS-SVR models in prediction set of LAI.
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genetic algorithm uses fixed rotation angle to search result
that was unstable, in order to speed up the algorithm execu-
tion speed, the search table was abandoned in this study, and
the rotation angle size and rotation angle direction are deter-
mined directly by comparing the current binary solution
with the optimal binary solution. Define the binary angle
as follows:

θi =
0⋯⋯⋯xi = 0

0:01π⋯ xi = 1

(
ð3Þ

In this definition, xi represents the i bit of the binary
solution x and θi represents the angle corresponding to the
binary bit. The rotation angle of this article is defined as fol-
lows:

Δθi = k θBesti − θið Þ ð4Þ

In this definition, θBesti represents optimal binary solu-
tion and θi represents the angle corresponding to the i bit
in the current solution. k was the adjustment coefficient,
which is defined as follows:

k = 1 − n
N

� �
× f bestð Þ

f xð Þ ð5Þ

In the formula, N is the maximum evolutionary algebra,
n is the current evolutionary algebra, and fðbestÞ is the opti-
mal solution adaptation value which represents the current
solution adaptation value f ðbestÞ, f ðxÞ, n,N > 0.

At the same time, because biological evolution was ran-
domness plus feedback, adding chaos operation to the evolu-
tionary algorithm can effectively improve the algorithm’s
search for excellence. Using the sequence xðn + 1Þ = 4xðnÞð
1 − xðnÞ, n = 0, 1, 2⋯N − 1Þ to produce a chaos value for
each generation, firstly, xð0Þ was a random number at
(0,1), and then the crossing position of each generation
was determined according to the chaotic sequence. After
sorting according to fitness, two adjacent individuals are
crossed to form a single point chaotic crossing. Finally, set-
ting the mutation rate and random threshold, the mutation
number of each generation was determined by the chaotic

sequence and random threshold. The number of mutations
was determined by the mutation rate. The mutation position
generated randomly, and the corresponding quantum bit is
flipped to complete the mutation operation, thus forming
chaotic mutation, and introduces a deterministic selection
strategy to combine the original population Q, the popula-
tion after the rotation of the quantum revolving door called
Q1, the population after a single point chaotic crossover
population called Q2, and then the population after the cha-
otic variation called Q3.Then merge them together. The k
individuals were selected from the merging, with the highest
fitness that was selected as the new population Q’ to partic-
ipate in the next generation evolution, where k was the size
of the original population [18].

Finally, quantum catastrophe operation was added and
when the optimal solution of the population continues to
evolve for 5 generations remains unchanged; the k/2 individ-
uals with the least fitness in the population are randomly
reconstructed, where k was the size of the original popula-
tion, so as to exert a large disturbance effect on the popula-
tion and increase the possibility of finding the global
optimal solution. The improved QGA-ELM algorithm flow
is shown in Figure 10.

(1) Cross-Validation Determines the ELM Network Topology.
Nearly 70% data was randomly selected from 208 sets of
data as the training set, and the remaining 30% data was
used as the test set in this paper, thus obtaining 144 sets of
training set data and 64 sets of test set data. Select the input
of the NDVI and RVI corresponding models and the output
of LAI corresponding models. In order to reduce the effect of
variable difference on model performance, all the data are
normalized before simulation, and the corresponding
reverse normalization operation was carried out after simu-
lation. In this paper, the 8 fold cross-validation method was
selected, where the number of hidden layer nodes is set to 1
to 128 and the implicit layer activation functions are set to
“Sigmoidal,” “Sine,” and “Hardlim.” Figure 11 shows the
number of hidden layer nodes along with the mean of RMSE
and the number of hidden layer nodes along with the mean
of R2.

The comparison of evolutionary processes is shown in
Figure 12; the mean of RMSE and R2 from the network
structure which the hidden layer function uses the “Hard-
lim” is better than the function using “Sigmoidal” and
“Sine,” so this paper chooses “Hardlim” as the hidden layer
function. Secondly, when the hidden layer function is
“Hardlim,” the RMSE value fluctuates very little with the
number change of hidden layer nodes, which can be even
ignored. So the best hidden layer function of ELM network
is “Hardlim” and the best number. Under the circumstances
of this, the average values of RMSE and R2 are 0.5642 and
1.11023, respectively.

(2) Comparison between QGA-ELM Algorithm and Improved
QGA-ELM Algorithm. The improved and not improved
QGA-ELM algorithms are performed 10 times each, And
the evolutionary process with the highest evolutionary
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Figure 13: Spatial distribution map of race LAI in DeSheng.
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fitness of both is drawn in Figure 3, where the adaptability is
the mean of R2 under the circumstances of 8 fold cross-
validation.

From the evolution line given in Figure 13, QGA-ELM
algorithm founded the optimal adaptability to be 0.6962, while
the modified QGA-ELM algorithm in out work finds the opti-
mal fitness to be 0.7503. The effect has increased by 7.77%, and
the frequency of adaptation changes in the evolution process is
more than that of the unimproved algorithm, which shows
that the improved algorithm based on this work can effectively
improve the model’s optimization ability, avoid premature of
the algorithm, and reduce the risk of falling into local optima
which meets the conclusion of references. Optimal probability

and better results can be found so that the modified algorithm
possesses a high practical value.

(3) The Comparison of Inversion Effect on Datasets. In order
to test the universality and effectiveness of the modified
QGA-ELM model, establish five models of MLR, BP, ELM,
QGA-ELM, and QGA-ELM with LS-SVM in sequence, and
compare inversion effects on different datasets. BP adopts a
single hidden layer structure. The number of hidden layer
nodes is determined by an empirical formula and then deter-
mined as 3 through cross-validation. The transfer functions
of the input layer to the hidden layer and the hidden layer to
the output layer are, respectively, “tansig” and “purelin”. The
largest time of iterations was 2500, and the error was set to
0.0001.

The inversion effect diagrams of the five models on the
training set and the test set are shown in Figure 14. The
explanations are as follows: (1) The improved QGA-ELM
algorithm had the highest inversion accuracy and the low-
est error both in the training set and the test set among
the five models. (2) The inversion accuracy of the ELM
inversion model optimized by the QGA had been greatly
improved, and the QGA-ELM combined with LS-SVM
algorithm had improved the inversion accuracy compared
to the unmodified algorithm. (3) The inversion accuracy
of the BP model and the three ELM models on the train-
ing set and test set was higher than that of multiple linear
regression model, indicating that there was a strong and
nonlinear relationship rather than linear relationship
between VI and LAI. (4) The R2 of training set in QGA-
ELM combined with LS-SVM inversion model is 0.7549
RMSE is 0.7396, and the R2 of the prediction set is
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Figure 14: Comparison of inversion results of training set.
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0.6686, RMSE is 0.8952, indicating that the modified
inversion model has higher inversion accuracy, lower error
and stronger normalization ability.

3.3. LAI Remote Sensing Mapping and Inversion Test. The
NDVI index was the optimal index for heading-filling period
from the results above, and the LS_SVR model based on the
NDVI index had better inversion accuracy. The LAI grading
map of Desheng farm was made in ArcGIS. The spatial dis-
tribution map is shown in Figure 13 comparing with rice
chlorophyll classification maps LAI and chlorophyll are
highly consistent, and the growth of rice and the nutritional
status are unified to some extent.

For verifying the accuracy of remote sensing mapping,
the extra 30 additional samples LAI measured on the

ground were fitted with the inversion value of the same
area location. The measured and inversion results are
shown in Figure 15. The fitting accuracy of the two was
higher to some extent. The R2 of the inversion model is
0.6393, the RMSE is 1.0450, the slope is 0.8455, and the
offset is 1.3790. The results show that it was feasible to
analyze the growth of field rice based on UAV low-
altitude remote sensing images.

In order to verify whether the inversion model is also
suitable for rice LAI analysis in unknown areas, the inver-
sion model was used in the drone remote sensing images
of Anle, Limin, and Hongxing farms obtained in this exper-
iment; the LAI value grading map is shown in Figure 16. The
LAI value of rice in the Red Star Rice Planting Park is obvi-
ously underestimated. Among them, the LAI value of a large
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Figure 16: Spatial distribution map in three farms.

Table 6: Biomass and yield inversion models based LAI of rice.

Index Rice growth period Model R2P RMSEP

Biomass
(kg/m2)

Heading stage y = 0:2608x + 0:0742 0.8583 0.332 kg/m2

Prophase of booting y = 0:5602x − 0:1227 0.8188 0.406 kg/m2

Yield
(kg/mu)

Heading stage y = 68:93x + 132:84 0.8056 30.561 kg/mu

Prophase of booting y = 64:561x + 187:11 0.8254 37.446 kg/mu
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area near residential areas is between 1.0 and 2.0, which is
caused by the interference of clouds and fog during the flight
of the drone, so that the image data to be damaged. For the
Anle Rice farm, the rice LAI inversion effect is not very sat-
isfactory. There are big differences in the overall rice growth
situation. The specific reasons require further field investiga-
tion and analysis.

The improved QGA-ELM algorithm based on UAV
remote sensing could identify the growth level effectively
and realize the effective discrimination of regional scale from
the results above. Due to the group representation factors of
LAI, the linear inversion models of biomass and yield were
constructed at the same time which could evaluate the bio-
mass and yield during the stage of heading and early boot-
ing, The results are shown in Table 6 that could be seen
that the biomass and yield prediction model were feasible
and the monomer biomass and population yield R2P were
0.8583 and 08254, respectively, which showed better
reference.

4. Discussion

(1) SVM supervised classification mapping would take
occpuy lots memory resources which takes longer
than ISODATA, but the classification accuracy of
RGB images, MS images and HSV images presented
the better classification results than ISODATA. The
classification accuracy of SVM-MS in 75%, 100%,
and 125% nitrogen environment was 94.46%,
97.99%, and 99.44%, respectively, from the experi-
ment, and the overall classification accuracy was
92.14%, which showed that SVM-MS has obvious
distinguishing characteristics for rice with high
nitrogen content, but for ISODATA classification,
there were much factors that may lead to inaccurate
classification accuracy in multiple steps, compared
with that SVM-MS had much existing training sam-
ples as reference; the human intervention could be
also ignored, so the classification accuracy was bet-
ter. So the results mentioned above proved that
SVM classification could be used as the preferred
classification method for nitrogen classification of
rice in this paper

(2) NDVI was related to 800nm (near-red absorption
band) and 680nm (red absorption band) from the
analysis of the VI selected process in airborne multi-
spectral band. NRI was related to red and green light
absorption band around 550nm; s_ Rep is related to
the red edge near 730nm in the near-red band; NPCI
is related to the red region and the blue edge near
530nm. R2P and RMSE of NDVI was 0.5485, 0.7399,
respectively; combined with the conclusions above,
the sensitive bands which reflected rice LAI include
the blue, green, and red bands. The other bands could
sensitively reflect crop LAI status which confirmed the
theory that LAI could not only characterize the pig-
ment situation of crops in the unit crop planting area,
but also reflected the overall situation of crop canopy

(3) The QGA-ELM was improved by using an 8-fold
cross-validation combined with dynamic rotation
angle strategy, single point chaotic cross operation,
deterministic selection strategy, and quantum catas-
trophe operation that overcomes the problem of
connection weight of hidden layer and threshold
randomly generated in the traditional model and
solves the problems of slow regression of nonlinear
data and insufficient generalization ability of the
model. The R2 and RMSE of prediction set in
improved QGA-ELM inversion model were 0.7396
and 0.8952, respectively; the average prediction accu-
racy increased by12.56%

5. Conclusion

LAI is an important physiological parameter for rice growth;
traditional measurement could not realize the demand of
large-scale accurate monitoring. The main purpose of this
paper is to find a solution to solve the problem of regional
scale accurate monitoring of rice growth through the
research on the demonstration area.

(1) The aerial monitoring method based on UAV
equipped with multispectral and CCD camera was
adopted to get the regional scale image; compared
with RGB and HSV, SVM-MS could obvious distin-
guish high nitrogen characteristics for rice

(2) The spectral analysis was used to realize the integra-
tion of the correlation between LAI and VI; the non-
linear relationship between NDVI, RVI, and LAI was
mainly verified in this paper, and the inversion effect
of ELM neural network model was better than BP
and MLR model. NDVI was selected as the opti-
mized VI; the quantitative analysis model showed a
better adaptability

(3) The quantitative analysis model between LAI and
NDVI was constructed to realize the accurate inver-
sion for regional scale. QGA-ELM was innovatively
proposed to solve the instability of the edge object
model of the noncrop region in the linear model,
combined with LS-SVR which was based on accurate
classification expression solved the problems of slow
regression of nonlinear data and insufficient general-
ization ability of the model; realize the accurate
inversion and verification of different varieties LAI
in four regions; clarify the universality of nonlinear
expression in rice growth monitoring; and find a
quantitative analysis method more suitable for rice
growth remote sensing analysis

Optimizing the LAI inversion model from the perspec-
tive of improving convergence speed and applicability com-
bined with QGA-ELM and LS-SVM in this paper, NDVI
(unsaturated state) was selected as the optimal VI. Com-
pared with others, NDVI did not need additional spectral
calculation and generation which was easy to implement;
technically, the validation results were intuitive and more
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suitable for large-scale regional monitoring. The inversion
model could accurately evaluate the growth of rice more
than 5000mu. However, there were some limitations in the
research, for the data sources were based on the four main
rice varieties in the 1st and 2nd accumulated temperate
zones. The inversion accuracy of the 3rd, 4th, and 5th accu-
mulated temperate zones with insufficient light still needed
to be verified. The future works will focus on the effectively
combining of the earlier NDVI and later RVI inversion
advantages fully considering the rice varieties in the five
accumulated temperate zones, hoping to form a quantitative
analysis model with universality and accuracy.
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