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With the increasing development of the industrial Internet, network security has attracted more and more attention. Among the
numerous network security technologies, anomaly detection technology based on network trafc has become an important
research feld. At present, a large number of methods for network anomaly detection have been proposed. Most of the better
performance detection methods are based on supervised machine learning algorithms, which require a large number of labelled
data for model training. However, in a real network, it is impossible to manually flter and label large-scale trafc data. Network
administrators can only use unsupervised machine learning algorithms for actual detection, and the detection efects are much
worse than supervised learning algorithms. To improve the accuracy of the unsupervised detection methods, this study proposes a
network anomaly detection model based on multiple classifer fusion technology, which applies diferent fusion techniques (such
as Majority Vote, Weighted Majority Vote, and Naive Bayes) to fuse the detection results of the fve best performing unsupervised
anomaly detection algorithms. Comparative experiments are carried out on three public datasets. Experimental results show that,
in terms of RECALL and AUC score, the fusion model proposed in this study achieves better performance than the fve separate
anomaly detection baseline algorithms, and it has better robustness and stability, which can be efectively applied to a wide range
of network anomaly detection scenarios.

1. Introduction

With the advancement of network technology, an increasing
number of users are connected to the Internet. As the In-
ternet grows in size, the threats from attackers and criminal
enterprises have also increased accordingly. Te increasing
number of these threats makes frewall and intrusion de-
tection systems (IDS) become one of the foundational
technologies of network security. However, intrusion de-
tection systems on the market primarily exploit the signa-
tures of known attacks to detect anomalies. Such systems
require frequent updates of the rule database and signatures,
and unknown attacks cannot be detected. Anomaly detec-
tion systems can efectively discover the attack behavior by
modelling normal behaviors and detecting anomalous be-
havior which are diferent from normal behavior. Although

anomaly detection systems are conceptually attractive, there
are many technological issues to overcome before they can
be widely adopted, such as high false positive rates and the
inability to scale to gigabit speeds. At present, anomaly
detection methods are mainly divided into two categories:
anomaly detection based on statistics and anomaly detection
based on machine learning.

Haystack [1] is one of the earliest examples of a statistical
anomaly intrusion detection system. Haystack defnes a
series of values that are considered normal for each feature.
If, during a session, a feature is outside the normal range, the
topic’s anomaly score increases, and it is designed to detect
six types of intrusions. Te Statistics Package Anomaly
Detection Engine (SPADE) [2] is a statistical anomaly de-
tection system. SPADE was one of the frst systems to
propose the use of the anomaly scoring concept to detect
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port scans, rather than using the traditional method of
looking at p attempts within q seconds. In [2], the authors
use a simple frequency-based method to calculate the
“anomaly score” of a packet. Te less views a given packet
has, the higher its anomaly score is.

Machine learning is designed to answer many of the
same questions as statistics. However, unlike statistical
methods, which tend to focus on understanding the pro-
cesses that generate data, machine learning techniques focus
on building a system that improves performance based on
previous results. Te Bayes Network is a graph model that
encodes the probabilistic relationships between target var-
iables. When combined with statistical techniques, Bayes
Network has advantages in data analysis [3]. Some re-
searchers have taken inspiration from Bayes statistics to
create anomaly detection models. Valdes [4] has developed
an anomaly detection system that uses a naive Bayes Net-
work to perform intrusion detection on trafc bursts.
Bayesian techniques are also often used to classify and
suppress false positive regions. Kruegel et al. [5] proposed a
multisensor fusion method in which the outputs of diferent
IDS sensors are aggregated together to generate a single
alarm. While intrusion detection using the Bayes Network is
efective in some applications, its limitations should be
considered in practice. Unfortunately, typical network
structures are complex, and choosing an accurate model of
behavior is a daunting task.

To solve the problem of high-dimensionality datasets,
the researchers developed a dimensionality reduction
technique called principal component analysis (PCA) [6].
Shyu et al. [7] proposed an anomaly detection scheme in
which PCA is used as an anomaly detection scheme and
applied to reduce the dimension of audit data and obtain a
classifer. Extreme Learning Machine (ELM) and NSL
Knowledge Discovery Data Mining [8] have been identifed
as criteria for evaluating network intrusion detection
mechanisms. Te researchers also implemented a random
forest classifer on an IDS dataset sample [9, 10]. In addition,
the available datasets need to be continuously updated based
on the dynamic characteristics of the malware attack.

Some researchers have proposed implementing deep
learning models and deep neural networks (DNN) to de-
velop fexible and dynamic IDS systems that can successfully
detect and classify capricious cyberattacks [10–13]. In har-
mony with the use of DNN, convolutional neural network
has been identifed as an advanced and superior technique
for extracting features from intrusion datasets for classif-
cation [14]. Since this method [15] provides visual detection
of network intrusions, it can be justifed as a real-time so-
lution for deploying intrusion detection systems [10]. Te
authors in [16] explored the diferent deep learning methods
used in IDS and proposed comparisons and analyses. Te
authors of [17] detected intrusion based on Spark-Chi-SVM
technology.

Te authors in [18–21] propose several hybrid classif-
cation models that classify datasets using naturally inspired
algorithms such as cuckoo search, BAT, frefies, and genetic
algorithms [10]. Te diferential performance of diferent
classifers is related to several factors, such as the statistical

distributional properties of the categorical data, prior
knowledge, the size of the training data samples, and the
structure of the classifer itself. In anomaly detection, dif-
ferent intrusion identifcation results can be obtained using
diferent classifers, and these results are often highly
complementary. Terefore, the fusion of the decisions of
multiple classifers can efectively improve the detection
efect of anomalies. Moreover, the fusion of multiple clas-
sifers can also improve the robustness of the classifcation
system. In the selection of fusion methods, Dainotti et al.
[22] summarize some of the common fusion methods, in-
cluding majority voting, weighted majority voting, Naive
Bayes, behavioral knowledge space (BKS), Wernecke’s
(WER) method, and the Oracle (ORA) method.

In view of this, this study proposes a network intrusion
anomaly detection model MF based on multiclassifer
fusion. Tree fusion techniques (majority voting,
weighted majority voting, and Naive Bayes) were used to
fuse the decisions of diferent anomaly detection methods
based on unsupervised learning that have performed well
in recent years, such as Lightweight Online Detector of
Anomalies (LODA), AutoEncoder, PCA, Histogram-
based Outlier Score (HBOS), and iForest (Isolation For-
ests). Te major contributions and fndings of this study
are listed below:

(1) In real-world network environments, the large scale
of labelled data is rare, and the supervised learning
methods are not suitable. However, using only un-
supervised learning methods leads to poor perfor-
mance and low accuracy of the model due to the lack
of guidance from labelled data. Te MF model
proposed in this study provides a framework to
ensemble various anomaly detection classifers to
form heterogeneous or homogeneous modelling
backgrounds for fnal decision-making and signif-
cantly improves the overall detection performance;
in other words, it improves the RECALL and AUC
metrics.

(2) In real-world network environments, intrusions
change rapidly and new attacks are endlessly
emerging. Diferent detection classifers tend to be
biased in their detection performance, and perhaps
one of the anomaly detection classifers would work
well for a particular intrusion detection job. Te MF
model proposed in this study can remedy the
shortcomings of a single anomaly detection method
and realize the complementarity of diferent detec-
tion methods by using multiclassifer fusion
technology.

Te remainder of the study is organized as follows.
Section 2 presents the anomaly detection methods based on
unsupervised learning used in this study. Section 3 describes
the multiclassifer fusion technique, as well as the MF model
architecture and procedure. Section 4 presents the three
anomaly detection datasets. Section 5 presents the experi-
mental confguration, discussion, and fndings. Finally,
Section 5 presents our conclusions and future work.
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2. Anomaly Detection Methods Based on
Unsupervised Learning

Tis section introduces fve anomaly detection algorithms
based on unsupervised learning that have the best detection
efect and fast detection speed and are suitable for large-scale
networks. Unsupervised learning methods have no training
or learning phase and do not require data labelling, which is
more suitable for the detection requirements of a real
network. And these fve detection methods all assign an
outlier score to each of the data points. Tis is an advantage
compared to binary output methods because, additionally,
the outlier score allows for estimating the reliability or
certainty of the prediction.

2.1. LODA. A lightweight online detector of anomalies
(LODA) [23] can be used to quickly process a large stream of
data generated by continuously changing behaviors. It
consists of a collection of k one-dimensional histogram hi􏼈 􏼉

k

; each histogram approximates the probability density of
input data projected into a single projection vector
wi ∈ Rd􏼈 􏼉

k

i�1. Te output of LODA is the average of the
logarithms of probability density on multiple histograms,
thereby improving the performance of a single histogram
detector.

Te input to LODA is sample x, and the output f (x)
represents the average of the logarithms of the estimated
probabilities projected by the sample into diferent projec-
tion vectors. Using pi

∧
represents the probability estimated

by the ith histogram, Wi represents the corresponding
projection vector.Te output f (x) of LODA can be written as
follows:

f(x) � −
1
k

􏽘

k

i�1
logpi

∧
x

T
wi􏼐 􏼑. (1)

If diferent histograms are considered to be independent
of each other, (2) can be used to integrate the probability
densities of multiple histograms:

f(x) � −logp x
T
w1, x

T
w2, x

T
wi􏼐 􏼑, (2)

where (xTW1, xTW2, . . . , xWk) represents the joint prob-
ability of the projection. (2) shows that the output of LODA
is proportional to the negative log likelihood of the sample,
which means that the less likely the sample is to appear, the
higher its outliers are.

2.2. Autoencoder. An autoencoder [24] is an unsupervised
learning model that essentially uses a neural network to
generate a low-dimensional representation of a high-di-
mensional input. Autoencoder is similar to principal
component analysis (PCA), but autoencoder utilizes a
nonlinear activation function, thus overcoming the limita-
tion that PCA can only do feature linear transformation.

An autoencoder is composed of two parts, an encoder
and a decoder. Te encoding procedure performs a di-
mension reduction on the training data and projects training

data in the latent space, where the features of the training
data are preserved. A decoder can be constructed to recover
the data using the features in the latent space. Te diference
between the original input vector and the reconstruction
vector is called the reconstruction error. If the features of the
sample are all numerical variables, the mean squared error
(MSE) or the mean absolute error (MAE) can be used as the
reconstruction error. For example, the input sample is X �

(X1, X2, ..., Xm). Te result of autoencoder reconstruction is
XR � (XR

1 , XR
2 , ..., XR

m). Te reconstruction error is MSE
1/m 􏽐

m
i�1 (Xi − XR

i )2.
Te reconstruction error was used as the anomaly score.

Data points with high reconstruction are considered to be
anomalies. Only data with normal instances are used to train
the autoencoder. After training, the autoencoder will re-
construct normal data very well, while failing to do so with
anomaly data, which the autoencoder has not encountered.

2.3. PCA. Principal component analysis (PCA) [25] is the
most common method of data dimensionality reduction.
Generally, in anomaly detection scenarios, noise, outlier,
and anomaly are diferent representations of the same thing.
Since PCA can recognize noise, it can naturally detect
anomalies. PCA maps the data to low-dimensional feature
space and then checks the deviation of each data point from
the other data on diferent dimensions of the feature space.

For a feature vector ej, the deviation degree dij of the data
sample xi in direction j can be calculated by using

dij �
x

T
i · ej􏼐 􏼑

2

λj

, (3)

where λj mainly plays a role in normalization, which can
make the deviation degrees in diferent directions compa-
rable. After that, the anomaly score of sample xi is calculated,
as shown in Equation (4). If the score is greater than the
threshold, the sample xi is judged as an anomaly:

Score xj􏼐 􏼑 � 􏽘
n

j�1
dij. (4)

2.4.HBOS. HBOS (Histogram-based Outlier Score) [26] is a
combination of univariate methods that cannot model de-
pendencies between features, but is faster and friendly to
large datasets. HBOS calculates an outlier score by creating a
univariate histogram for every single feature of the dataset. It
assumes that the features are independent. Te drawback of
assuming feature independence becomes less severe when
the dataset has a high number of dimensions due to a larger
sparsity.

Two diferent methods can be used to construct histo-
grams: the static bin width and the dynamic bin width [27].

(1) Te static bin width: data are grouped using bins of
the same width. A rectangle is drawn in each interval,
whose height is proportional to the number of points
that fall into the interval. Equal binning assumes that
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each bin is equally likely, but this assumption is
usually not met.

(2) Te dynamic bin width: the width of bins depends on
the values of data andmay not necessarily be equal to
the specifed number of bins. In the case of long-tail
distributions with repetitive integers, some bins may
contain more values than specifed.

In both the static and dynamic cases, it is necessary to
specify the number of bins k. It is recommended that the k
value should be equal to the square root of all data points.
Te height of every single bin in the histogram represents the
density estimation. To ensure an equal weight for each
feature, the histograms are normalized in such a way that the
maximum height of the bin would be equal to one. Ten,
calculated values are inverted so that anomalies have a high
score and normal instances have a low score. Te anomaly
score of each sample xi is calculated according to Equation
(5). Te higher the HBOS score, the greater the anomaly
degree of the sample:

HBOS xi( 􏼁 � 􏽘
a

j�0
log

1
histj xi( 􏼁

􏼠 􏼡, (5)

where a is the number of features/histograms, xj is the vector
of features, and histj (xj) represents the density estimation of
feature instance xi in the jth histogram.

2.5. iForest. Isolation Forest (iForest) is a fast outlier de-
tection method based on an ensemble, with linear time
complexity and high accuracy, which meets the needs of big
data processing. iForest was frst proposed in 2008, and then
in 2012, an improved version was proposed [28], which is
suitable for anomaly detection of continuous data. iForst is
diferent from other anomaly detection algorithms to
characterize the degree of alienation between data samples
based on quantitative indicators such as distance and density
and detects outliers by isolating sample points.

Te algorithm utilizes a binary search tree structure
called an isolation tree (iTree) to isolate samples. An iForest
consists of multiple isolation trees, which are created by
choosing attributes and the values of attributes randomly. At
each node in the isolation trees, the instance set is divided
into two parts based on the chosen attributes and their
values. Here, the attributes are selected randomly, and the
split value for this selected attribute is selected randomly as
well between the minimum value and maximum value of
this selected attribute. Commonly, anomalous instances are
those objects whose attribute values are very diferent from
the normal instances and are easier to be divided than
normal instances. In the process of isolation, they are also
closer to the root and more easily divided than normal
instances.

3. Network IntrusionAnomalyDetectionModel
Based on Multiclassifier Fusion

Te network intrusion anomaly detection model based on
multiclassifer fusion is described in the following section.

3.1.AnomalyDetectionModel BasedonMulticlassifer Fusion.
Te anomaly detection method is based on network trafc to
extract the content features, essential features, and trafc
features from the original network trafc data and detect
anomalies from the feature space composed of these three
types of features. In intrusion detection, the features asso-
ciated with diferent network behavior have diferent
meanings, and it is difcult for a single classifer to efectively
deal with the combination of these features with diferent
meanings. A multiple classifer system is needed, whose
outputs are combined in some way to obtain a fnal clas-
sifcation decision under diferent situations. In an ensemble
anomaly detection system, each base classifer will focus on
diferent aspects of the data.

To overcome the limitations of a single classifer, this
study proposed a network intrusion anomaly detection
model (MF) based on the multiclassifer fusion method. Te
MF model intelligently combines the decision outputs of
multiple classifers according to selected fusion rules and
achieves better detection performance than a single classi-
fer. Te overall architecture of the MF model is shown in
Figure 1.

Te algorithm selection criteria for the MF model are
that there is no strong dependence between individual
classifers and that a series of individual classifers can be
generated in parallel. Tese algorithms are preferably het-
erogeneous, which means that the types of these algorithms
are not the same as the fve algorithms chosen in this study.
In anomaly detection, diferent individual classifer results
can be obtained using diferent classifers, and these results
are often highly complementary. Tus, several well-per-
forming heterogeneous anomaly detection algorithms can
potentially yield better anomaly detection models.

After data collection and feature extraction, the dataset is
divided into two subsets: a training set and a testing set
(unsupervised machine learning produces predictions
during training). Te purpose of the training set is to apply
the multiclassifer fusion technique and obtain the confusion
matrix of multiple anomaly detection algorithms.Te role of
the test set is to fuse the outputs of multiple anomaly de-
tection methods using the confusion matrix and obtain the
fnal detection results.

3.2. Multiclassifer Fusion Methods. A confusion matrix is a
standard format for expressing accuracy evaluation, which is
represented by a matrix with n rows and n columns. Each
column of the confusion matrix represents the predicted
category, and the total number of data in each column
represents the number of data predicted to be in that cat-
egory. Each row represents the true attribution category of
the data, and the total number of data in each row represents
the number of data instances in that category.

To ensure the optimal performance, the multiclassifer
fusion method should be able to select the subset of clas-
sifers that is optimal in the sense that it produces the highest
possible performance for a particular combiner. In this
study, three multiclassifer fusion methods are carried out in
the MF model, such as majority voting, weighted majority
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voting, and Naive Bayes. To better evaluate the performance
of these three methods, we assume that the kth classifer gets
the training set as input, the predicted confusion matrix is
Ek, and ekij represents the percentage of the samples in class i
is predicted as class j in the kth classifer.

3.2.1. Majority Voting. Te number of admissible classifers
voted for a special class is assessed.Te class with more votes
is selected as the ultimate decision. However, in the case of
an equal number of votes in two or three classes, the number
of admissible classifers voted against each class is counted
and the class with the minimum vote is selected as the fnal
decision. Te majority voting can be written formally as
follows:

C � argmax
i

􏽘
k

V
k
i , (6)

where the combiner classifes the sample into class C in the
manner shown in Equation (6). If the kth classifer predicts
that the class of the sample is i, thenVi

k is 1, otherwise, it is 0.
Te algorithm implementation of the MV is shown in Al-
gorithm 1.

3.2.2. Weighted Majority Voting. If many classes receive
the same number of votes, ekii is used for tie-breaking; that
is, the voting rights of each classifer are weighted by a
number representing the confdence of the classifer for its
vote. Te vote given by each classifer is weighted by the

confdence level assessed by the confusion matrix, and the
combiner classifes the sample into class C in the manner
shown as

C � argmax
i

􏽘
k

e
k
ii · V

k
i . (7)

Te algorithm implementation of the WMV is shown in
Algorithm 2.

3.2.3. Naive Bayes. Based on the priori probability of a
sample, the Naive Bayes classifer calculates its posterior
probability using the Bayes formula. Te posterior proba-
bility is the probability that the sample belongs to a certain
class. Te method selects the class with the largest posterior
probability as the decision class for the sample.

When the kth classifer predicts that the class of the
sample is j, combined with the prediction results of all
classifers, the probability p (i) that the sample belongs to the
class i is shown as

p(i) �
Mi · e

k
ij

􏽐
m
h�1 Mh · e

k
hj

(8)

where Mi is the number of samples that belong to class i.
Applying Bayes formula and assuming that the classifers are
independent, the maximizing posterior probability is shown
as [29]
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Figure 1: MF model overall architecture.
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C � argmax
i

M 􏽙
N

k�1
e

k
ij. (9)

Te algorithm implementation of the NB is shown in
Algorithm 3.

4. Dataset

In this study, a series of experiments are carried out on three
public available datasets which are widely used in the feld of

network intrusion detection. Te three datasets are
CICIDS2017 [30], UNSW-NB 15 [31], and KDDCUP 99. A
detailed description of the three datasets is shown in Table 1.

4.1.CICIDS2017. CICIDS2017 is an IDS domain dataset that
has been collected for a total of 5 days up to 5 p.m. on Friday,
July 7, 2017. Monday is a normal day that includes only
normal trafc. Some of the most common attacks, such as
DoS, DDoS, Brute Force, XSS, SQL injection, infltration,
port scanning, and botnets were performed on Tuesday,

Input: the results set predicted by each base classifers Y;
Output: fnal prediction result C;

(1) a [2]← {0, 0};
(2) for y in Y do
(3) a [y]← a [y] + 1;
(4) end for
(5) C← argmax (a)
(6) return C

ALGORITHM 1: Majority voting

Input: the results set predicted by each base classifers Y� {y1, y2, . . ., yn}, confusion matrix set E� {e1, e2, . . ., en};
Output: fnal prediction result C;

(1) a [2]← {0, 0};
(2) for i in {0, 1} do
(3) for j in {1, 2, . . ., n} do
(4) if yj � � i then
(5) vj← 1;
(6) else
(7) vj← 0;
(8) end if
(9) a [i]← a [i] + vj

∗ejii;
(10) end for
(11) end for
(12) C← argmax (a);
(13) return C;

ALGORITHM 2: Weighted majority voting

Input: the results set predicted by each base classifers Y� {y1, y2, . . ., yn}, confusion matrix set E� {e1, e2, . . ., en}, the number of
samples of each types M� {m0, m1};
Output: fnal prediction result C;

(1) a [2]← {0, 0};
(2) for i in {0, 1} do
(3) c i← 1;
(4) for j in {1, 2, . . ., n} do
(5) k← yj;
(6) c i← ci∗ejik;
(7) end for
(8) a [i]←mi

∗ci;
(9) end for
(10) C← argmax (a);
(11) return C;

ALGORITHM 3: Naive Bayes

6 Mobile Information Systems



Wednesday, Tursday, and Friday morning and afternoon,
respectively. Te dataset is fully labelled and provides the
CICFlowMeter software that triages trafc data and extracts
more than 80 stream signatures, which are available on the
Canadian Cybersecurity Institute website.

4.2. UNSW-NB 15. Te UNSW-NB 15 dataset was created
by the Australian Center for Cyber Security (ACCS) using
the IXIA PerfectStorm tool, which can be used to generate
raw network trafc mixed with normal activity and attack
behavior. 100GB of raw trafc (PCAP fles) was captured
using the tcpdump tool, and 49 stream signatures were
extracted using the Argus and Bro-IDS tools, covering 9
attacks: Fuzzers, Analysis, Backdoors, DoS, Exploits, Ge-
neric, Reconnaissance, Shellcode, and Worms.

4.3. KDDCUP 99. Te KDD CUP 99 dataset is the data
used in the 1999 KDD CUP competition. In 1998, the U.S.
defense advanced program (DARPA) conducted an in-
trusion detection assessment program at the Lincoln
Laboratory at MIT. Lincoln Labs built a network envi-
ronment that simulated the U.S. Air Force’s local area
network, collected network connection and system audit
data for 9 weeks, and simulated various user types, various
network trafc, and attack methods to make it resemble a
real network environment. Te raw data collected through
tcpdump are divided into two parts: 7 weeks of training
data, which contains about 5,000,000 million network
connection records; the remaining 2 weeks of test data

contains approximately 2,000,000 million network con-
nection records.

5. Results and Discussion

5.1. Performance Metrics. RECALL and AUC (Area under
Curve) are two important metrics used to evaluate the
performance of anomaly detection algorithms. Te time
overhead is used to measure the time efciency of each
algorithm running.

(1) RECALL, also known as the detection rate, refects
the ability of the classifer or model to correctly
predict positive samples (abnormal samples), that is,
the proportion of the total number of positive
samples predicted as positive to the total number of
positive samples. Te higher the value, the better the
performance.

(2) AUC (Area under Curve): in a prediction, if it is an
anomalous score value, a score is generally selected
as a threshold, and the score above this threshold is
abnormal, the score below this threshold is deter-
mined to be normal. At this time, according to the
diferent values of the threshold, diferent FPR (False
Positive Rate) and TPR (True Positive Rate) values
can be obtained, and all values are plotted with FPR
as the horizontal axis, TPR as the vertical axis, that is,
the ROC curve, and the area covered by the curve
downward is the AUC value.

Table 1: Public dataset description.

Dataset Dimension Number
CICIDS2017 83 592782
UNSW-NB 15 196 185423
KDDCUP 99 118 50000

Table 2: Experimental confguration environment.

Hardware/software Confguration/version
Pyod 1.0.0
CPU 2.3GHz dual core intel core i5
Memory 16GB 2133MHz LPDDR3
Operating system macOS big sur

Table 3: Anomaly detection algorithm performance comparison (anomaly ratio of 0.05).

Dataset Performance metrics LODA AE PCA HBOS iForest MV WMV NB

CICIDS2017
AUC 0.635 0.576 0.538 0.632 0.657 0.763 0.749 0.852

RECALL 0.497 0.438 0.401 0.531 0.492 0.794 0.821 0.886
Time (seconds) 0.511 8.369 0.732 0.902 7.436 7.082 8.198 8.073

UNSW-NB 15
AUC 0.675 0.739 0.852 0.724 0.913 0.871 0.912 0.925

RECALL 0.724 0.791 0.893 0.852 0.937 0.897 0.943 0.961
Time (seconds) 0.867 10.023 0.992 1.942 8.241 6.924 8.245 8.128

KDDCUP 99
AUC 0.942 0.923 0.924 0.938 0.953 0.910 0.928 0.956

RECALL 0.964 0.957 0.940 0.964 0.983 0.924 0.965 0.995
Time (seconds) 0.735 9.710 1.324 1.672 8.092 7.942 8.124 8.206
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(3) Time is also known as time overhead, during which
an algorithm is executed.

5.2. Experimental Confguration Environment. Te experi-
mental confguration environment is given in Table 2. Tis
study uses a well-known python third-party library for
anomaly detection, PyOD, which runs on a PCmachine.Te
hardware confguration is 2.3GHz dual core Intel Core i5,
16GB of 2133MHz LPDDR3 memory, and the macOS Big
Sur operating system without GPU acceleration. In addition,
since the base classifer references the third-party python
library, Pyod, the anomaly rate is the only parameter setting
of the algorithms, which is refected in Section 5.4.

5.3. Performance Comparison. Most of the real network
trafc is normal, with a small percentage of attacks or
anomalous trafc. Terefore, the vast majority of datasets
widely used in the feld of anomaly detection are data im-
balances, the proportion of normal samples is very large, and
the proportion of abnormal samples is very small. Te
anomaly rate represents the proportion of anomalous
samples to the total number of samples. Since, in real
network datasets, the ratio of anomalous data is small, the
ratio of normal data is large. Tis experiment sets the

anomaly rate to two smaller values (0.05 and 0.1) to simulate
the real environment [32], comparing the performance of
fve anomaly detection baseline algorithms and three fusion
methods on diferent datasets. Te results are shown in
Tables 3 and 4, respectively.

Te motivation we use the multiclassifer fusion tech-
nique is to improve the accuracy of anomaly detection;
hence, AUC and RECALL are the two most important
metrics. In addition, the time overhead for each fusion
technique should also be used as an indicator to measure its
performance.

Among the three fusion methods, NB (Naive Bayes)
performs better than MV (Majority Voting) and WMV
(Weighted Majority Voting) in both RECALL and AUC;
besides, the fusion takes a similar amount of time. So, theMF
model in this study selects Naive Bayes as the fusionmethod.

On the contrary, multiclassifer fusion models com-
bine multiple classifers and must ensure that the overall
detection is better than the best single classifer. If the
overall performance of the fusion model is slightly better
than the worst classifer, but slightly worse than the best
classifer, then, in this case, it is better to let the best
classifer work on its own and not participate in the mix.
From Tables 3 and 4, it can be observed that the overall
detection performance of NB is better than that of a single
classifer in all three datasets, while the detection

Table 4: Anomaly detection algorithm performance comparison (anomaly ratio of 0.1).

Dataset Performance metrics LODA AE PCA HBOS iForest WV WMV NB

CICIDS2017
AUC 0.629 0.643 0.683 0.513 0.753 0.789 0.819 0.842

RECALL 0.389 0.421 0.569 0.492 0.628 0.853 0.853 0.896
Time (seconds) 0.441 6.649 0.484 0.197 7.391 3.724 3.621 3.604

UNSW-NB 15
AUC 0.721 0.691 0.783 0.689 0.927 0.919 0.924 0.943

RECALL 0.752 0.803 0.902 0.762 0.932 0.934 0.951 0.958
Time (seconds) 0.529 8.236 0.692 0.384 9.242 4.045 4.578 4.248

KDDCUP 99
AUC 0.928 0.956 0.931 0.928 0.954 0.894 0.927 0.961

RECALL 0.952 0.969 0.950 0.955 0.985 0.961 0.985 0.993
Time (seconds) 0.502 7.923 0.669 0.328 8.927 3.928 4.029 4.293
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Figure 2: RECALL of diferent datasets varies with the anomaly rate. (a) CICIDS2017. (b) UNSW-NB 15. (c) KDDCUP 99.
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performance of MV and WMV is sometimes worse than
that of a single detection algorithm.

In terms of time overhead, this study randomly samples
100,000 pieces of data in each of the three datasets, and the
time costs of the three basic anomaly detectors, HBOS,
LODA, and PCA, are close to each other and signifcantly
faster than AE and iForest. Tis is related to the fact that the
frst three algorithms are suitable for large amounts of data.
Te time of the last two datasets (UNSW-NB 15 and
KDDCUP 99) was slightly higher than that of the frst
dataset, CIDIDS2017, due to the fact that the dimensions of
the latter two datasets were higher than those of
CICIDS2017. It should be noted that the times of MV,
WMV, and NB represent only the fusion time of their re-
spective results and do not include the training time of the
base classifer.

As shown in Table 3, when the anomaly rate is set to 0.05,
the MF model proposed in this study is superior to the other
fve anomaly detection baseline algorithms in terms of the
performance of both the AUC and RECALL indicators.

On the CICIDS2017 dataset, the RECALL and AUC of
the MF were 0.886 and 0.852, respectively, which were 0.355
higher than the HBOS (0.531) with the highest RECALL rate
and 0.195 higher than iForest (0.657), which had the best
AUC performance.

On the UNSW-NB 15 dataset, the RECALL and AUC of
theMFwere 0.961 and 0.925, respectively, an increase of 0.24
and 0.12 compared to iForest (0.937 and 0.913), which had
the highest RECALL and AUC indicators.

On the KDDCUP 99 dataset, the recall and AUC of MF
were 0.995 and 0.956, respectively, an increase of 0.12 and
0.03 compared with iForest (0.983 and 0.953), which had the
highest RECALL and AUC indicators.

As shown in Table 4, when the anomaly rate is set to 0.1, a
similar conclusion can be seen from Table 4: MF outper-
forms the other fve baseline methods in both AUC and
RECALL in three datasets.

Te results of Tables 3 and 4 prove that the network
intrusion anomaly detection model MF proposed in this
study based on multiclassifer fusion technology has more

advantages in anomaly detection and performs better than
the fve state-of-the-art unsupervised learning algorithms.

5.4. Performance Comparison at Diferent Anomaly Rates.
In order to better verify the model proposed in this study,
this experiment also compares the detection results of fve
baseline algorithms for anomaly detection and the MF
model in the case of continuous changes in the anomaly rate
on three public datasets.

As Figures 2 and 3 shown, with the increase in the
anomaly rate, the values of AUC and RECALL of the other
fve baseline methods are always lower than the MF model
and have obvious fuctuations, whichmeans the instability of
performance. In contrast, the performance (AUC and RE-
CALL) of theMFmodel was stable, and the polyline is fatter.
Tis also verifes that the MFmodel has good robustness and
can better adapt to the dynamic changes in attack scale and
attack numbers in diferent network environments.

6. Conclusions

Anomaly detection refers to the detection of data or be-
haviors that do not conform to normal expected patterns in a
large amount of data and is widely used in the feld of data
security and network security. Aiming at the problem that
the detection efect of unsupervised learning methods
cannot meet the anomaly detection requirements of the real
network environment, this study proposes a network in-
trusion anomaly detection model MF based on multi-
classifer fusion technology. Te model can use diferent
fusion methods, such as majority voting fusion, weighted
majority voting fusion, and Naive Bayes fusion, to intelli-
gently fuse the detection results of multiple anomaly de-
tection baseline methods (such as LODA, AutoEncoder,
PCA, HBOS, and iForest) to obtain a higher detection efect
than a single detection method. Finally, the MF model is
compared with other anomaly detection baseline methods
on three public network intrusion anomaly detection
datasets, such as CICIDS2017, UNSW-NB 15, and KDDCUP
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Figure 3: AUC of diferent datasets varies with the anomaly rate. (a) CICIDS2017. (b) UNSW-NB 15. (c) KDDCUP 99.
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99. Experimental results show that the network intrusion
anomaly detection model MF proposed in this study based
on multiclassifer fusion technology successfully improves
the accuracy and efectiveness of detection and has good
robustness.

In future research, more advanced intelligent fusion
technology will be used to fuse the results of the baseline
method to obtain better performance.
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