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In recent years, there have been signifcant advancements in object identifcation in natural photos. However, when applying
natural image object recognition techniques directly to satellite images, the results are often unsatisfactory.Tis is primarily due to
inherent disparities in the object scale and orientation caused by the omniscient viewpoint of satellite imagery.Te distinguishing
factors between rural and urban areas lie in the objects that cover them. Furthermore, the complex backdrop of satellite photos
poses challenges in accurately extracting features, leading to the omission of small objects in many regions. Te performance of
object detection, which is crucial for area identifcation, is also afected by dense object overlap and occlusion. To address these
aforementioned issues, we made modifcations to the generalized one-stage detector YOLOv5, specifcally tailored for satellite
photos. For this research, we manually collected data from Google Earth, meticulously labeling them and subsequently verifying
them with human annotators. We then preprocessed the data using computer vision techniques, such as resizing and nor-
malization. Next, we employed YOLOv5 and transfer learning-based CNN architectures of InceptionV3, DenseNet201, and
Xception to compare their performances. Te goal was to accurately identify rural and urban areas from remote sensing images.

1. Introduction

High-resolution satellite imagery is obtained through the
utilization of advanced earth satellite technology to observe
the surface of our planet. However, the processing of a large
volume of satellite photos poses signifcant challenges for
current interpretation algorithms. One of the fundamental
tasks in computer vision is object detection, which involves
accurately and efciently identifying predefned objects
within images. Tis capability fnds extensive application in
areas such as precision farming, urban trafc control, and
various other domains [1–3]. Te Earth’s orbiting feet of
commercial satellites produces an ever-increasing amount of
imagery, growing at an exponential rate. Satellite imagery
serves a multitude of purposes, including agricultural crop
classifcation [4, 5], scene classifcation [6, 7], wildlife mon-
itoring [8, 9], forest characterization [10, 11], meteorological
analysis [12, 13], infrastructure assessment, building locali-
zation [14, 15], and soil moisture estimation [16, 17].

Recent advancements in segmentation and object de-
tection tasks have been signifcantly facilitated by data-
driven deep learning techniques. Te size and quality of
the training dataset have an impact on detection precision.
Te development of object detection has been fueled by
a number of extensive and difcult natural picture datasets,
including PASCAL VOC and MS COCO. Nevertheless,
recognizing objects in optical satellite photos remains
challenging [18]. Te causes are listed as follows. First,
satellite photographs taken from a bird’s eye view provide
a broad imaging range with full information, in contrast to
the natural images captured by ground-based cameras with
horizontal views. Tere is an uneven distribution of fore-
ground items and intricate background information in
complex landscapes and urban settings [19]. In addition,
objects in satellite pictures often exhibit varying visual ap-
pearances and optical properties due to a variety of imaging
circumstances, such as perspectives, illumination, and oc-
clusion. Finally, smaller objects frequently have less
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information about their appearance than larger ones,
making it harder to distinguish them from the background
or other nearby objects.

To address the aforementioned issues, this research
focuses on improving area identifcation performance in
satellite pictures. Te detection speed also presents
a substantial challenge for the detection algorithm as
region detection in satellite images often needs to occur in
real time. You only look once (YOLO) neural networks
can signifcantly enhance detection speed by combining
object categorization and localization (two-stage) into
a one-stage regression problem. To the best of our
knowledge, YOLOv5 is the most recent version of YOLO,
which demonstrates the best object detection perfor-
mance on natural photos. Tis is because YOLOv5 utilizes
the path aggregation network (PANet) and the enhanced
CSPDarknet53 as the network’s neck and backbone,
respectively.

It is challenging to directly apply YOLOv5 to satellite
photos for area recognition. In this study, we utilized
transfer learning-based CNN architectures and made up-
dates to YOLOv5 from three perspectives listed as follows.
First, due to excessive downsampling, the deep feature maps
fused in the neck of YOLOv5 would lose information about
tiny details. To overcome this issue, we implemented a new
branch in the shallower network layer to perform the initial
detection of each area. Tis allows us to preserve the feature
information to the greatest extent possible. Second, while
YOLO net is typically built on a convolutional neural net-
work (CNN), the CNN is primarily efective at capturing
local information. However, when processing high-
resolution satellite photos, the traditional transformer
would incur a square computational cost, despite its ability
to compensate for global modeling capability.

Te main contribution of this study can be summarized
as follows:

(i) We have proposed a deep learning-based method
for identifying rural and urban areas using satellite
images.

(ii) We generated a dataset that included two classes,
namely, rural and urban areas in Bangladesh.

(iii) We conducted a comparative analysis of the same
dataset using two techniques: a YOLOv5-based
detection technique and a CNN-based classifca-
tion technique.

Te structure of the paper is as follows. Section 2 clarifes
the relevant work of several disease classifcation methods.
Te method and materials that were used are illustrated in
Section 3. Te experimental analysis, including performance
and results, is depicted in Section 4. Section 5 discusses the
article’s conclusion.

2. Related Work

Signifcant progress has been made in the feld of Satellite
Imagery, with several notable research studies that have been
explored. Some of these studies are listed as follows.

Te deep learning approach by Kadhim and Abed [20]
presented practical deep learning-based approaches for
satellite image classifcation, which involved extracting
features using four pretrained CNNs.Te paper [21] focused
on object and facility classifcation in high-resolution
multispectral satellite imagery, utilizing a deep learning
system.Te system combined CNN predictions with satellite
metadata through postprocessing neural networks. In an-
other study [22], the speed and performance of modern
object detection algorithms were compared in commercial
EO satellite imagery datasets, specifcally for oil and gas
fracking wells and small cars. Article [23] examined the
efective classifcation of aerial images using their emergency
net model while onboarding a UAV for monitoring and
responding to emergencies. Pan et al. [24] introduced
a paradigm for mapping a Chinese urban village in
Guangzhou City using the U-net deep learning architecture.
Teir fndings suggested that combining U-net-based deep
learning with high spatial resolution satellite photos can
provide valuable building information in complex urban
settlements, crucial for urban revitalization. Yoo et al. [25]
compared CNN to an RF classifer in order to map the local
climate zone, using bitemporal Landsat images.

Other approaches: Yang et al. [26] utilized ensemble
projection (EP) to learn semi-supervised features for satellite
image classifcation, especially in scenarios with limited
labeled data and a large amount of unlabeled data. Paper [27]
focused on classifying specifc land cover in satellite images
using the biogeography-based optimization approach. Dai
and Yang [28] introduced a technique that incorporated
visual attention in satellite image classifcation and
addressed the classifcation task without a learning phase. Li
et al. [29] investigated image cropping strategies for object
detection, involving the cropping of large aerial images into
uniformly sized smaller images. Teir density-map guided
object recognition network (DMNet) was inspired by the
understanding that an image’s object density map reveals the
distribution of objects in terms of pixel intensity. Rahman
et al. [30] employed a hierarchical clustering approach based
on fve specifed spatial criteria to divide the 331 cities of
Bangladesh into six classes using remote sensing data. Re-
search [31] demonstrated the usefulness of satellite images in
detecting land use and land cover (LULC) analysis, as well as
analyzing the coastal dynamics of agriculture in the Bhola
region (characterized by dense forests) and the Dhaka region
(characterized by dense cities). Mathieu et al. [32] explored
the efectiveness of object-based classifcations that extract
relevant ground features from images using automated
image segmentation techniques.

3. Materials and Methods

In this section of the article, we will provide a concise
summary of the stages involved in data collection, pre-
processing, and preparation. Te next step is algorithm
selection, where we study each model employed in detail.
Ten, we will discuss the platforms and the key parameters
for training and evaluation metrics. Figure 1 provides a vi-
sual overview of the steps involved in the classifcation
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detection process, highlighting the fow of information and
the key stages.

3.1. Dataset Description. Te data collection process in-
volvedmeticulous manual gathering of satellite images using
Google Earth. A total of 3267 satellite images were collected
from diverse regions in Bangladesh, with 1631 images
representing urban areas and 1636 images representing rural
areas. Separate datasets were prepared for CNNs and
YOLOv5, as shown in Table 1. For the experiment involving
YOLOv5, a subset of 200 images was selected. Te data
collection process aimed at ensuring a comprehensive
representation of the target regions and facilitating accurate
analysis and evaluation.

3.2. Preprocessing. To enhance the predictive performance
of the CNN architecture, the recommended approach used
in this research minimizes the number of preprocessing
steps. We optimized the training process for CNN models
using three standard preprocessing steps.

3.2.1. Resizing. Usually, raw collections of images are in
diferent formats, which can lead to imbalanced image
features. Technically, the total dataset should be unifed into
one structure by resizing the image shape. Diferent sizes of
images can be resolved using increasing or decreasing
resizing matrix operations. Tere are two specifc solutions
for efective performance and reduced complexity metrics.
Tis dataset includes images of various resolutions and sizes.
To ensure that all input images have the same dimension, we
resized all images to 224× 224 pixels from their original size.

3.2.2. Normalization. As a preprocessing step of image
normalization, utilizing ImageNet’s mean subtraction pro-
cess, we rescaled the pixel intensity values. We normalized
the intensity values of all the images within the range [0, 255]
to the standard normal distribution by applying min-max
normalization [33] to the intensity range [0, 1], where

Xnorm �
(X − Xmin)

(Xmax − Xmin)
, (1)

where x denotes pixel intensity. In equation (1), the input
image’s minimum and maximum intensity values are Xmin
and Xmax, respectively.

3.2.3. Augmentation. Image augmentation is a technique
utilized to expand the available resources within an image by
generating nonduplicate regions. It involves applying various
transformations to the original image, such as texture re-
fections, grayscale variations, adjustments in brightness levels,
color contrasts, and other relevant image modifcations. By
introducing bounding boxes during augmentation, the accu-
racy of object detection can be improved, leading to the cre-
ation of synthetic data. Trough operations such as image
fipping and rotation, the dataset size can be signifcantly in-
creased, resulting in a larger and more diverse collection of
images. Tis augmentation process contributes to the aug-
mentation of image quantity while preserving the integrity of
important regions. In the case of 2D images, factors such as
resolution and image quality hold signifcant importance,
particularly when dealing with images that exhibit substantial
disparities in size, shape, and color. Synthetic data ofer im-
mense potential to exponentially enhance accuracy by gen-
erating images that belong to the same category.

Data Collection
From

Google Earth YOLOv5

CNN

Result Analysis

Class Prediction

Label Verification

Manual Labeling

Data Splitting

Pre-Processing

Model Selection

Figure 1: Working fow of the entire classifcation detection process.
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For YOLOv5, the dataset contains two types of data fles.
(1) Raw digital photos, consisting of 200 JPG images in total.
(2) Image annotation, consisting of 200 .txt fles. Tese fles
provide information that specifes the exact locations of the
items in the corresponding images that have labels attached
to them. Manual annotation was used, and the annotated
data was saved in .txt in YOLOv5 format. Te images were
cautiously labeled using the popular annotation application
LabelImg.

3.3. Selection of Algorithm. We employed the object de-
tection architecture YOLOv5 and two pretrained CNN
models, such as MobileNetV2 and NASNetMobile, for
classifcation and compared their results. In deep learning,
large amounts of data are often used to improve the net-
work’s ability to predict. Due to the lack of data, we employ
the transfer learning [34] approach and pretrain weights
from the used models to make the model better at making
predictions.

3.4. YOLOv5. Te network structure diagram of YOLOv5
consists of two main sections. Te frst section is the main
architecture, which includes the input side and the backbone
portion. Te second section is the detection architecture,
comprising the neck and the prediction part [35]. YOLOv5 is
trained on the COCO dataset, an object detection model,
which contains 80 diferent classes and a total of 200,000
annotated images. Te YOLO family of models, including
YOLOv2, YOLOv3, YOLOv4, YOLOv5, YOLOv6, and the
recent YOLOv7, are widely employed for recognition tasks.
Te variations in size among the diferent models of the
YOLOv5 family, such as YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x, are determined by the width and depth of the
BottleneckCSP module [36]. Te primary function of the
BottleneckCSP module is to extract features from the feature
map, enabling the extraction of valuable information from
the input image. In this study, the YOLOv5 model summary
consisted of 270 layers, 7025023 parameters, 7025023 gra-
dients, and a computational complexity of 16.0 GFLOPs.
Figure 2 showcases the architecture of YOLOv5, high-
lighting its components.

3.5. Transfer Learning-Based Convolutional Neural Networks
(CNNs). Te fnal step of our work involves classifcation
using transfer learning. Deep convolutional neural networks
(DCNNs) have recently attained a state-of-the-art

performance in a variety of high-level computer vision tasks.
Convolution neural networks (CNNs), more commonly
referred to as ConvNets, are a type of feed-forward neural
networks that employ a series of convolutional layers, each
of which is followed by a pooling layer, to learn to extract
features from input data and build a series of high-level
feature maps. Te proposed CNN-based categorization
approach has been evaluated on InceptionV3, DenseNet201,
and Xception. Te selected architectures’ network structures
are as follows.

3.5.1. InceptionV3. InceptionV3 is a deep convolutional
neural network architecture that was introduced by Google.
It employs the concept of “inception modules” which consist
of parallel convolutional layers with diferent flter sizes.Tis
allows the network to capture features at multiple scales and
resolutions. InceptionV3 is often used for transfer learning
due to its strong performance on image classifcation tasks,
as shown in Figure 3. In transfer learning, the pretrained
InceptionV3 model is used as a feature extractor, where the
initial layers are frozen, and only the fnal layers are fne-
tuned on the target dataset. Tis enables the model to le-
verage the learned representations from a large-scale dataset,
such as ImageNet, and adapt them to the specifc task
at hand.

3.5.2. DenseNet201. DenseNet201 is a deep convolutional
neural network architecture that emphasizes feature reuse
and alleviates the vanishing gradient problem. It introduces
dense connections between layers, where each layer receives
input from all preceding layers. Tis facilitates the fow of
gradients and encourages feature reuse, leading to a better
gradient fow and improved information propagation
throughout the network. DenseNet201 is commonly used in
transfer learning scenarios, where the pretrained model is
employed as a feature extractor, as illustrated in Figure 4. By
freezing the initial layers and fne-tuning the later layers,
DenseNet201 can efectively transfer knowledge from the
source dataset to the target task, improving both training
efciency and generalization performance.

3.5.3. Xception. Xception, derived from “Extreme In-
ception,” is an architecture that extends the Inception
concept further by replacing the standard convolutional
layers with depthwise separable convolutions.Tis factorizes
the convolution operation into a depthwise convolution and

Table 1: Dataset description for CNN and YOLOv5.

Methods Files Files No. of samples

CNN
Train Urban area 1305 images

Rural area 1309 images

Test Urban area 326 images
Rural area 327 images

YOLOv5
Images Train 160 images (both urban and rural area)

Val 40 images (both urban and rural area)

Labels Train 160 txt fles (both urban and rural area)
Val 40 txt fles (both urban and rural area)
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a pointwise convolution, reducing the computational cost
while maintaining expressive power. Xception has shown
excellent performance on various image classifcation
benchmarks, as depicted in Figure 5. In transfer learning,
Xception is commonly utilized by leveraging its pretrained
weights as a feature extractor. Te initial layers are frozen,
and only the fnal layers are fne-tuned on the target dataset.
Tis approach allows Xception to transfer high-level features
learned from large-scale datasets, enabling efective gener-
alization to new tasks with limited training data.

3.6. Training Experiment Setup. Tis experiment was carried
out, and Google Colab was used to train both the YOLOv5
and CNN models, which provides free access to powerful
GPUs with no confguration required. For our research, 80%
of the images belonging to each class were placed in the
training set, while the remaining 20% were placed in the
test set.

Te size of the image was set at 640× 640 pixels as part of
the YOLOv5 training parameter setting. Troughout the
duration of the training procedure, we experimented with

1.Backbone:CSPDarknet 2.Neck:PANet 3.Head:Yolo Layer
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Figure 2: Architecture of YOLOv5 [37].
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Figure 3: Architecture of InceptionV3.
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Figure 4: Architecture of DenseNet201.
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a large variety of batch sizes and numbers of epochs, all of
which featured early stopping conditions. In our trial-and-
error experiments, the best results for prediction were ob-
tained with a batch size of 1, a total of 100 epochs, and
a learning rate of 0.01. We utilized a notebook invented by
Robofow [38] based on YOLOv5 [39] and employed pre-
trained COCOweights.Te three diferent types of losses are
shown in Figure 6, which are box loss, objectness loss, and
classifcation loss. To determine an algorithm’s performance,
researchers have used a metric called “box loss,” which
evaluates how well it can locate an object’s center and how
completely it predicts a box around that object. Objectness
measures the probability that an object exists in the pro-
posed region of interest. Finally, the algorithm’s ability to
correctly predict an object’s class is refected in its
classifcation loss.

Te training parameters for all convolutional neural
networks are learning rate η� e− 5, β1� 0.9, β2� 0.999,
ε� e− 8, and decay rate is set to 1e− 5 for adaptive moment
estimation (Adam) optimizer. Activation function Softmax
is used which sets a dropout rate of 0.5 to prevent the model
from becoming overft. All models are trained over the
duration of 15 epochs, with a batch size of 16.

3.7. Evaluation Metrics. To assess the prediction perfor-
mance of the algorithms in this study, we used highly
regarded evaluation metrics such as recall, precision, ac-
curacy, F1-score, and mAP (mean average precision).

Te ratio of the number of cases that were correctly
classifed to the total number of test images is the commonly
used measure of accuracy. Tis can be shown by

Accuracy �
TP + TN

TP + FN + FP + TN
∗ 100%. (2)

Precision, often known as a positive predictive value, is
defned as the percentage of labels accurately identifed in
patients who are actually positive and is stated as

Precisions �
TP

TP + FP
∗ 100%. (3)

Te weighted average of precision and recall, known as
the F1-score or F-measure, combines precision and recall.
Te F-measure is written as

F1 − score � 2∗
Precisions xRecall
Precisions + Recall

∗ 100%. (4)

Te percentage of correctly classifed objects is measured
by recall or sensitivity. And it is presented as

Recall �
TP

TP + FN
∗ 100%. (5)

Te overall intersection over union (IoU) thresholds or
the mean average precision across all classes are utilized to
determine the mAP value. It is expressed as [40]

AP �
1
11

 recallϵ[0, 0.1, . . . , 1] ∗ Precision(r). (6)

According to the abovementioned section, the number
of correctly predicted cases is referred to as true positives
(TPs), while the number of incorrectly predicted cases is
referred to as false negatives (FNs), and true negatives (TNs)
are the number of negative instances that were correctly
predicted. In comparison, the number of mistakenly pre-
dicted negative events is known as false positives (FPs).

4. Result Analysis and Discussion

After training the YOLOv5 model with our data, we used it
to make predictions for images in our test set that had not
been seen before. Figure 7 demonstrates how the algorithm
can more accurately identify both urban and rural areas.

Table 2 displays the performance of YOLOv5 after
training using diferent measures such as precision, recall,
and mAP (mean average precision) when IOU is set to 0.5
(50%) and 0.95 (95%). A validation precision score of 0.995,
a recall score of 0.999, and mAP scores of 0.995 and 0.978 for
@0.5IOU and @0.95IOU, respectively, were obtained for the
YOLO v5 model after evaluation.

Figure 8 presents a collection of images extracted from
the test set, illustrating the performance of the Xception
model in accurately detecting urban and rural areas. Each
image is accompanied by its corresponding actual label
(urban or rural) and the target label, along with the asso-
ciated confdence level. Te depicted results highlight the
model’s ability to classify the regions correctly, as indicated
by the alignment between the actual and target labels and the
confdence level assigned to each prediction. Tis visual
representation provides valuable insights into the efec-
tiveness of the Xception model in discerning urban and rural
areas based on the provided dataset.

Te performance of three deep learning models, namely,
InceptionV3, DenseNet201, and Xception, was evaluated for
classifying cases into the urban and rural classes, as depicted
in Figure 9 in the form of a confusion matrix. InceptionV3
exhibited 44 misclassifed cases, DenseNet201 had 22 errors,
and Xception demonstrated the lowest number of errors
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Figure 5: Architecture of Xception.
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with 15 instances. Tese fndings provide valuable insights
into the accuracy and efectiveness of these models in ac-
curately classifying cases into the urban and rural categories.
Such information is crucial for researchers and practitioners
in the feld of deep learning when selecting appropriate
models for similar classifcation tasks.

Te performance of each architecture is individually
examined to justify the performance of the proposed clas-
sifcation approach based on pretrained networks. Table 3
displays the accuracy of three deep learning models, namely,

InceptionV3, DenseNet201, and Xception, in classifying
cases into the urban and rural classes. InceptionV3 achieved
an accuracy of 93.26%, DenseNet201 demonstrated a higher
accuracy of 96.63%, and Xception showcased the highest
accuracy of 97.70%.

Receiver operating characteristics (ROC) curves are
a way to show how the true positive rate (TPR) compares
to the false positive rate (FPR) based on the values of the
classifcation thresholds. Te receiver operating charac-
teristics (ROC) curves for the two pretrained architectures
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Figure 6: Graph of precision, recall, and mAP for YOLOv5 over the training epochs.

Figure 7: Images from the test set showing the performance for detecting urban areas and rural areas using YOLOv5.

Table 2: YOLOv5 performance across precision, recall, and mAP.

Model Precision Recall mAP @ 0.5 mAP @ 0.5: 0.95
YOLOv5 0.995 0.999 0.995 0.978
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Predicted: Urban Area.
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Figure 8: Images from the test set showing the performance for detecting urban areas and rural areas using Xception.
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Figure 9: Te confusion matrix for (a) InceptionV3, (b) DenseNet201, and (c) Xception.

Table 3: Classifcation results from pretrained networks.

Models Precision (%) Recall (%) F1-score (%) Accuracy (%)
InceptionV3 88.11 100 93.68 93.26
DenseNet201 99.35 93.87 96.53 96.63
Xception 96.14 99.39 97.74 97.70
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on our area dataset are visible in Figure 10. In terms of the
ROC curve performance, it can be seen clearly that
Xception performs better than InceptionV3 and
DenseNet201.

5. Conclusions

Tis article presents the development of a dataset for the
identifcation of rural and urban areas in Bangladesh,
along with an investigation of two distinct approaches:
a detection approach utilizing YOLOv5 and a classifca-
tion approach employing CNN. Te principal limitation
encountered in this study pertains to the restricted
quantity of available images. In order to address this
constraint, transfer learning techniques were applied,
leveraging pretrained YOLOv5 and three DCNN archi-
tectures, namely, InceptionV3, DenseNet201, and Xcep-
tion. Te detection approach based on YOLOv5 exhibited
favorable outcomes, achieving mean average precision
(mAP) scores of 0.995 and 0.978 at intersection-over-
union (IOU) thresholds of 0.5 and 0.95, respectively, when
evaluated against the test datasets. In the classifcation
approach, Xception emerged as the most profcient model,
attaining an accuracy of 97.70%. To augment the com-
prehensiveness and reliability of the study, future eforts
will entail an expansion of the image dataset, in-
corporating an increased number of images and classes.
Tis expansion aims to facilitate more robust and precise
conclusions. In addition, the exploration of ensemble
methods integrating alternative architectural models will
be pursued, with the objective of gauging their impact on
overall performance. Te fndings presented in this re-
search contribute to the ongoing advancement of rural
and urban area identifcation in the context of Bangladesh,
leveraging computer vision methodologies. Te identifed
limitations and proposed avenues for further in-
vestigation establish a foundation for future research
endeavors in this domain.

Data Availability

Te data used in this study are available upon request from
the corresponding author.
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