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In order to improve the e�ect of intelligent analysis of singing skills in music education, this paper conducts an intelligent analysis
of singing skills in music education with the support of music waveform feature extraction technology. Moreover, this paper uses
the traditional IMM optimal waveform selection algorithm to solve the model and analyzes the tracking e�ect and the changes of
transmission parameters. Compared with the �xed transmission parameters, the algorithm can e�ectively reduce the tracking
error. From the experimental analysis, it can be seen that the intelligent analysis system for music education singing skills based on
the extraction of music waveform features has good e�ects and can e�ectively promote the improvement of music singing skills
and the improvement of music teaching e�ects.

1. Introduction

Music information visualization refers to the visual pre-
sentation of music information based on the principle of
music acoustics to make it intuitive, so as to eliminate the
disadvantages of the ambiguity of music sound in music
education and music research and improve the accuracy and
e�ectiveness of music information transmission.

According to basic music theory, the four elements of
musical sound are divided into four points: pitch, sound
intensity, timbre, and sound length. �e combination of
these four elements constitutes the colorful music we hear
today. However, these four elements were not known to
people at the beginning of the birth of music but were
derived from the continuous practice and theoretical de-
velopment of music, the development of basic sciences such
as mathematics and physics, and the progress of science
and technology. Moreover, the development of music
practice and music theory is not only accompanied by
changes in the “connotation” and “extension” of the
concept of “music” in various eras, but also accompanied
by changes in aesthetics and creative methods. �ese
changes are not only in�uenced by social factors such as
politics, religion, and culture, but also the technological

and scienti�c progress behind them are also driving forces
that cannot be ignored.

In the �eld of computer music, singing voice synthesis is
a comprehensive application of multiple research works,
which often involves many aspects of the �eld of speech
synthesis, including endpoint detection and extraction of the
underlying features of the human voice, especially the
fundamental frequency and timbre features of the human
voice extract [1]. Among them, endpoint detection, speech
segmentation, fundamental frequency extraction, and other
research work have been carried out earlier and have more
research results, while the extraction of human voice color
features is still an emerging research branch. Song synthesis
technology is another new research hotspot in the �eld of
music speech signal processing after speech recognition,
music retrieval, and music recommendation. First, it can be
applied to the singing synthesis of “virtual” singers; secondly,
the application of singing synthesis to music singing edu-
cation can reduce the recording of repetitive singing
teaching materials, thereby reducing the waste of human and
material resources [2].

�ere are four important terms that musicians use to
describe sounds in music: length, intensity, pitch, and
timbre. �e listener can sort the sounds from high to low
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according to the pitch or intensity of the sound, and the
length of the sound depends on the duration of the sound of
the object [3]. Timbre is used to describe the subjective
auditory properties of a sound with a specific pitch and
intensity, and there is no objective metric. Among them,
pitch and timbre are important essential characteristics of
sound, and many scholars have studied and explored the
modification of pitch and timbre.'is topic mainly discusses
the pitch and timbre of speech, especially the pitch and
timbre of the singing voice when singing songs [4]. Liter-
ature [5] has written a review to summarize the modification
of the current speech pitch, in which the waveforms are
similar and overlapped, and selecting the overlapping seg-
ment according to the waveform similarity to modify the
pitch can keep other features of the music unaffected.
Reference [6] proposes the superposition of pitch syn-
chronization waveforms and finds superimposed waveforms
according to the pitch period. Pitch modification within a
small amplitude range can achieve good results. Reference
[7] proposed to use the constant Q transform to perform
time-frequency conversion and to modify the spectral pitch
according to the characteristic curve in line with human
hearing. Reference [8] proposed a pitch modification method
based on the source-filter model and linear prediction co-
efficient, which separates the sound source information from
the channel response and can perform pitch modification
without affecting the channel response. 'ere are many
factors that affect timbre, including spectral envelope, for-
mant [9], and spectral centroid [10], among which spectral
envelope is the most direct feature that affects timbre. For
example, the voice of the same person, even if the pitch is
inconsistent, the timbre expressed will be different to a certain
extent, but the spectral envelope will not change greatly.
Reference [11] proposed a method that can modify the for-
mants so that the timbre characteristics of a specific person
can be changed by modifying the formants through technical
processing. Most of the research on timbre analyzes the
timbre characteristics of the audio signal as a whole. With the
breakthrough of artificial intelligence and machine learning
technology, data-driven audio feature analysis has become a
research hotspot. Pitch conversion is an important technology
in speech sound processing, and it is also the most basic and
critical issue in singing harmony. Singing pitch conversion is a
technique to adjust the raising or lowering of the singing pitch
without changing the semantics and speech rate. Pitch
conversion is widely used in song singing, music post-
processing, KTV sound effects production, live video, and
other scenarios. Vocal range refers to the range of pitches that
a singer can emit according to his own physiological char-
acteristics, and converting the pitch can expand the vocal
range of the singer to a certain extent [12]. At present, the
methods of pitch conversion are mainly divided into three
categories: time-domain method, frequency-domain method,
and parametric method. In the time-domain processing,
resampling is the main method to achieve pitch conversion.
In the frequency-domain processing, the frequency spectrum
can be directly multiplied by the proportional coefficient to
modify, while in the parametric method, the pitch is mainly
based on the model characterization parameters of the sound,

which modifies directly. However, the existing pitch con-
version technology mainly focuses on the processing of or-
dinary speech signals, and when applied to singing voices,
there are shortcomings such as unnatural conversion, drastic
changes in timbre, and large distortion [13].

With the diversification and intelligent development of
digital media technology, the combination of traditional
media and emerging digital media in various fields has
become more and more closely [14]. 'e transmission
and exchange of information, on the one hand, is
expanding frommaterial media to digital media, and on the
other hand, it is imperative to rapidly change from single
media to multimedia, mixed media, and even integrated
media [15].

With the transformation of media forms, as the most
representative auditory art in digital media art, electronic
music not only has a greater space for development in terms
of creation and expression but also has a great impact on its
artistic evaluation criteria. Some electronic music has been
separated from the pure note system of traditional music and
transformed into an independent music system with sound
as the basic structure [16]. In an all-media environment, an
art form that combines electronic music, visual art, and even
digital intelligence technology will break the original crea-
tion and aesthetic rules, thus forming a new art form. In the
field of research, the related research on the digital art
creation mode and omnimedia expression of computer-led
human intervention and collaborative creation is still in the
exploratory stage. Under the background of increasingly
intelligent, humanized, convenient, and interactive digital
media, from the perspective of media, combined with the
style characteristics, creation, performance, appreciation
methods, and aesthetic system of electronic music, it is of
great practical significance to conduct in-depth excavation
and research on the “Music Creation and Performance
System,” establish a relatively complete system and the
digital logic model, and provide theoretical and technical
support for the Omnimedia development of intelligent
electronic music creation and artistic expression in my
country [17]. At the same time, the creative concepts and
modes of intelligent electronic music are not limited to the
creation of academic and experimental electronic music. In
the future, it can also be applied to the creation of electronic
dance music, ambient music, music installations, and other
artistic works [18].

'e volume is determined by the amplitude of the sound
wave. 'e larger the amplitude, the higher the volume, and
the smaller the amplitude, the lower the volume. If it is the
same instrument, the greater the strength, the louder the
volume, and vice versa. 'e volume change in music is the
main root cause of musical expression and has a direct
impact on musical expression. 'e difference in the overall
volume will also make the same piece of music have different
effects and give people different feelings. Each object has its
own volume limit, which is usually determined by the ob-
ject’s size, material, and structural shape.'e volume change
also affects the timbre, which affects different objects to
different degrees. For example, when playing a timpani with
light intensity and heavy intensity, there is a big difference in
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the timbre. When playing lightly, the pitch is more obvious,
and the sound is round and full. It is similar to the bass of
pizzicato, and the pitch is relatively less obvious when
playing with heavy force, adding a lot of noise, which is
closer to the sound of the bass drum, and the sound dif-
ference between heavy and light piano playing is not so
obvious, but the sound of heavy playing is a little more noisy.
Electronic audio devices rely on speaker vibrations to
produce sound, and their overall volume depends on device
performance and the voltage input to the speakers.

In this paper, with the support of music waveform
feature extraction technology, the intelligent analysis of
singing skills in music education is carried out, the recog-
nition of singing skills in music education is improved, and
the intelligent effect of modern music teaching is promoted.

2. Influence of Waveform on Tracking Effect of
Music Recognition System

2.1. Influence of Waveform Parameters on Signal-to-Noise
Ratio Received by Music Recognition System. According to
the principle of music recognition system, when the tracking
target is a point target and the environment is in the en-
vironment of Gaussian white noise with fixed noise power,
the output SNR is related to the transmission energy, but not
to the waveform parameters. In such a case, adjusting the
parameters of the transmit waveform does not improve the
SNR of the echo of the music recognition system.

'e target’s current environment contains noise inter-
ference and clutter interference is set. When the target to be
tracked is an extended target, the output obtained by the
music recognition system receiver through filtering is

y(t) � r(t)
∗

s(t)
∗
h(t) + s(t)

∗
c(t) + J(t)( . (1)

In (1), r(t) is the impulse response of the receiver, h(t) is
the impulse response of the target, c(t) is the impulse re-
sponse of the clutter, and J(t) are other disturbances that the
music recognition system experiences in its work. 'e result
obtained by the filter output of the music recognition system
receiver in (1) is decomposed, and the received signal
components and noise components can be obtained as

ys(t) � r(t)
∗
s(t)
∗
h(t),

yn(t) � r(t)
∗

s(t)
∗
c(t) + J(t)( .

(2)

In (2), ys(t)yn(t) is the signal component and the noise
component in the received echo, respectively. At time t0, the
output signal-to-noise ratio is
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where |L(f)|2 � Pc(f)|S(f)|2 + PJ(f). Combined with
Schwartz’s inequality, the SNR expression can be obtained as
follows:
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When the maximum value of SNR obtained by (4) is
obtained, the form of the filter is

R(f) �
kH(f)S(f)e

j2πf0

L(f)
. (5)

To sum up, in the noise and clutter environment, when
the target is an extended target, the parameters of the
transmitted waveform of the music recognition system will
have an impact on the signal-to-noise ratio of the received
echoes.

2.2. Influence of Waveform Parameters on Measurement.
When the music recognition system has detected the
target, measure the influence of the waveform parameters
on the measurement. During the calculation, in order to
obtain the target delay-Doppler measurement error, the
calculated target delay is used in the processing. 'e
Cramer–Rao Lower Bound (CRLB) approximation of
Doppler’s maximum likelihood estimate serves as the
target delay and measurement error for Doppler fre-
quency. Using the parameter estimation theory, the Fisher
matrix of the target delay-Doppler frequency can be
obtained as follows:

J � η
ω2

− ω2 ωt − ωt

ωt − ωt t
2

− t
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

It can be seen from the above equation that the infor-
mation matrix is related to the mean square bandwidth and
mean square time width of the transmitted signal. At the
same time, according to the parameter estimation theory, the
Hessian matrix of the fuzzy function at τ � 0, fd � 0 is
consistent with the Fisher matrix, and the Hessian matrix is
obtained as
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. (7)
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'rough (7), the process of how to use the waveform
parameters and fuzzy functions to solve the Fisher matrix is
obtained. During the working process, the music recog-
nition system can perceive the distance and speed infor-
mation of the target to be observed in real time and obtain
the target distance and speed matrixz � [rv]T. 'is matrix
can correspond to the time delay-Doppler frequency es-
timation matrix at the time of calculation, where
T � diag[c/2, c/2fc] is the Jacobian matrix of the trans-
formation of the two parameters. 'erefore, the mea-
surement noise covariance of distance and speed can be
expressed as

R � TJ
− 1

T
T
. (8)

When the parameters of the transmitted signal are de-
termined, the calculation result of (8) can be used as the
covariance matrix of the measurement noise and applied to
the processing of filtering estimation.

'ere are many kinds of transmitting signals of the
music recognition system. In the simulation of this paper,
the transmitting signal of music recognition system in the
simulation process is set to be the Gaussian envelope linear
frequency modulation signal. 'e expression for the
Gaussian envelope chirp signal is

s(t) �
1

πT2 
(1/4)

exp −
− t

2

2T
2 − jb t

2
 , (9)

where b is the frequency modulation slope, and its
CRLB is
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Among them, θ � [T, b]T is the pulse width and FM
slope vector.

'e signal pulse width has a direct impact on
the signal-to-noise ratio (SNR), and (10) shows that re-
ducing the pulse width can effectively improve the ac-
curacy of distance measurement, and increasing the
pulse width can effectively improve the accuracy of speed
measurement. If it can analyze the echoes received at
the current moment during the working process of the
music recognition system and guide the music recogni-
tion system to adjust the parameters of the transmitted
signal, the music recognition system can change the
parameters of the transmitted signal. Moreover, it di-
rectly affects the tracking effect of the music recognition
system on the target at the next moment, which is the
concept and idea of the optimal waveform selection
technology. 'e overall implementation process is shown
in Figure 1.
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2.3. Singing Sports Target Model. In this paper, setting the
motion state of the singing target includes the following
two types: the CT model and the CV model. In the es-
tablishment of CT and CV motion models, x and y rep-
resent the position of the target in space, and x and y
represent the speed of the target in the x and y directions. ω
is the turning rate of the target, and T is the sampling period
of the music recognition system. 'e CV model and CT
model are as follows.

2.3.1. CV Model. 'e state variable of the moving target
under the CV model is X � [x, _x, y, _y]’. 'e state equation
of the CV model is

X(k) � FCV(k − 1)X(k − 1) + GCV(k − 1)W(k − 1), (11)

where FCV and GCV are, respectively,
W(k − 1) is white Gaussian noise with zero mean.

Last moment target
measurement

Modification of the
waveform parameters

CRLB for measuring the
noise covariance

Update of the status of the
measurement equation

Track up the
targets

Target update
status

Waveform
selection

Target state at the last
moment

Figure 1: Workflow of the optimal waveform selection technology
to achieve target tracking.
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2.3.2. CT Model. 'e state variable of the moving target
under the CT model is X � [x, _x, y, _y,ω]′, and the state
equation of the CT model is

X(k) � FCT(k − 1)X(k − 1) + GCT(k − 1)W(k − 1), (13)

where FCT and GCT are, respectively,
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W(k − 1) is white Gaussian noise with zero mean.

2.4. IMM Optimal Waveform Selection Algorithm. 'e tra-
ditional IMM optimal waveform selection algorithm in-
cludes two parts: the IMM target tracking algorithm and the
optimal waveform selection strategy. 'e main idea of the
IMM target tracking algorithm is to use multiple Kalman
filters to process the received information at the same time,
and each Kalman filter is in a parallel relationship.'erefore,
before introducing the IMM algorithm, the Kalman filter
algorithm needs to be introduced.

When tracking a moving target, the state space of the
target includes two parts: the system equation and the
measurement equation. 'e system equation, expressed in
the form of nonlinear equation, describes the actual state of
the moving target:

xk � f xk− 1(  + vk, (15)

where xk represents the state of the target at time k, f(·) is
the target state transition function, vk represents the
Gaussian white noise caused by the current environment,
and the covariance matrix is Q.

'e measurement equation is

zk � h zk− 1(  + wk, (16)

where zk represents the tracking vector at time k when the
target is being tracked, h(·) represents the target measure-
ment transfer function, wk represents the Gaussian white
noise determined by the waveform parameters, and the
covariance matrix is R.

For the Kalman filtering algorithm, when the filtering
environment is Gaussian, the Kalman filtering process is
consistent with the optimal Bayesian filtering process.
'erefore, in the linear environment, the state space
equation can be expressed as

xk � Fxk− 1 + Γvk,

zk � Hxk + wk.
(17)

'e flow of the Kalman filter algorithm is as follows.
First, the one-step prediction for the target state is

xk|k− 1 � Fxk− 1k− 1. (18)

'e one-step prediction covariance is as follows:

Pk|k− 1 � FPk− 1|k− 1F
T

+ ΓQΓT. (19)

'e one-step prediction of the measurement is as
follows:

zk|k− 1 � Hxk|k− 1. (20)

'e innovation covariance is as follows:

S � Hk|k− 1H
T

+ R. (21)

'e Kalman filter gain is as follows:

K � Pk|k− 1H
TS− 1

. (22)

When the time is k, the state equation of the target can be
updated as follows:

xk|k � xk|k− 1 + K z − Hxk|k− 1 . (23)

When the time is k, the covariance matrix of the filtering
error is as follows:

Pk|k � [I − KH]Pk|k− 1[I − KH]
T

+ KRKT
. (24)

As an effective technique for maneuvering target
tracking, the IMM algorithm uses multiple model sets to
describe the possible model states of the system. 'e basic
idea of this algorithm is that, when each model is valid at the
current moment at different times, the initial conditions of
the filter matching the model are obtained by comparing the
estimated values of the states obtained by all filters at the
previous moment. 'e basic filtering steps are implemented
in parallel for each model. Finally, the model matching
likelihood function is used as the basis to update the model
probability, and the estimated value of the state is obtained
by the weighted summation of all the modified state esti-
mates of the filters. 'e algorithm obtains the final tracking
result by mixing the estimated values obtained from dif-
ferent models.

'e IMM algorithmmainly consists of the following four
steps: input interaction, filtering, model probability update,
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and output synthesis. 'e specific process of each step is as
follows:

2.4.1. Input Interaction. 'e input interaction is obtained by
the initial value of the filter period of each filter from the
model conditional transition probability and state estima-
tion value, and the transition probability between models is
set as Ptij

.

'e input state of the resulting computational model is
as follows:

X
oj

(k − 1|k − 1) � 
r

i�1

X
i
(k − 1|k − 1)μij(k − 1|k − 1). (25)

'e error covariance is as follows:

P
oj

(k − 1|k − 1) � 
r

i�1
μij(k − 1|k − 1)

· P
i
(k − 1|k − 1) + X

i
(k − 1|k − 1) − X

oj
(k − 1|k − 1) • X

i
(k − 1|k − 1) − X

oj
(k − 1|k − 1) 

T

 ,

μij(k − 1|k − 1) � P
Mi(k − 1)

Mi(k), Z
k− 1

⎧⎨

⎩

⎫⎬

⎭,

�
pijμi(k − 1)

cj

,

(26)

where j � 1, . . . , r, pij is the transition probability from
model i to model j, and cj is the normalization constant,
cj � 

r
i�1 pijμi(k − 1).

2.4.2. Model Filtering. According to the calculated
model input state and error covariance, combined with
the observation data at the current moment, the Kalman
filter is performed to obtain the filter output of each
model.

2.4.3. Update of Model Probability.

μj(k) � P
Mj(k)

Z
k

 ,

� P
Z(k)

Mj(k)
, Z

k− 1
 P

Mj(k)

Z
k− 1 ,

�
1
c
Λj(k) 

r

i�1
pijμi(k − 1),

�
Λj(k)cj

c
,

(27)

where c is a normalization constant, c � 
r
j�1 Λj(k)cj and

Λj(k) is the likelihood function of observation Z(k), where
Λj(k) represents the possibility of model j, and the ex-
pression of Λj(k) is

Λj(k) � P
Z(k)

Mj(k)
, Z

k− 1
 ,

�
1

(2π)
n/2 Sj(k)



|
(1/2)

exp −
1
2
vT

j s
− 1
j (k)vj ,

(28)

where vj is the filter residual estimation of model j, Sj is the
covariance matrix, which obeys the Gaussian distribution,
and the expression is

vj(k) � Z(k) − H(k) X
j
(k|k − 1),

Sj(k) � H(k)Pj

X
(k|k − 1)HT

(k) + R(k).
(29)

2.4.4. Output Interaction. All model states are weighted, and
the output of the system state estimation at time k is obtained
by using the product of the model probability of each model
and the state estimate value:

X
k

k
  � 

r

j�1

X
j
(k|k)μj(k),

P
k

k
  � 

r

j�1
μj(k)

· Pj k

k
  + X

j k

k
  − X

k

k
   X

j k

k
  − X

k

k
  

T⎧⎨

⎩

⎫⎬

⎭.

(30)

'rough the calculation process of the IMM algorithm, it
can be seen that the IMM algorithm achieves the best global
tracking performance by calculating the weighted sum value
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Figure 2: Target movement trajectory.
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Figure 3: Comparison of IMM optimal waveform selection algorithm and IMM algorithm on target tracking effect when the waveform is
fixed: (a) x-direction tracking distance error, (b) y-direction tracking distance error, (c) x-direction tracking distance mean error, and
(d) y-direction tracking distance mean error.
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of each model tracking estimated value and the model
matching update probability during the entire tracking
process.

'e traditional selection of the optimal waveform using
the IMM optimal waveform selection algorithm is based on
the filtering output result of the IMM target tracking al-
gorithm. Moreover, it sets a certain waveform selection
criterion function and determines the next moment wave-
form according to the waveform selection criterion function.
In the tracking task, the more commonly used waveform se-
lection criterion function is the mean square minimum error
criterion; that is, in each moment of tracking, the mean square
value of the output state estimation error needs to be mini-
mized. 'erefore, the waveform selection criteria used in the
IMM optimal waveform selection algorithm are as follows:

θ
∗

k � argminθk∈θTr Pk/k θk(  , (31)

where θ
∗

k represents the waveform selected at time k and the
filtering covariance at time k needs to be minimized, namely,

Tr Pk/k θk(  ,

� Tr Pk/k − Pk|k− 1H
T HPk|k− 1H

T
+ R θk(  

− 1
HPk|k− 1 .

(32)

From the above equation, it can be known that at time k,
the trace of the filter covariance is a variable related to the
measurement noise covariance. According to (31) and (32),
the parameters of the music recognition system at the next
moment can be obtained.

3. Simulation Experiments and
Experimental Results

3.1. Target Parameters and Music Recognition System
Parameters. In this section, the transmitter waveform used

in the simulation is a Gaussian envelope chirp waveform
with a carrier frequency of 2GHz. Because the parameters of
the music recognition system are variable, the waveform
library of the music recognition system composed of all the
waveforms of different parameters is

R� λ ∈ [50e − 6: 3.5e − 6: 120e − 5],b ∈ [1e10: 1e9: 1el1]{ }.

(33)

From the composition formula of the waveform library,
it can be calculated that the waveform library used in the
simulation is composed of 651 waveforms. At the same time,
in order to compare the effect, a music recognition system
with fixed parameters is set up. 'e parameters of the music
recognition system are as follows: the frequency modulation
parameter is b � 1 × 1010rad/s2, and the pulse width is
λ � 5 × 10− 5s. 'e tracked target does a uniform linear
motion (CV model) within 1150 seconds and a uniform
curve motion (CT model) for 151270 seconds. In the
271400th second, the target’s motion trajectory is still a
uniform linear motion (CV model). Taking the music rec-
ognition system as the coordinate origin to establish a co-
ordinate system, the position coordinate (x0, y0) of the
initial movement of the target is (50000, 50000), and the
initial speed (vx0, vy0) is (100, 100). 'e angular velocity of
the set target when moving with the CT model is
ω � − (π/270). 'e trajectory of the target is shown in
Figure 2.

3.2. IMMAlgorithm Parameters. In the filtering of the IMM
algorithm, two model sets, the CTmodel and CV model are
used, and the transitionmatrix between the twomodels is set

as P �
0.99 0.01
0.01 0.99 , and 50 Monte Carlo simulations are
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Figure 4: Changes of waveform parameters transmitted by IMM optimal waveform selection algorithm. (a) Change diagram of the pulse
width during the tracking process. (b) Changes of FM parameters during tracking.
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Table 1: Accuracy of music skill recognition.

Number Singing recognition (%)
1 85.69
2 80.18
3 88.35
4 77.51
5 84.43
6 77.51
7 80.60
8 86.62
9 88.66
10 80.76
11 84.56
12 82.28
13 81.26
14 86.77
15 80.51
16 78.42
17 75.71
18 81.92
19 77.77
20 79.80
21 87.84
22 88.66
23 82.80
24 87.23
25 74.85
26 84.14
27 88.47
28 76.83
29 83.47
30 82.73
31 76.11
32 81.33
33 86.49
34 87.31
35 82.92
36 86.42
37 76.99
38 86.19
39 79.47
40 75.71
41 88.96
42 83.07
43 78.31
44 78.29
45 76.52
46 74.78
47 80.53
48 84.98
49 88.53
50 82.85
51 74.52
52 86.99
53 81.88
54 77.17
55 86.65
56 86.08
57 78.19
58 80.39
59 86.10
60 86.37

Table 2: 'e improvement effect of music teaching.

Number Teaching effect
1 63.35
2 61.53
3 68.68
4 71.91
5 72.52
6 71.41
7 69.82
8 58.39
9 57.09
10 55.60
11 60.48
12 69.49
13 55.81
14 73.54
15 61.10
16 67.93
17 64.69
18 62.70
19 59.64
20 63.69
21 74.64
22 57.21
23 75.98
24 68.88
25 71.29
26 74.94
27 60.40
28 58.76
29 58.37
30 75.33
31 74.35
32 56.11
33 65.95
34 58.82
35 67.25
36 65.72
37 55.60
38 62.50
39 75.47
40 66.81
41 63.35
42 72.18
43 55.42
44 72.25
45 67.78
46 74.13
47 63.32
48 67.73
49 74.84
50 64.67
51 73.58
52 75.21
53 73.03
54 68.98
55 62.15
56 71.06
57 56.98
58 56.04
59 69.90
60 67.72

Mobile Information Systems 9



carried out. 'e tracking results obtained by the IMM al-
gorithm under the transmission waveform parameters and
waveform selection of the fixed music recognition system, as
well as the speed and distance errors obtained in the x and y
directions, respectively, are obtained, as shown in Figure 3.

It can be seen from Figure 3 that the waveform selection
can be realized by using the IMM optimal waveform se-
lection algorithm, and the tracking error can be reduced
when the waveform parameters change in real time com-
pared to the fixed waveform. Figure 4 shows the changes in
the parameters of the waveform transmitted by the music
recognition system during the tracking process.

It can be seen from Figure 4 that the algorithm only
utilizes a small number of waveform parameters, which
wastes a lot of waveform resources, which will affect the
effect of target tracking.'erefore, we consider adjusting the
waveform selection criterion function to increase the effi-
ciency of using the waveform and improve the tracking effect
of the target.

On the basis of the above simulation experiments, the
method based on music waveform feature extraction pro-
posed in this paper is applied to the practical application of
music education singing skills. 'e music singing skills are
verified, and the recognition accuracy of music skills and the
improvement effect of music teaching are counted, and the
results shown in Tables 1 and 2 are obtained.

From the above research results, it can be seen that the
intelligent analysis system of music education singing skills
based on music waveform feature extraction proposed in
this paper has good effects and can effectively promote the
improvement of music singing skills and improve the effect
of music teaching.

4. Conclusion

'e visualization of music information is relevant to many
disciplines. It takes music and acoustics as its scientific
basis and draws scientific nutrition from basic disciplines
such as physics, mathematics, and psychology. Moreover,
it is supported by engineering technologies such as hu-
man-computer interaction, sensing, and control tech-
nology, computer and information technology. In
addition, it is closely related to music iconography and
imaging, and its final application fields include music
creation, music performance, music research, music ed-
ucation, etc. 'e development of music information vi-
sualization is a dynamic process, which must be studied
and analyzed in combination with the social and cultural
background and the level of scientific and technological
development in each historical period. In this paper, the
intelligent analysis of singing skills in music education is
carried out with the support of music waveform feature
extraction technology. From the research results, it can be
seen that the intelligent analysis system of music edu-
cation singing skills based on the extraction of music
waveform features has good effects and can effectively
promote the improvement of music singing skills and the
effect of music teaching.
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