
Research Article
A Study on the Agent in Fighting Games Based on Deep
Reinforcement Learning

Hai Liang and Jiaqi Li

Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau, China

Correspondence should be addressed to Jiaqi Li; jiqli@must.edu.mo

Received 14 June 2022; Revised 4 July 2022; Accepted 7 July 2022; Published 31 July 2022

Academic Editor: Praveen Kumar Reddy Maddikunta

Copyright © 2022 Hai Liang and Jiaqi Li. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this study, an end-to-end noninvasive frame system available for varieties of complete information games was �rst imple-
mented. After altering some codes, the system can be rapidly and e�ectively applied in a series of complete information games
(e.g., NI-OH, �e King of Fighters, and Maple Story), other than the �ghting games. �e �ghting game Street Fighter V was
selected as the experimental subject to explore the behavioral strategies of the agent in �ghting games and verify both the
intelligence and validity of deep reinforcement learning in the games. During the experiment, a double deep-Q network (DDQN)
was adopted to train the agent in the form of �ghting against in-game AI. In this process, 2590 rounds of agent training were
conducted, generating a winning rate of nearly 95%. �en, the trained model underwent a series of tests, achieving winning rates
of 100% (10 rounds), 90% (30 rounds), and 96% (50 rounds).

1. Introduction

When deep learning and reinforcement learning are com-
bined and used in games, it gradually turns out that they
outperform a vast majority of human players in turn-based
games such as chess and card in a �xed game environment.
However, no such outstanding performance is achieved in
�ghting games for a reason that such games are featured with
a short decision-making time, a broad decision space, and
greatly varied strategies. To overcome these defects, re-
searchers need to profoundly investigate a certain �ghting
game and then adjust the design according to speci�c
characteristics of di�erent games.

In Street Fighter V, there are eight essential elements of
interface information: health points, power bars, rage points,
and vertigo points of both sides, as shown in Figure 1. �e
action space includes 12 actions falling into the following
three types of action spaces: (1) a move action space of jump,
squat, left movement, and right movement; (2) a hand attack
action space of long-range hand attack, a mid-range hand
attack, a short-range hand attack, and a combined hand
attack; and (3) a leg attack action space of long-range leg

attack, mid-range leg attack, short-range leg attack, and
combined leg attack.

For a player of �ghting games, one or part of the
principles below should be abided by in combat:

For an agent, it may either follow the strategies of tra-
ditional players or lay down its path to realizing the purpose
of enabling players to avoid or learn from its playing
methods. We hold a high expectation for this.

�e main contributions of this study are as follows.

(1) Developed an end-to-end noninvasive frame system
available for multiple complete information. By
virtue of this system, researchers only need to alter or
add codes of relevant information (e.g., health points
and rage points of characters), based on the char-
acteristics of the game. �e speci�cs of this system
(for academic research only and not for commercial
use) will not be iterated here, and you may refer to
another article of the authors if needed.

(2) Succeed in enabling the agent �ring varieties of skill
sets by merely performing hard coding of its move
and attach actions, rather than its skillsets.

Hindawi
Mobile Information Systems
Volume 2022, Article ID 9984617, 8 pages
https://doi.org/10.1155/2022/9984617

mailto:jiqli@must.edu.mo
https://orcid.org/0000-0001-6076-4350
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9984617


(3) Verified the intelligence of DDQN, a deep rein-
forcement learning algorithm, in fighting.

Moreover, related works, algorithms, their improve-
ments, and relevant experiments, as well as conclusions and
the future work of this paper, will be also introduced.

2. Related Works

Yoon and Kim successfully applied DQN in visual fighting
game AI competitions. As the number of actions is reduced
to 11, the corresponding experimental results also show that
DQN as a deep reinforcement learning algorithm still has
great potential in real-time fighting games [1].

Pinto and Coutinho designed a scheme of combining
hierarchical reinforcement learning (HRL) with Monte
Carlo tree search (MCTS) to train the agent in fighting game
AIs (FTGAIs). At last, the learning strategy produced by the
agent is as good as that of the champion in terms of success
rates [2].

Based on the FightingCE platform, DQN [3] was suc-
cessfully applied by Y. Takano et al. It was proved that the
strategy of double-agents is obviously superior to single-
agent with a success rate of 30% higher [4]. In addition, they
also applied curiosity-driven intrinsic reward into rein-
forcement learning of fighting games. As demonstrated in
experimental results, the learning capability of the proposed
AI was above that of the actor-critic model [3]. However, it
was believed, according to experience by Inoue et al., that AI
cannot always effectively win against a rival that it has never
met before. In other words, AI should be constantly trained
in competitions [5].

2.5 D fighting games not only show fuzziness in the
visual appearance of characters, such as depth or height but
also require a specific sequence of continuous actions. For
this reason, it becomes extremely difficult for network de-
sign. Based on asynchronous advantage actor-critic (A3C)
network and Litter Fighter 2 (LF2), Li et al. designed a novel
network A3C+. +erefore, the skill sets of a fight can be
observed through the game-related information features and
a recursive layer, achieving a winning rate of 99.3% [6].

In a study by Ishii et al., an independently developed
MCTS variant puppet-master was selected based on the
FightingICE platform to control all characters in a game.
Successfully, all characters were capable of moving

according to the given character’s features [7]. +e study has
great significance in proving whether the proposed method
is intelligent enough to entertain the public [7].

+rough Fighters Arena, Bezerra et al. implemented an
agent that utilizes a fusion architecture of learning, cogni-
tion, and navigation (FALCON) and ARAM, achieving a
winning rate of 90% in-game AI in a fixed action pattern [8].

Depending on the FightingICE platform, Kim et al.
utilized self-play and MCTS to create an AI agent. +eir
research analyzed configurations of reinforcement learning,
such as reward set-up and rival compositions, and proposed
new performance indexes. In the course of experiments, AI
constructed outperformed other AI and obtained a winning
rate of 94.4% [9].

Oh et al. selected the game Blade & Soul as the exper-
imental environment and designed two data skipping
techniques: inaction and keeping moving. After the suc-
cessful training in 1V1 fights, the AI agent was arranged to
compete with five professional players. At last, the agent
achieved a winning rate of 62% and generated an AI agent
possessing three fighting styles [10].

Regarding fighting games, each laboratory team has its
unique algorithm design and improvements; and most of
them have made abundant accomplishments.

3. Methods

3.1. Introduction to DDQN. In DDQN, a refers to action, c

to attenuation factor, Q′ to policy-based network, Q to the
target network, θ′ to a parameter of Q′, θ to a parameter of
Q, and ϕ to the state r for rewords.

In a traditional DQN, the target value q can be calculated
by the following equation:

yj � rj + cmax
a′

Q′ ϕj+1, a′; θ′ . (1)

Considering that this equation may lead to over-esti-
mation and thus a rather large deviation, DDQN was thus
adopted here. Based on this network, an action corre-
sponding to the maximum value of q was first figured out in
a policy-based network. Subsequently, q values of the se-
lected actions were calculated in the target network.
Eventually, the following equation is obtained:

yj � rj + cQ′ ϕj, argmax
a

Q ϕj, a, θ ; θ′ . (2)

From (2), we can clearly see that the following parameters
are extremely critical: action a, reward r corresponding to
action, and attenuation factor y.

(1) +e design of action is related to the way in which the
intelligent experience feeds back the current envi-
ronment and then affects the follow-up process. For
example, giving an agent only one action and N
actions is a completely different effect; for example,
only giving agents mobile or only giving agents at-
tack, these are two completely different effects.
+erefore, this is the key parameter.

Figure 1: A scene from Street Fighter V.

2 Mobile Information Systems



(2) +e reward r corresponding to the action will affect
the choice of agents to a certain extent. From the
algorithm, we find that this is a constant term. Too
large constant term will make the agent prefer to
choose this action. Too small constant term will
make the agent give up this action. Even if there is
model free, it also deeply affects the effectiveness of
the algorithm.+erefore, after many experiments, we
finally determined the final reward setting in 2.1.

(3) As for the attenuation factor y, it is a parameter
related to the future. A lower value means that we
pay more attention to the current reward. A higher
value means that we pay more attention to future
rewards. Generally, the value will not be set to 0 or 1
but will be set to about 0.9. In terms of coding, the
normalized data and the state of the next moment
were simultaneously inputted into the policy-based
and the target networks. Action a with the highest
value in the policy-based network was labeled, then
value_q corresponding to this action awas located in
the target network. By calculating the reward of
value_q, value_Q was obtained. +e state of the
previous moment was inputted into the policy-based
network, and the value of the corresponding action a
was altered by using value_Q. In this way, the sample
was trained.

4. Reward Set-Up

4.1. Current-State Reward for Characters Controlled on Our
Side. (1) In the context where the next moment’s health
point of a character is greater than or equal to its health point
of the current moment, a reward of the difference between
such two health points multiplied by 1.0 is endowed. (In fact,
the best circumstance is that the health point reward of the
characters on our side is endowed with 0.) (2) Vertigo point
of the next moment is above or equal to that at the current
moment, the reward endowed is the difference of vertigo
points at bothmoments multiplied by (−0.1). (+is manifests
that the characters on our side are being attacked by in-game
AI.) (3) If the rage point of a character at the next moment is
greater than or equal to that at the current moment, the
reward should be their difference multiplied by 0.1, signi-
fying that characters on our side are attacking or being
attacked by NPCs from the adverse party. (4) When the
power bar of the next moment becomes higher than or equal
to that of the current moment, the reward endowed to the
corresponding character should be their difference multi-
plied by 0.1. (+is indicates that the characters on our side
are attacking or being attacked by NPCs from the adverse
party.) (5) When the final health point of characters is 0 and
as-failed conditions on our side are satisfied, an extra reward
for failure is endowed that is −500.

4.2. Current-State Reward for In-Game AI. (1) If the next
moment health point of an NPC from the adverse party
becomes lower than equal to that of the current moment, a
reward of the difference between such two health points

multiplied by (−0.4) is endowed. (+is indicates that
characters on our side are attacking the NPCs.) (2)When the
next-moment vertigo point of NPC from the adverse party is
above or equal to that at the current moment, the reward
endowed is the difference of vertigo points at both moments
multiplied by 0.1. (+is indicates that the NPCs are being
attacked.). (3) If the rage point of a character at the next
moment is greater than or equal to that at the current
moment, the reward should be their difference multiplied by
(−0.1), signifying that NPCs from the adverse party are
attacking or being attacked by characters on our part. (4)
When the next-moment power bar becomes higher than or
equal to that of the current moment, the reward endowed
should be their difference multiplied by (−0.1). (+is indi-
cates that NPCs from the adverse party are attacking or
being attacked by the characters on our side.). (5) When the
final health point of NPCs from the adverse party is 0 and
victory conditions on our part are satisfied, an extra reward
for winning is endowed, and that is 500.

+rough summation of the current-state reward of
characters controlled on our side and those of the in-game
AI, the current-moment reward for the agent can be
obtained.

Besides, another two reward conditions were also
established. First, the health points of characters in two
consecutive frames are compared; if they are unequal, the
agent should be rewarded with −50. Second, if the health
points in two consecutive frames are consistent, a reward of
+20 will be given. During the experiment, the agent became
inclined to jump, rather than attack in training rounds 150 to
450. Considering this, we had to delete the second reward
condition and retain only the first reward condition.

5. A Traditional Network Architecture

Classic games, in which deep learning is applied for ex-
periments were analyzed, including Mario, Flying Chicken,
and Space Invaders. +ese games are easy to operate and all
outputted in a single form (e.g., up, down, left, right, left-
+ attack, or right + attack). And the output results are
embodied inN columns and 1-row, as presented in Figure 2.

During agent design and implementation at the very
beginning, the above thoughts were used for reference, and
the traditional network architecture was adopted. To be
concrete, convolutional neural network (CNN) was selected
for depth calculation, and output in a single form was used.
In other words, the selection was done among all behavior
actions. However, the agent in this scenario may repeat a
single action that can produce the maximum benefit (jump
repeatedly or make repeated long-fist/long-leg attacks), and
no defense or movement would be performed. Facing in-
game AI, the winning rate of such an agent is dramatically
low.

+rough analysis, defects of such network output can be
described as follows. +e final agent may take an optimistic
view on actions due to the existence of TD errors. In other
words, it becomes increasingly inclined to do the actions of
themaximum values, eventually leading to the repetition of a
certain action. Taking Space Invaders, for example, the

Mobile Information Systems 3



combined action of attack and left or right movement is
infinitely repeated, which is the same case for the agent
provided with this architecture.

6. Network Architecture Improvements

In ordinary games, RTS games require both hands to control
the keyboard and mouse at the same time. +e keyboard
corresponds to moving, jumping, lying down, and other
necessary menu operations. +e mouse usually corresponds
to a simple and single attack (shooting) and aiming. Unlike
such games, fighting games require players to operate the
keyboard with both hands at the same time, corresponding
to movement, jumping, squatting, and attack, respectively.
However, the game mode at this time is no longer a single
form of attack but contains multiple forms of attacks (basic
attacks, such as fists and feet, combined skill attacks). +is is
the particularity of this kind of game we mentioned before.
+ere are many decision-making needs and rich strategic
changes. At the same time, this kind of game requires players
to decide the output of multiple actions in a very short time.
+at is to say, at a certain moment, the action that needs to
be made is a composite action. +is is not a simple discrete
form. A composite action contains multiple game character
actions. In specific cases, it is often accompanied by jumping
or attack during movement, or both, rather than simply
completing in movement.

+erefore, output forms of the deep neural network were
altered in this study. In detail, the action spaces were
regrouped, and every five actions were considered as one
group. +e new groups include a left/right movement group
consisting of left, right, left, right, and null; a jump/squat
group covering jump, squat, jump, squat, and null; a hand
attack group of short-range hand attack, mid-range hand
attack, long-distance hand attack, composite hand attack,
and null; and a leg attack group of short-range leg attack,
mid-range leg attack, long-range leg attack, composite leg
attack, and null. +us, the original 12-column 1-row output
was changed into that of 4 columns and 5 rows, as given in
Figure 3.

For each frame, an action combination was selected, that
is to select behavior actions corresponding to each of the left
and right movement space, jump/squat space, hand attack
space, and leg attack space. +e selected actions were then
combined and executed using thread. When a single action
combination is implemented, a programmed time delay
needs to be conducted for each action before the next frame
is inputted into the network.

Finally, agent evolvement was accomplished and the
agent was capable of moving while attacking or defending or
selecting no actions.

7. Improvements of Other
Experimental Procedures

During the experiment, it is found that once the memory
pool update reaches a certain node, the policy-based net-
work training update in this scenario may enable the agent to
be in a dead state, performing no movement or attacking
actions; but, NPCs from the adverse party are in the status of
moving and attacking. +is can lead to data missing. Given
this, memory pool update was no longer considered a
condition of policy-based network training update. In this
case, a training update for the policy-based network was
conducted after each round of fights. In terms of the target
network update, it was performed every 4 rounds.

8. Experiment

In addition to the influence of the algorithm, in order to get
better performance, the more feasible AI operation method.
In the process of training, through many attempts and
combined with the characteristics of the game, we give the
following parameters, as shown in Table 1.

(i) Replay memory size indicates the size of the ex-
perience pool. It needs to be designed according to
the number of actions of the game and the structure
of the network. If it is like the traditional network
structure model, 10000 experience pool capacity is

Feature 
Extraction

Multi-hidden layer Left

Right

Left+Attack

Right+Attack

. . .

. . .

Figure 2: Network architecture of agent in Space Invaders.

4 Mobile Information Systems



sufficient. However, based on the model we have
changed, we should expand the experience pool.

(ii) Mini-batch size refers to the number of samples
randomly selected for learning in the training
process.

(iii) Target network update frequency (round) means
that the target network is trained once after the
specified number of rounds. +e update frequency
should not be too fast. It is necessary to ensure that
there are enough training attempts for intelligent
physical fitness before learning.

(iv) Initial exploration and final exploration, respec-
tively, represent the exploration rate at the begin-
ning of the training and the final exploration rate
after the completion of the training. +ese two
parameters are closely related to the agent’s ex-
ploration behavior in the training process, corre-
sponding to the model free method. It is often used
to make agents break through the algorithm bot-
tleneck and reach the next stage. A higher explo-
ration rate means that the agent has more random
choices and is not limited by the environment, but it
also means that the number of decisions based on
learning is less. +e lower exploration rate is to
enable the agent to make the best choice in line with
the current situation at a certain time based on the
existing training results after a certain stage of

training, but at the same time, the possibility of
breaking through the bottleneck is also limited.
+erefore, the exploration rate is an extremely
important parameter, which requires us to make a
balance between “making the best decision” and
“free exploration to break through the bottleneck.”
For this reason, we set the exploration rate that will
slowly decrease and then stabilize with the increase
of experience pool data during the training process.

(v) Image size refers to the size of each frame used for
in-depth training and learning in the input system.
We have tried other size image settings. However,
too large image setting will not only reduce the
efficiency of agent training and learning but also
reduce the efficiency of making decisions based on
the environment. +e setting of too small pictures
improves the efficiency of the school, but reduces
the quality of learning, thereby affecting decision-
making. +erefore, we use the setting of image size
in most of the experiments in this paper.

Figure 4(a) shows the rewards for 250 rounds of training.
As can be observed, the reward curve does not directly
increase or decline as the training proceeds, but constantly
fluctuates as the number of rounds of training rises. +is
indicates that the agent continuously learns. Eventually, the
reward curve may approach a certain value.

Figure 4(e) shows the winning rate curves for 250 rounds
of training. According to this figure, these curves keep
fluctuating except in extreme situations. Such fluctuations
are generally caused by the continuous learning and ex-
ploring of the agent, which is in a state of constant trials and
errors. However, the curves may finally tend to be stable. In
our opinion, these curves are normal and sound.

After training, three independent tests were performed
by fighting against in-game AI of level 4 (level 1 is the lowest
and the easiest and level 8 is the highest and the most
difficult). In 10 rounds of fighting, the winning rate turns out
to be 100%; moreover, it wins 27 of 30 rounds, generating a

Table 1: List of hyperparameters.

Hyper parameter Value
Mini-batch size 100
Replay memory size 40000
Target network update frequency (round) 4
Discount factor 0.95
Initial exploration 1.0
Final exploration 0.49
Image size 224

Feature 
Extraction

5 hidden layers each with
1000 units (tanh)

Le� Le� RightRight Null

NullJump Squat Jump Squat

Hand attack space

Leg attack space

Le� and right
movement space

Jump and  squat
movement space

Figure 3: Network architecture of agent in Street Fighter V.

Mobile Information Systems 5



Training

Reward

50 2001501000
round

–3000

–2500

–2000

–1500

–1000

–500

0

500
sc
ro
e

(a)

0
round

Prediction

Reward

–1250

–1000

–750

–500

–250

0

250

500

sc
ro
e

(b)

0
round

Prediction

Reward

–2000

–1500

–1000

–500

0

500

sc
ro
e

(c)

0
round

Prediction

Reward

–2000

–1500

–1000

–500

0

500

sc
ro
e

(d)

Training

winning

50 2001501000
round

0.75

0.80

0.85

0.90

0.95

1.00

pr
ob

ab
ili
ty

(e)

0
round

Prediction

winning

0.96

0.98

1.00

1.02

1.04

pr
ob

ab
ili
ty

(f )

Figure 4: Continued.

6 Mobile Information Systems



winning rate of 90%. After 50 rounds of fighting, it wins 48
rounds, with a winning rate of 96%, as shown in Table 2.
Relevant reward curves (Figures 4(b)–4(d)) are consistent
with winning rate curves (Figures 4(f)–4(h)) one by one.
According to these figures, the trained AI can be endowed
with more positive rewards during the test even if the reward
curve fluctuates. Additionally, the winning rates of the
trained AI are always superior to those during training
because its decisions are gradually stable and efficient.

9. Conclusion and Future Work

+ere are also some interesting phenomena during the
experiment. For instance, AI becomes increasingly inclined
to select more robust playing methods. Instead of frequently
jumping, it tends to squat or make other small movements.
When it is rather far away from the rival, the AI may adopt a
jump-based skillset, such as uppercut +mid-/long-range
spin kick, so as to bridge the distance andmake it convenient
for attacking the rival. At a normal distance from the rival, a
long-range hand or leg attack is selected by AI to protect
itself from being hit and kill the rival at the same time. If the
distance from the rival is rather short, AI may frequently
makes short-range hand attacks that require much shorter
animation time. Once the rival jumps, AI also attacks the
rival in the air, such as emitting light waves or jumping to hit
the rival.

+is paper successfully enables agents to make various
combinations of techniques in the case of only basic

movement, jumping, and attack. +is also shows that agents
can gradually determine the optimal strategy in learning. At
the same time, we have verified the intelligence of rein-
forcement learning algorithm DDQN in fighting games with
a very high winning rate (nearly 95%).

For future works, efforts will be made to conduct more
in-depth improvement of the agent structure and the entire
system, enabling it to beat more advanced in-game AI (level
5 and above). It is also expected that the agent can effectively
fight against advanced players before long.

Data Availability

+e datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is research work was funded by the project FRG-22-005-
INTand granted by the Research Fund of Macao University
of Science and Technology (FRG-MUST).

References

[1] S. Yoon and K. Kim, “Deep Q networks for visual fighting
game AI,” in Proceedings of the 2017 IEEE Conference on
Computational Intelligence and Games (CIG), pp. 306–308,
New York,NY,USA, August 2017.

[2] I. P. Pinto and L. R. Coutinho, “Hierarchical reinforcement
learning with Monte Carlo tree search in computer fighting
game,” IEEE Transactions on Games, vol. 11, no. 3,
pp. 290–295, 2019.

[3] Y. Takano, H. Inoue, R.+awonmas, and T. Harada, “Self-Play
for training general fighting game AI,” in Proceedings of the

Table 2: Winning of rate in training/testing.

Training round Rate (%)
250 95
Test round
10 100
30 90
50 96

0
round

Prediction

winning

0.5

0.6

0.7

0.8

0.9

1.0
pr
ob

ab
ili
ty

(g)

0
round

Prediction

winning

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

pr
ob

ab
ili
ty

(h)

Figure 4: Training (a∼h).

Mobile Information Systems 7



2019 Nicograph International (NicoInt), p. 120, Yangling,
China, July 2019.

[4] Y. Takano, S. Ito, T. Harada, and R. +awonmas, “Utilizing
multiple agents for decision making in a fighting game,” in
Proceedings of the 2018 IEEE 7th Global Conference on
Consumer Electronics (GCCE), pp. 594-595, Nara, Japan,
October 2018.

[5] H. Inoue, Y. Takano, R. +awonmas, and T. Harada, “Veri-
fication of applying curiosity-driven to fighting game AI,” in
Proceedings of the 2019 Nicograph International (NicoInt),
p. 119, Yangling, China, July 2019.

[6] Y.-J. Li, H.-Y. Chang, Y.-J. Lin, P.-W. Wu, and Y.-C. F. Wang,
“Deep reinforcement learning for playing 2.5D fighting
games,” in Proceedings of the 2018 25th IEEE International
Conference on Image Processing (ICIP), pp. 3778–3782,
Athens,Greece, October 2018.

[7] R. Ishii, S. Ito, M. Ishihara, T. Harada, and R. +awonmas,
“Monte-carlo tree search implementation of fighting game
AIs having personas,” in Proceedings of the 2018 IEEE Con-
ference on Computational Intelligence and Games (CIG),
pp. 1–8, Maastricht, Netherlands, August 2018.

[8] H. R. Bezerra, L. F. W. Góes, and A. R. da Silva, “Development
of an autonomous agent based on reinforcement learning for a
digital fighting game,” in Proceedings of the 2020 19th Bra-
zilian Symposium on Computer Games and Digital Enter-
tainment (SBGames), pp. 1–7, Recife, Brazil, November 2020.

[9] D.-W. Kim, S. Park, and S.-I. Yang, “Mastering fighting game
using deep reinforcement learning with self-play,” in Pro-
ceedings of the 2020 IEEE Conference on Games (CoG),
pp. 576–583, Osaka,Japan, August 2020.

[10] I. Oh, S. Rho, S. Moon, S. Son, H. Lee, and J. Chung, “Creating
pro-level AI for a real-time fighting game using deep rein-
forcement learning,” IEEE Transactions on Games, vol. 14,
no. 2, pp. 212–220, 2022.

8 Mobile Information Systems


