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The Huyugou river basin is a typical debris flow river basin in the Shanxi Province, which has great harm after the outbreak and
seriously affects the safety of people’s lives and property. Therefore, it is urgent to carry out debris flow risk assessment. In this
paper, a machine learning algorithm is implemented to assess the disaster susceptibility of each branch gully in a river basin of the
Huyugou. Furthermore, its high-susceptibility branch gully and main gully were selected as the starting points of debris flow
simulation for numerical simulation. The machine learning algorithm is implemented in a cloud-edge platform to minimize the
model training and prediction times. Under the simulated rainfall conditions of major debris flow disasters, e.g., the one that
occurred in 1996, the accuracy rate reached 84%. The results show that the debris flow susceptibility of each branch gully in the
study area is mainly affected by the peak flow rate of the river basin, the length of the main gully, and the relative height difference
of the river basin. The total risk area of debris flow is 1.91 x 105 m?, and the high-risk area accounts for 52.18% of the total area. It is
mainly located in the upper part of the main gully accumulation area and the confluence of each channel and the main gully. The
middle-risk area accounts for 36.14% of the total area, and the low-risk area accounts for less. We also observed significant
reduction, from 34.68% to 36.98%, in the training and prediction times of the machine learning models when implemented over
the proposed edge-cloud framework. The reappearance of debris flow in the study area is relatively accurate, which provides a

certain scientific basis for the risk assessment of debris flow in the future.

1. Introduction

The Shanxi Province is located in the west side of Taihang
Mountain, in the middle of Loess Plateau, and the eastern
edge of Ordos Basin. The structure is complex, the altitude
gap is relatively large, and therefore many tragedies are likely
to happen [1]. Although the incidence of debris flow di-
sasters is far less than other disasters, it poses a serious threat
to people’s health and property safety, and the degree of risk
is self-evident [2]. Similarly, the rise of state-of-the-art
computational technologies such as big data, Internet of
things, and cloud computing can enhance the safety through
introducing some sort of monitoring system. With the
growth of big data and storage technologies that are be-
coming more and more mature, the mining data acquisition
becomes simple and convenient. However, the data analysis
of mining disaster datasets is no longer limited to the simple

statistical analysis. In fact, machine learning approaches
such as logistic regression, decision tree, and XGBoost al-
gorithms become more essential. The main problem with the
machine learning methods is the time required to train the
model and then predict the disaster that should be mini-
mized. The new concept of edge computing can solve the
issues related to data analysis.

The Huyu River Basin in the Taiyuan City is the main
river connected with the Xishan coalfield. In 1996, a major
debris flow disaster occurred. The flood caused by rainstorm
and the debris flow mixed together with solid deposits hit
down, rushed through the coal mine and coal power group
[3]. After the debris flow left the mountain area, it continued
to move eastward along the street and finally entered the
Fenhe River. The affected area was 15 km long from east to
west, and the affected area was about 8 square kilometers.
The disaster caused many people to be killed, and more than
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100 people were trapped underground. The trapped time was
very long. The direct economic loss caused by the damaged
houses and roads is as high as CNY 240 million [4]. With the
harm of debris flow to modern society, the problem of
Huyugou has seriously affected the urbanization construc-
tion of the Taiyuan City, so it is of great significance to study
the river basin quickly to monitor and prevent debris flow
disasters [5, 6].

In this paper, based on the traditional geographic in-
formation system (GIS) evaluation system, combined with
numerical simulation method, field investigation, and
multiparty data analysis, the random forest (RF) method in
machine learning was used to evaluate the susceptibility of
debris flow in the study area [7]. Moreover, we also used
other methods to assess the correctness and precision of the
proposed system. The suggested RF method has been
implemented in different modules that run on different
layers of the edge computing model. On this basis, the
numerical simulation of major debris flow, which occurred
in 1996, was reproduced and compared with field data and
the risk zoning was carried out to deliver practical basis for
the monitoring, avoidance, and control of local debris flow
tragedies. The major contributions of this study are as
follows.

(1) A machine learning algorithm is implemented to
assess the disaster susceptibility of each branch gully
in a river basin of Huyugou.

(2) The high-susceptibility branch gully and main gully
were selected as the starting points of debris flow
simulation for numerical simulation.

(3) The machine learning algorithm is implemented in a
cloud-edge platform to improve the training and
prediction times.

The rest of the paper is structured as follows. In Section 2,
we give an overview of the study area that was used in this
research. In Section 3, evaluation of the debris flow sus-
ceptibility is presented which is based on the random forest
method. Risk assessment of the debris flow in Huyugou
based on mass flow is deliberated in Section 4. Evaluation of
the proposed methods, obtained findings, and discussion are
given in Section 5. As a final point, Section 6 completes this
study and offers directions for future research.

2. Overview of the Study Area

The debris flow in the study area is located in the southwest
mountainous area of the west mountain in Wanbailin
District, Taiyuan City, Shanxi Province. In fact, it is a small
river basin within the scope of the Huyugou river basin, with
an area of about 12.1695km?, and is dominated by low-
middle mountains. The terrain is gradually reduced from
west to east. The elevation of the main gully in the study area
is about 1585.6 m, and the elevation at the gully mouth is
about 1070 m, and the relative elevation difference is ap-
proximately 515.6 m. The study area is located in the interior
of the continent, far from the ocean, and the monsoon
climate is obvious. The maximum annual rainfall can reach
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800 mm, and the spatial and temporal distribution of rainfall
is uneven, mostly concentrated in summer. The rainfall can
reach 80% of the total annual rainfall. The average tem-
perature in the region is low, about 2°C~6°C, and the lowest
temperature can reach —7°C, and the highest temperature
can reach as high as 22.7°C. The study area is located in the
Duerping-South Korea fault zone, with a length of about
26 km. The fault zone is formed by the Duerping fault and
the Yayadi fault, toward northeast. The fault generally strikes
northeast, which is a normal fault. This should be noted that
the study area is distributed by Carboniferous, Permian
clastic rocks, a small amount of Ordovician carbonate rocks,
and Holocene gravel.

There are abundant sources in the basin, and the main
solid source is the product of weathering of clastic rock layer.
The solid material source comes from the loose accumu-
lation caused by a large amount of slope instability that is
subsequently caused by coal mining, road construction,
bridge construction, and other activities in the region.
Furthermore, it also includes domestic waste, cinder, and
stone slag, which provide a large amount of material source
for debris flow. In summary, the debris flow in Huyugou
mining area has been an important area of debris flow di-
saster prevention and mitigation in the Taiyuan City. It is a
major task to study and analyze, simulate, and promote the
implementation of debris flow protection measures. Figure 1
shows a view of the river basin diagram of the study area.

3. Evaluation of Debris Flow Susceptibility
Based on Random Forest Method

In this section, we first illustrate the proposed edge intel-
ligence framework that is used to implement the machine
learning algorithms. The main purpose of the edge com-
puting is to bring computation closer to where the data is
produced. In this way, the data can be preprocessed and can
be fitted well for training purposes. The entire framework is
shown in Figure 2 below. In the proposed framework there
are three layers, namely, the IoT layer, the edge layer, and the
cloud layer. The IoT sensors may include cameras and other
data collection devices. Once the data is gathered, it could be
preprocessed over the edge devices because the IoT devices
have very low processing capabilities. The preprocessing may
include data aggregation methods that can remove duplicate
and unnecessary data. This duplication may occur when data
from overlapping regions are collected. This should be noted
that, due to (i) no availability of duplicate entries and (ii)
small size of the dataset, we do not use any aggregation
technique in this work. Largely, the well-known Euclidean
distance equation is used to identify whether two particular
collected data points (through sensors) belong to either the
same region or two different regions, which is used for data
aggregation purpose [8, 9]. The processed data is then moved
to the cloud for long-term storage. It should be noted that, in
the proposed framework, machine learning algorithms can
be used in three different manners: (i) perform the pre-
diction at the edge; (ii) perform the prediction at the cloud;
and (iii) train the model on cloud and perform prediction on
the edge [10]. However, in case of (i) different algorithms
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Ficure 2: Edge computing for machine learning.

have different computational times and it might not be
possible for the edge (limited resources) to compute quickly.
In the case of (ii), networks are the bottlenecks and it will
take quite long time, dependent on the data size, to do
predictions. In the case of (iii), the model is trained at regular
intervals to make sure that prediction outcomes are more
accurate.

Figure 3 shows the flow of data between the edge and
cloud in terms of machine learning. The lower part illustrates
the scenario when edge computing is not taken into account.
This type of setup might be helpful in offline learning, but for
real-time online learning this might not be a good option.
The upper part describes two situations: (i) when machine
learning methods are used over the stored data while pre-
processing happens at the edge and (ii) when machine
learning is used over the reproduced data over the cloud and
the preprocessing along with data aggregation method is
used at the edge. The machine learning algorithm is then run
in two different modules. The first module is the training that

runs on the cloud. In case that enough data is not available,
then more data can be produced through synthesized
workloads [11]. Also, the IoT sensors continuously collect
data and send it to the edge for preprocessing. Subsequently,
the processed data is moved to the cloud for training
purposes. The second module runs in the edge and predicts
the unseen situations based on the data stored and trained
model. It should be noted that, to reduce the training time,
the amount of data can also be reduced through data ag-
gregation techniques such as Euclidian distance. In this
work, we do not suggest any data reduction mechanism.

3.1. Principle of Random Forest Method. The RF (Random
Forests) is one of the most popular algorithms used to solve
multiclassification and prediction problems [12-14]. It is an
integrated method of binary decision trees trained inde-
pendently. It was introduced by Breiman in 2001 and
combines multiple decision trees used for classification and
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prediction. It has obvious effect in classification and re-
gression problems [15, 16]. The RF can be defined as a set of
random trees (decision trees). The basic method for clas-
sification problems is based on training each decision tree
alone, and the final result is estimated by considering the
results obtained by each decision tree.

The random forest algorithm works as follows:

(1) Resample the original data and repeat it several
times.

(2) In each resampling process, a group of disaster-
pregnant factors are randomly selected as the
eigenvalues.

(3) The resampling and the corresponding eigenvalue of
the disaster-pregnant factor are estimated to obtain
the decision tree set.

(4) Aggregate the estimated decision tree set in order to
obtain a single decision tree.

Therefore, the basic notion of the RF procedure is to
generate multiple decision trees on a random subset [17]. In
fact, the performance of the suggested RF method pre-
dominantly depends on the amount of decision trees
(Ntree), as well as the candidate features that are enclosed in
the subset (mtry) [18]. It should be kept in mind that larger
Ntree values may potentially increase modeling time, while
the smaller Ntree values may cause prediction errors. The RF
model can summarize and minimize the risk of overfitting
without any pruning process. The training process involves
creating many different boot samples from the original data
set, one-third of which is excluded from the process as test
cases, and based on this test case to estimate unbiased test
error, known as out-of-bag-error, which represents the
predictive ability of the RF model [19]. For the purpose of
classification, the RF model uses the high variance between
individual trees. This is achieved by voting each tree as a class
member and allocating the corresponding class value
according to the public vote. Furthermore, the RF classifier is
more accurate and robust than a single classifier, because it
has many advantages; for example: (i) it can handle large

databases relatively very effectively, and (ii) it offers a way to
calculate the proximity between pairs of cases used to locate
outliers, etc. [20, 21].

The RF algorithm also uses the Gini index as the attribute
selection metric to measure the purity of attributes and
classes. Assuming that the sample R # corresponding to the
characteristic index in the data preprocessing set R* contains
J categories, then its Gini index is given by the following
equation [22]:

N
gini(T) =1- Zp;, (D

=

where p; is the probability of the j™ sample. After one
segmentation, the set R* is divided into m parts {N1, N2, ..,
Nm}. Then, the segmented Gini index ginisplit (T) is given by

N N,
ginigyy (T) = Flgini (T)+...+ ngini(Tm). (2)

The final ginisplit (T) is the Gini index corresponding to
each feature sample, and its set is set as G={g1, g2, ..., gj}.
The weight corresponding to each feature index is illustrated
usingt

9j
0, =—"— (3)
j
-1 9i

Finally, the weight set is 6=1{6,, 0,, ..., 6;}.

3.2. Influence Factors of Debris Flow Susceptibility. The ini-
tiation of debris flow is caused by many factors such as
precipitation, topography, geomorphology, and human
factors. In this paper, the selection of debris flow factors is
mainly considered in the above aspects. The following
factors affecting the development of debris flow are selected:
river basin area, average slope of the river basin, shape
coefficient, channel length, longitudinal shrinking slope of
the main gully, relative height difference of the river basin,
rainfall, vegetation coverage rate, and the peak flow of the
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TaBLE 1: The actual values of each factor in the study area.

River Average o Relative

basin  slope ofgthe Shape  Channel Ijon.gltudmal height Rainfall ~ Vegetation Peak Strata
Number . . shrinking slope of . flow .

area river basin  factor length (m) . difference (mm)  coverage (%) 3 lithology

2 o the main gully (%o) (m7/s)

(km") O (m)
1 0.527 19.61 11 857 164.53 349 439.462 15.4401 439  Siltstone
2 0.324 15.64 1.18 917 186.48 280 439.604 21.7935 2.85  Siltstone
3 0.786 16.98 1.23 1321 146.86 336 439.34 19.8264 6.97  Siltstone
4 1.794 16.79 1.17 2714 64.11 339 439.489 22.7433 17.93  Siltstone
5 0.623 19.72 1.13 1024 87.89 229 439.205 37.3686 5.53  Siltstone
6 0.351 19.69 1.30 484 161.16 255 439.319 24.7348 3.27  Siltstone
7 0.721 18.35 1.29 1225 130.61 342 439.359 21.793 8.80  Siltstone
8 0.532 15.83 1.09 1432 201.12 371 439.155 19.9189 4.60  Siltstone
9 0.585 18.30 1.07 1328 164.16 374 439.11 19.8484 4.06  Siltstone
10 0.211 17.60 1.31 580 193.10 180 438.935 35.3991 1.33  Siltstone
11 0.226 19.09 1.21 526 62.74 167 438.993 36.2723 2.27  Siltstone
12 0.452 15.55 1.22 1005 150.25 285 438.972 29.2496 4.02  Siltstone

river basin [23]. The actual values are detailed and given in
Table 1.

Although the scope of the study area is small and the
rainfall is basically the same, in order to ensure the integrity
of the factor selection, the stratigraphic lithology is still listed
in Table 1. The clear water flow of each river basin is cal-
culated by the debris flow clear water flow formula, which is
given by

Q, = 0.278Fri, (4)

where Q, represents the clear water flow in the region (m?*/s);
F represents the river basin area (km?); i is the production
flow coeflicient and its value is assumed as i=0.9; and r
represents hourly surface rainfall (mm/h).

The critical rainfall value of debris flow within 24 hours
in Shanxi Province is about 30 mm [24]. According to the
characteristics of Huyugou climate and the analysis of
rainfall in Taiyuan City, it is concluded that the daily rainfall
should be approximately 120 mm/d when Huyu gully
triggers severe rainstorm [25, 26].

The calculation formula of peak flow Q. in debris flow
basin is given by

(5)

where ¢ represents the sediment coeflicient of the basin; and
D, represents the blockage coeflicient in the basin.

Thus, the peak flow in each river basin of debris flow can
be obtained.

According to the geological hazard risk assessment
standard and related research results [27, 28], the factors are
divided into four levels: high (IV), middle (III), low (II), and
very low (I), and the classification results are substituted into
the random forest method to calculate the weight. The
grading standards and weight calculation results are shown
in Table 2, and the grading results are shown in Figure 4.

Q. = (1+9)QD,,

3.3. Results of Debris Flow Gully Susceptibility. As shown in
Figure 5, after calculation, the zoning results are as follows:
(i) No. 4 and No. 7 are high-prone debris flow branch gullies;

(ii) No. 1, No. 3, and other seven branch gullies are high-
prone debris flow branch gullies; and (iii) No. 2, No. 10, and
other three branch gullies are low-prone debris flow branch
gullies.

4. Risk Assessment of Debris Flow in Huyugou
Based on Mass Flow

According to the evaluation results of debris flow suscep-
tibility, area 4, area 7, and main gully in the high-suscep-
tibility area are selected for evaluation.

4.1. Simulation Parameter Value and Working Condition
Design

4.1.1. Unit Weight of the Debris Flow. The determination of
unit weight can be roughly divided into three methods,
namely: (i) field investigation method, (ii) morphological
investigation method, and (iii) standard look-up table
method. The debris flow severity used in this numerical
simulation is mainly determined by field investigation
method that can be mathematically expressed as follows:

Ye = (6)

where y, is heavy debris flow fluid (t/m?); G, is slurry quality
(t); and V is the mud volume (m>).

As shown in Table 3, the field method is used to in-
vestigate the density of debris flow. The slurry is mixed at the
upstream of channel, middle and lower reaches of the
channel, and the exit of the channel in the study area, re-
spectively. Multiple experiments are carried out and the
average value is finally obtained. The comprehensive analysis
shows that the average unit weight of debris flow in the study
area was y.=1.602t/m’, and the density is moderate, be-
longing to rare debris flow. At the same time, according to
the morphological investigation method, the fluid and
motion characteristics of debris flow are described by the
affected villagers [29]. It is concluded that the fluid prop-
erties of debris flow should be between dense debris flow and
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TaBLE 2: Evaluation factor weights and development grades.

Impact factors High (IV) Middle (III) Low (II) Very low (I) RF weight
River basin area 0.2~5 5~10 10~100 >100 0.082375
Average slope of the river basin >32 32~25 25~15 <15 0.090375
Shape coefficient <11 1.1~1.2 1.2~1.3 >1.30 0.105375
Channel length >10 10~5.0 5~1 <1 0.180375
Longitudinal shrinking slope of the main gully >200 200~150 150~100 <100 0.103375
Relative elevation difference >500 500~300 300~100 <100 0.118375
Vegetation coverage <10 10~30 30~60 >60 0.080375
Peak flow >10 10~6.85 6.85~3.36 <3.36 0.239375
Value range (0.75, 1) (0.5, 0.75] (0.25, 0.5] (0, 0.25]

>z

|

e,
N 2

— Km — Km — Km
Basin Area Size /m’ Channel Length/m Slope/®
I very low (I) medium (I1T) B very low (I) medium (IIT) B very low (1) medium (III)
low (II) I high (IV) low (1I) B high (IV) low (II) B high (IV)
River basin area Channel length

Average slope of the river basin

— Km — Km — Km

. Basin Height Difference/m Shape Factor

Watershed Peak Flow/m™s ‘ B very low (1) medium (I11) I very low (1) medium (III)

I very low (I) medium (I1T) low (1) B high (1V) low (11) B high (IV)

low (IT high (IV. i
{ N high (IV) Relative elevation difference Shape coefficient
Peak flow

(d) ()

Vegetation Coverage/% Longitudinal gradient/%
I very low (I) medium (IIT) I very low (I) medium (III)
low (II) I high (IV) low (II) B high (IV)
Vegetation coverage Longitudinal shrinking slope of the main gully
(® (h)

FIGURE 4: Quantitative classification and grading results of factor susceptibility. (a) River basin area; (b) channel length. (c) Average slope of
the river basin; (d) peak flow. (e) Relative elevation difference; (f) shape coeflicient. (g) Vegetation coverage; (h) longitudinal shrinking slope
of the main gully.
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TasBLE 3: Calculation of severe field slurry mixing for debris flow in
the research area.

Mud Mud Severe debris
Test position weight  volume flow
(G/kg) (V/L) (y/t-m™3)
The upstream of the channel  78.6 50 1.572
The middle and lower
reaches of the channel 479 30 1.605
The exit of the channel 48.9 30 1.630

dilute debris flow; that is, the unit weight is 1.60 t/m>, in-
dicating that the field experiment is accurate.

4.1.2. Debris Flow and Flow Process Line. The clear water
flow and debris flow in the river basin have been calculated,
respectively, in the above factor calculation, which is not
described here. The method used in this simulation is the
generalized pentagon theory with high recognition. The
method is to take 1/3 of the complete debris flow time as the
node, and the peak flow calculated above is substituted into
the boundary point with 1/3 and 1/4, respectively, so as to
describe the flow process line of debris flow outbreak [30].

4.2. Modeling Results. Figure 6 is the simulation results of
the debris flow movement process in the study area under
the condition of actual rainfall. Figure 7 shows that the
maximum velocity of debris flow is 5.53 m/s~6.41 m/s and
the maximum mud depth is 5.1 m~6.5m under the con-
dition of major debris flow rainfall in Huyugou in 1996,
which is located in the middle and upper part of the gully

accumulation area and the confluence of each channel and
the main gully. Note that the measured total risk area is
approximately 2.28 x 105 m?, the numerical simulation risk
area is 1.91 x 105 m?, and the accuracy is about 84%.

4.3. Risk Assessment of Debris Flow. According to the study
of Xu [31] in the Shanyang County (Table 4), the hazard
zoning of the debris flow in Huyugou in 1996 is carried out,
as shown in Figure 5. The results of debris flow hazard
evaluation show that the total area of debris flow hazard zone
is 1.91x105m? and the high hazard zone accounts for
52.18% of the total area, which is mainly located in the
downstream of the main gully and the intersection of the
branch gully and the main gully. Furthermore, the area of
medium-risk area is 0.69 x 105 m?, accounting for 36.14%,
and the low-risk area is relatively small. In general, the study
area is a relatively dangerous debris flow, which needs strict
prevention.

4.4. Machine Learning and Edge-Cloud Results. In this sec-
tion, we discuss the results of the machine learning tech-
niques and the training and prediction model were supposed
to run on different platforms. From the algorithm per-
spective, we consider two different machine learning algo-
rithms, namely: (i) random forest (RF) and (ii) CNN. Each
algorithm runs in two phases: (i) training and (ii) prediction.
From the platform perspective, we use different scenarios. In
scenario A, we assume that both phases of each algorithm
run over the edge. In this case, since the data is stored on the
cloud, we assume that the required data is moved to the edge.
Once the data is used, it is deleted from the edge server. In
scenario B, we assume that both phases run on the cloud. In
scenario C, we assume that the training happens on the
cloud while the prediction runs over the edge server. We
report the timing durations for the training and prediction
phases [32]. The results are illustrated in Table 5.

The findings suggest that, for various algorithms, the
response time can be significantly decreased (i.e., from
24.64% to 33.24%) using the proposed cloud-edge platform.
Furthermore, we also noted approximately 34.68% to
36.98% reduction in the prediction durations. This im-
provement is possible at some cost of prediction duration.
Furthermore, we observed the RF method outperforms the
classical CNN approach (i.e., ~25.54%), but we believe these
outcomes will change in line with the amount of data.

5. Discussion and Model Accuracy

In this section, we briefly discuss the findings of this research
and accuracy of the machine learning methods. After ver-
ification, this paper gets the following conclusions and
understanding:

(1) The debris flow susceptibility of each branch gullies
in the study area is mainly controlled by the peak
flow rate of the river basin, the length of the main
gully, and the relative height difference of the river
basin. There are 12 branch gullies, 2 high-prone
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FIGURe 6: Mud depth and velocity of debris flow in the study area.
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FIGURE 7: Risk zoning map of debris flow in the study area.

TaBLE 4: Hazard zoning parameters of the debris flow.

Depth of ... Mud depth and flow
Dangerousness Association .
mud velocity product
High H>3.0 Or VH=>3.0
Middle 0.5<H<3.0 And 0.5<VH<3.0
Low 0<H<0.5 And 0<VH<0.5

branch gullies, 7 middle-prone branch gullies, and 3
low-prone branch gullies in the region.

(2) Through the previous multifactor superposition
analysis and parameter calculation, the motion
state of the study area is reproduced by numerical
simulation. The simulation results show that the
mud depth of debris flow at the accumulation of
gully mouth and the intersection of gully and main
gully in the study area is the largest, about 6.5m,
and the maximum velocity is 6.41 m/s at the middle
and lower reaches of the gully and the steep terrain.
By testing the goodness of fit of the simulation
results, the accuracy is about 84%. The high-risk
areas of debris flow in the study area accounted for
52.18%.

The return accuracy of debris flow in the study area
under the condition of heavy debris flow rainfall in 1996 is
relatively close, which provides corresponding scientific
suggestions for the comprehensive evaluation and risk
zoning of debris flow in the future. The experimental
findings were assessed using different evaluation metrics,
i.e., (i) precision or accuracy, (ii) recall rate, (iii) F1-measure,
and (iv) IoU. In fact, accuracy is the proportion of correctly
forecasted samples to all predicted samples. The recall rate is
calculated as the proportion of accurately anticipated pos-
itive samples to all real positive samples. Moreover, the F1
score is the harmonic average of recall rate and precisions
(accuracy). Finally, the IoU is the crossing of pixels labelled
as building in the ground truths and anticipated outcomes
and subsequently divided by the union of pixels labelled as
building in the ground truths and forecasted outcomes [8].
The following are the calculating formulas:
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TaBLE 5: Results of the algorithm and implementation
methodology
Algorithm Scenario Time (seconds)
Training Prediction Response
RE A 35321 176.44 11.12
B 3721.69 46.31 388.42
C 3387.01 61.2 2.74
A 3679.3 169.84 11.07
CNN B 3861.42 51.58 402.39
C 3495.3 62.5 3.68
97.5
97
96.5
96
95.5
95
94.5
94
93.5
93
Recall Precision F1-measure
(%)
= RF
= CNN

FIGURE 8: Accuracy results of the machine learning approaches (the
higher values represent a more accurate approach).
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where TP stands for the quantity of correctly taken out
pixels, FP for the quantity of incorrectly pulled out pixels,
and FN for the amount of lost or misplaced pixels. The
accuracy of the RF and CNN methods is shown in Figure 8.
We can observe that the RF method is more accurate than
the CNN approach in terms of all evaluation metrics.

6. Conclusions and Future Work

Based on the investigation of debris flow disasters in the
distribution areas in Shanxi Province, this paper selects the
debris flow in the study area as a representative river basin
for analysis to explore a relatively reasonable evaluation
method of debris flow in the Loess Plateau, especially in
Shanxi Province. The method in this paper is mainly based
on the weight calculation of the random forest method and

the combination of multifactor superposition and numerical
simulation. Through the evaluation of various factors in the
river basin, namely, rainfall, topography, and geomor-
phology, the susceptibility of debris flow in each channel in
the region is evaluated, and it is used as the main material
source of debris flow. Numerical simulation is combined
with the results of multifactor analysis to simulate the
movement characteristics of debris flow under this condi-
tion and carry out risk zoning. The two complement each
other, and the evaluation of debris flow has a more detailed
process. The results are more reasonable than a single way.

In the future, we will take into account deep learning
techniques that are more suited for mines and the opera-
tional monitoring systems, like graph convolutional network
(GCN), U-net, and attention networks. But as we saw, not all
neurons can be stimulated by the activation function used in
this paper, which results in restricted precision and accuracy.
As a result, finding the best activation function and im-
proving the model’s structure are ongoing research projects.
Similar to this, we will look into the effects of the activation
functions employed in conjunction with deep learning
techniques. To enhance the performance of the suggested
system, robust data reduction or aggregation approaches
should be looked at.

Data Availability

The raw/processed data required to reproduce these findings
cannot be shared at this time as the data also form part of an
ongoing study.
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