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Te intelligent sensing and communication technology in the airports’ grid information system provides amultidimensional big data set
for analyzing fight delays. Tese data from air trafc control, weather, and multiple determinants will cause initial fight delays. Due to
the infuence of adjacent fight time correlation, the initial delay causes the delay of subsequent fights, discovered bymining information
sensing data, forming the phenomenon of fight delay difusion. Diferent determinants will lead to the delay difusion form of diferent
regions, and more seriously, it will lead to “disaster area” delay in the whole regional grid information structure. To analyze the spatial
impact of each factor on fight delay and explore the regional distribution of delay determinants, this paper combined the spatial
regression model and determined the key explanatory variables by statistical and processing of the aviation system data. Te case study
showed the spatial airport delay characteristics in terms of aircraft movements in China. After processing intelligent sensing and
communication data, the results show that there is a spatial efect between airports in terms of delay and determinants. Te high-delay
clusters of delay constraints principally occurred in the Beijing-Tianjin-Hebe and Yangtze River Delta urban agglomerations. Direct
fights, weather, new fight routes, take-of, and landing capacity have amore critical impact on spatial airport delays.Te use of Internet
of Tings technology to perceive, analyze, and integrate multiple information of airport delay and combine spatial analysis models can
accurately mine delay characteristics and efectively achieve digital and intelligent fight delay management.

1. Introduction

Intelligent fight sensing and communication data can ex-
tract multidimensional data about aircraft fight trajectories,
weather, airport operations, and air capacity. Based on these
data, systematic analysis of the delay information in the
airport grid is the key to reducing the direct loss of pas-
sengers and carriers and promoting the economic devel-
opment of the civil aviation region. Delayed spatial grid
analysis combines the idea of the Internet of Tings (IoT)
network technology with the current research trend. Tis is
achieved by integrating passenger mobile data, aircraft
operation information, meteorological distribution infor-
mation, and airport status information. Based on the
analysis of fight information, Chen et al. calculated the
indirect economic impact of fight delays on the Chinese

economy and concluded that the total indirect infuence in
2013 was 355.71 billion RMB, which also stressed the im-
portance of controlling fight delays [1]. Except for China,
the Federal Aviation Administration (FAA) has proposed
that the increase in fight delays endowed tremendous
pressure on the US air travel system with billions of dollars
loss of airlines, passengers, and society annually. In 2007, the
economic losses caused by airlines amounted to 8.3 billion
dollars, and the losses included increased staf, fuel, and
maintenance costs [2, 3]. Also, Air Trafc FlowManagement
(ATFM) estimated the total cost of delays in Europe (in-
cluding all causes and reaction costs) to be 1.15 billion euros
in 2011.Te average delay cost for delayed fights has already
reached 1,660 euros [4]. Flight delays have brought a sig-
nifcant impact on the global economy, emphasizing the
importance of controlling fight delays.

Hindawi
Mobile Information Systems
Volume 2023, Article ID 1987326, 11 pages
https://doi.org/10.1155/2023/1987326

mailto:xshjiang@bjtu.edu.cn
https://orcid.org/0000-0001-6217-2762
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/1987326


Except for the enormous economic cost loss, the direct
consequence of fight delays has reduced the on-time per-
formance, which is also a widespread concern in the civil
aviation industry. In 2017, 2.895 million China’s passenger
airlines were on time (4.039 million fights in total), and the
average fight rate was 71.67%. Several primary reasons for
the fight delay include air carrier problems, extreme
weather, and air trafc control [5, 6]. Beyond that, spatial
correlation can also lead to the propagation efects of airport
delays. By using machine learning to simulate the aircraft
operation, delays in the fight of one aircraft can afect the
subsequent fight, which ultimately leads to delays in the
propagation of airport pairs [7, 8]. By integrating the sensor
communication information among the airports, routes, and
aircraft, the airport delays have formed an extensive delay
grid information system. How to accurately analyze the
spatial relationship between multiple airports in the delay
grid and lucubrate their determinants has become signifcant
and challenging issues for civil aviation delay.

At present, the combination of new technologies such as
the Internet ofTings, big data, artifcial intelligence, and 5G
communication with airport operation management has
begun to receive attention [9–11]. Among them, the intel-
ligent analysis of delay management and control is also one
of the research contents using the new scientifc and tech-
nological revolution and industrial reform. Analyzing and
integrating various information and element resources of a
fight delay can help fnally realize digital and intelligent
decision-making on delay prevention, control, and mitiga-
tion. It is the extensive application and deep integration of
new-generation technologies such as the Internet of Tings,
big data, and artifcial intelligence in delay analysis. In
addition to intelligent data mining, an efective analysis
model is also the key to studying the distribution charac-
teristics of delay in the airport grid.

About correlation between delay information system
and spatial airport grid distribution, Hansen and Hsiao used
the econometric model to examine the daily mean of 32
airports’ take-of delays in the United States from a time
dimension.Te trend efects, including aircraft queues, fight
schedule, and meteorological conditions, are statistically
analyzed [12].Tey found that the increase in total fight and
operation demand would aggravate airport delays in the
airport grid distribution. Te delay efect of the destination
and route weather counted on the number of fights. Zou
et al. conducted a comprehensive empirical analysis on the
impact between fight delays and fight frequencies in the US
air transport system [13]. Te results showed that fight
frequency had a positive impact on fight delays. Duran-
Fernandez and Santos found four critical variables that can
explain delays in European airports (market concentration,
coordination, hub airports, and hub airlines) [14]. In
Europe, although the fight delay at the hub airport was
higher than that of the nonhub airport, the fight delay of the
hub airline was lower than that of the nonhub airline, which
explained why the spoke-type hub system in Europe was not
comprehensive, and the degree of control about the take-of
and landing of airports was incomplete. Lall frst attempted
to use the count regression model to investigate delays and

delay determinants among the three airports in New York
City [15]. Te Poisson regression model and the least-
squares regression model were used to analyze the infu-
encing factors of New York airport delay, while severe
weather had the most signifcant impact on expected delays.

Since the relevant studies are interdisciplinary, scholars
have used various parameters or nonparametric methods in
their research. However, the study on the airport delays from
the spatial grid is scarce, fragmentary, and unmethodical.
Terefore, the contributions of this paper include (1) ex-
ploring the spatial grid pattern of fight delay at the city level;
(2) evaluating the comprehensive spatial autocorrelation of
delays between airport grids; and (3) quantitatively identi-
fying the geographical distribution characteristics of each
delay determinant and calculating its impact degree by
processing the fight sensing and communication data. Tis
paper uses spatial regression models to analyze the corre-
lation and determinants of delays among multiple airports,
and the results can provide a reference for the focus of delay
prevention and control in diferent regions in air trafc
management.

Te results and multivariables statistics methods are
reported in Section 2, which also show the relevant ex-
planatory variables in this analysis. Section 3 presents the
method of modeling. Section 4 discusses the methodology,
and Section 5 provides conclusions and policy
recommendations.

2. Multivariables Determination by Big
Data Mining

Te Internet of Tings and big data application needs to be
implemented based on the various fight delay activities and
operations. Figure 1 shows the elements of the airport grid
operation and correlation. According to these elements, we
propose an airport grid of delay element framework based
on the Internet of Tings technology, which divides into
three categories (operation control, aviation meteorology,
and collaborative interaction). In Figure 2, the three cate-
gories include fight plans, aircraft track, aircraft perfor-
mance, operation rules, fow control data, meteorological
data, airport collaboration, company collaboration, pas-
senger collaboration, and other determinants.

Te intelligent sensing and communication data of
airport delay IoT structure processed were from the Civil
Aviation Administration of China, the Statistics Bureau,
and the Beijing Capital International Airport database with
route conditions and corresponding weather information
system data. However, the weather database is an hourly
record, and the fight database is not always consistent with
other items. Terefore, in data processing, the database is
divided into route (including real time fight route mon-
itoring, spatial positioning and tracking, passenger
movement, and other data) and weather type. According to
the 2017 Civil Aviation Development Statistics Bulletin
issued by the Civil Aviation Administration of China, there
are ten major airlines i.e., Guide Air, Air China, China
Eastern Airlines, Hainan, Shenzhen, Sichuan, Xiamen,
Shandong, Shanghai, and Tianjin Airlines. Te executed
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fight volume accounted for 78% of the total fight volume,
but its average fight on-time performance was 66.9%,
which did not reach the average standard rate of all fights
in China. Te top 100 airports have almost covered the
whole major airlines and routes under the comprehensive
Chinese delay system. Terefore, the data are driven from
top 100 trafc volume and processed airports from January
1, 2017, to December 31, 2017, including airport fight
conditions, aircraft type, delay time, passenger load factor,
and weather at the corresponding time. Te data of the
collection are as follows.

2.1. Dependent Variable from IoT Structure of Airport Delay.
In the delay information system, the dependent variable is
the average delay time for 15 minutes or more relative to the
scheduled arrival/departure times. Te Civil Aviation Ad-
ministration of China has demonstrated the delays of air-
lines by the delaying of fights. In 2016, according to the draft
“Statistical Measures for the Regular Flight of Civil Aviation
(Consultation Draft),” the on-time fight referred to the
fight [16] that arrived at least 15 minutes (inclusive 15
minutes) after the scheduled arrival time. Te standard turn
time was set based on the airport passenger throughput
published by the Civil Aviation Authority in the previous
years, stipulating the maximum time from the withdrawal of
the airport to take-of. Table 1 contains the standard airport
turn time. Terefore, during the sample period of the study,
the calculation formula (1) and formula (2) for the delay time
of each fight in each airport are as follows:

ADij � ATAij − ETAij − Taxiingij, (1)

DDij � ATDij − ETDij − Taxiingij. (2)

Te total average time is as follows:

TDi � 
n

i�1,j�1
ADij + 

m

i�1,j�1

DDij

m + n
, (3)

where ADij, ADij > 0 indicates the arrival delay time of fight
j in airport i, ATAij means the actual arrival time, ETAij

represents the estimated arrival time, DDij, DDij > 0 sym-
bolizes the departure delay time of fight j in airport i, ATDij

intimates the actual departure time, ETDij is the estimated
departure time, and Taxiingij indicates the standard turn
time. TDi implies the average delay time of airport i, n is the
total number of fights arriving, and m signifes the total
number of fights departing.

2.2. IndependentVariable from IoTStructure ofAirportDelay.
Te concept of the IoT is to connect any object with the
network. Objects exchange and communicate information
through information dissemination media to achieve in-
telligent identifcation, positioning, tracking, supervision,
and other functions. Bringing the idea of the IoT into the
analysis of fight delay can help research on mining in-
formation data related to delay from the systems per-
spective and as independent variables. Independent
variables include average passenger throughput for each
shift and average take-of and landing times for all aircraft
at the airport each day, which are from the fight database of
the Civil Aviation Administration, intelligent airport
sensing, communication datasets, and summarized by
shifts and hours.

Due to the inconsistent minimum spacing required
between aircraft pairs, aircraft take-of and landing can
afect airport capacity, resulting in fight delays, especially
when instrument conditions are in efect [17–19] through
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aircraft positioning data. Aircraft types will also afect
airport delays, especially in heavy-duty operations where
mixed take-of (landing) has the most signifcant adverse
impact.

Considering the capacity and airspace constraints in
terms of airspace, the number of fights can refect the
congestion of the airspace. Duestablished delay causality
grid (DCG) based on the Granger causality test and
determined the airports associated with the delayed
propagation links of the airports [20]. Figure 3 shows the
directed grid which includes building DCGs and
counting the number of fights between the two airports
to refect the number of airspace congestion routes at
each airport.

In terms of airlines, through fight and passenger
tracking data, considering the actual average capacity, the
number of direct fights from each airport and the number of
new direct fights to and from the port are independent
variables. Te increased demand (obtained through the
movement trajectory of passengers’ mobile information) has
imposed the busy degree of airports and airlines, especially
the hub airports. Te average airport capacity will directly
afect the air trafc congestion, thus afecting the take-of
and landing time of aircraft, so it is necessary to consider the
number of direct fights from each airport since direct fights
are the decisive factor that can directly lead to the delay of
the next fight. At the same time, the continued high in-
creasing for new air routes has complicated the crowded
airspace structure.

Te weather system is an indispensable factor in the “IoT
network” of airport delays. Lousy weather conditions can
lead airport dysfunction and cause delays in almost all
operation phases. Besides, due to adverse weather events,
airport visibility will be reduced, resulting in large-scale
airport delays. Previous studies analyzed the visibility in
detail and collected various weather elements that afect
airport visibility [20–22]. In the delay information system,
regarding the daily weather conditions of each airport
meteorological bureau (such as the visibility afecting air-
craft take-of and landing), he sorted out the weather
conditions of re-air fight and ground take-of and deter-
mined the factors that would afect the delay. All subweather
variables would integrate into a total weather variable. Te
counting method is as shown in formula as follows:

WEA �
1, if delay occurs by weather,

0, otherwise
 . (4)

According to the meteorological radar big data from
airport grid IoT structure, the conditions for weather se-
lection are as follows [13, 25]:

(i) If there is a severe thunderstorm reported within
50 miles of the airport, the indicator variable will
take a value of 1; otherwise, it is zero.

(ii) In the route, there are moderate and heavy road
thunderstorms with a value of 1, otherwise zero.

(iii) Te airport has heavy snow (24 hour snowfall
between 5.0 and 10mm) or blizzard (24 hour
snowfall above 10mm) with a value of 1, otherwise
zero.

(iv) Tere is heavy rain at the airport (precipitation
with a rainfall of more than 16mm per hour, or a
continuous rainfall of more than 30mm for 12
hours, or precipitation with a rainfall of more than
50mm for 24 hours). Te value is 1; otherwise, it is
zero.

(v) Strong winds will appear at the airport (is above
level 4) with a value of 1, otherwise zero.

(vi) Haze weather at the airport (greater than 80%) has
a value of 1, otherwise zero.

(vii) When the airport cloud level is lower than the
lowest decision height (10 meters) of the instrument
landing level, the value is 1; otherwise, it is zero.

(viii) Te sandstorm storm at the airport (less than 1 km)
takes the value 1, otherwise zero.

With the above research on the relationship between
airport delays and related factors, the relevant variables of
nine airport delays have been obtained based on intelligent
sensing and communication data collation and statistics (as
shown in Table 2).

3. Methodology

Spatial efects and autocorrelation tests must be carried out
frstly on critical variable data before modeling in the delay
information system. If a spatial efect exists, a spatial re-
gression model will be further constructed to reach esti-
mated measurement.

3.1. Spatial Correlation between Airport IoT and Other In-
dependent Variables. Before studying the spatial correlation
between airport IoT and other independent variables, it is
necessary to determine the spatial correlation of delay be-
tween the airport grid. In order to detect the spatial rela-
tionship between delays, it is necessary to carry out a Moran
I index test among multiple airport pairs for the average
concentration of airport delays in spatial units and test the
similarity, diference, or independence of airport delays
across China.

Table 1: Standard airport turn time.

Airport size Standard ground turn time (min)
Domestic airport and overseas airport with annual passenger throughput≥ 20 million passengers 30
Domestic airport with annual passenger throughput≥ 10 million passengers 25
Domestic airport with annual passenger throughput≥ 5 million passengers 20
Domestic airport with annual passenger throughput< 5 million passengers 15

4 Mobile Information Systems



Moran’s I is ranging from −1 to 1, where if the val-
ue > 0, it indicates a positive correlation, as a high (or low)
delay airport is adjacent to a high (or low) delay airport.
Value < 0 indicates a spatial negative variable correlation,
indicating that a high-delay airport is adjacent to a low-
delay airport; when the index is equal to 0, there is no
spatial relationship between airports. Te higher the
spatial correlation between airports, the greater the ab-
solute value of the index will be. Equations (5)–(7) is as
follows:

I �


n
i�1 

n
j�1 wij xi − x(  xj − x 

S
2


n
i�1 

n
j�1wij

, (5)

S
2

�
1
n



n

i�1
yi − y( , (6)

y �
1
n



n

i�1
yi, (7)

where I represents Moran’s I, n is the number of airports in a
Geospatial space, xi and xj are the delay values of airport i
and airport j, respectively, wij is an element of the space
weight matrix, and x is the average of all observations for an
attribute feature, x, in n study areas.

On the other hand, in the airport grid, the phenomenon
of delay accumulation between local airports is measured by
the Moran scatter plots and LISA aggregate plots, which can
refect the degree of association between an airport and its
neighboring airports. Te Moran scatter plot is calculated as
follows:

II �
xi − x(  

n
j�1wij xj − x 

S
2

. (8)

Te LISA aggregation graph enables visualization
operations to be performed directly on the map by
delaying aggregation. It has pronounced and intuitively
showed the spatial distribution of delays situation in the
located area.

Table 2: A summary of key variable statistics of airport delay IoT structure.

Variable Description Min Max Mean Std.
dev.

TD Airport average delay time (min) 18.31 49.22 32.57 7.01
AAC Actual airport average capacity (seat/fight) 40.40 86.80 66.90 9.34
DFC Number of direct fights from each airport (count) 16.86 1636.33 253.49 310.98
NDF Number of new added fights to and from each airport (count) 114.00 1499.00 163.73 135.73
PTD Average number of passengers arriving (departing) at each airport (person/fight) 4.00 247.00 57.19 50.38

ATL Te average number of landings of the total aircraft arriving (departing) at the airport every
day (count) 0.00 32.00 10.78 7.88

NHA Airport heavy aircraft ownership (count) 149.00 333.00 238.66 39.08
ACR Airspace congestion route (count) 0.00 1619.00 144.80 248.62
WEA Delay weather conditions (count) 1.00 29.00 5.89 6.15

3750 750 1, 500

N

Kilometers

Figure 3: Delayed causal grid of the Granger causality test.
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3.2. Spatial Weight Matrix by Route Tracking Position Data.
According to route track positioning data of aircraft, dif-
ferent from spatial neighboring weight matrices, airports
cannot directly determine whether they are contiguous. Te
distance has a direct impact on the delays between the
departure and arrival airports [23]. Terefore, the distance
matrix can select as the spatial weight matrix. Te formula is
as follows:

wij �

�������������



n

i�1,j�1
xi − xj 

2




. (9)

After reciprocal distance processing, geographic distance
matrix is established and standardized processing is com-
pleted as formula (10) and formula (11):

wij �

w11 · · · w1n

⋮ · · · ⋮

wn1 · · · wnn

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (10)

wij �
wij − minw

maxw − minw
. (11)

Te space distance matrix of airport delay includes a set of
airport pairs (that is, two-dimensional array).Terefore, givenN
airports in the Euclidean space, the distance matrix is a sym-
metric N∗N matrix with nonnegative real numbers as ele-
ments. In the spatial delay analysis, the greater [24] the distance
is, the smaller the impact of airports on the delay will be.

3.3. Modeling. In order to analyze the correlation of the key
factors in the airport delay Internet ofTings, we established
a spatial regression model for analysis. Spatial econometric
regressionmodels can be achieved in many forms [26], while
spatial lag models and spatial error models are commonly
used types. When airport delays have spatial grid efects, it is
necessary to establish a feature delay model that includes
spatial relationships. Ten, the spatial lag model or the
spatial error model can be applied based on spatial auto-
correlation and spatial heterogeneity.

Te fight delay impact function can be received based on
the analysis on the determinants of airport delays. Te
following equation is the basic quantitative regression
model:

TDit � α + β1AACit + β2DFCit + β3NDFit + β4PTDit + β5ATLit

+ β6NHAit + β7ACRit + β8WEAit + μi + λt + εit.
(12)

After determining the spatial correlation, in the analysis
of the delay characteristics, except for the estimation of the
OLS estimation, it is necessary to consider the spatial re-
gression model of spatial efects. Terefore, with the base of
the traditional regression model, extra spatial weight matrix

can be adopted.Te spatial Dubin model can be transformed
to a spatial lag model (SLM) and a spatial error model (SEM)
by setting constraints (when ω � 0), so as to establish the
only spatial Durbin model, and the model can obtained as
the following equation:

TDit � α + δWTDit + β1AACit + β2DFCit + β3NDFit + β4PTDit + β5ATLit + β6NHAit + β7ACRit

+ β8WEAit + θ1WAACit + θ2WDFCit + θ3WNDFit + θ4WPTDit + θ5WATLit + θ6WNHAit

+ θ7WACRit + θ8WWEAit + μi + λt + εit.

(13)

Te above model can also be displayed as the following
equation:
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TDit � α + δ 
100

j�1
wijTDit + β1AACit + β2DFCit + β3NDFit + β4PTDit + β5ATLit + β6NHAit

+β7ACRit + β8WEAit + θ1 

100

j�1
wijAACit + θ2 

100

j�1
wijDFCit + θ3 

100

j�1
wijNDFit

+θ4 

100

j�1
wijPTDit + θ5 

100

j�1
wijATLit + θ6 

100

j�1
wijNHAit + θ7 

100

j�1
wijACRit

+θ8 

100

j�1
wijEAit + μi + λt + εit,

(14)

where TDit is the explanatory variable, WTDit is the spatial
lag term of the explanatory variable, δ is the spatial
autoregressive coefcient, AACit, DFCit, PTDit, ATLit,
NHAit, ACRit, and WEAit are the explanatory variables,
WAACit, WDFCit, WPTDit, WATLit, WNHAit, WACRit,
and WWEAit are the spatial lag term of the explanatory
variables,W is the 100×100-order spatial distancematrix, θn

is the explanatory variable space lag term coefcient, βn is the
regression coefcient, n � 1, 2, 3, 4, 5, 6, 7, 8, μi means a
spatial efect, λt means time efect, εit is random error term,
εit � ω

100
j�1 Wijεit + ϕit is spatial autocorrelation coefcient

of error term, and ϕit is error term of independently and
identically distribution.

4. Results

According to the data of delayed IoTmining and combined
with the spatial model, the results in Table 3 show that the
goodness of ft R2 for the basic model is 43.6%, and the
adjusted R2 is 40%. F value is 8.8. Te model passes the 1%
level of the signifcance test, reaching obvious DFC and PTD
on level 0.01, NHA, NHA, and WEA on level 0.05, while
AAC, PTD, ATL, and ACR have passed a 10% level of the
signifcance test.

As for the spatial correlation with diferent factors
among the airports, four levels can describe the interspecifc
association, including high, higher, lower, and low. By ap-
plying regression analysis to all relevant determinants in the
airport IoT network considering the average delay time, the
spatial distribution of airport delay determinants can
maintain the pattern of “high delay in the East and South
area” and “low delay in the north and west area.” Only a few
airports have a diferent distribution.

About airport delay IoT grid distribution, Figure 4(a)
shows that high-high agglomeration airports in North China
have PEK, NAY, and TSN.Te Yangtze River Delta region is
an another high-high agglomeration area for fight delays,
mainly including SHA, PVG, NKG, CZX, HGH, and NGB.
Te high-low clusters are mainly distributed between CTU,
CAN, KMG, CKG, XMN, SYX and LJG, LZH, WXN, TCZ,
while HTN, HLH, YIN, HET, and other airports are low-low
clusters.

Figures 4(b)–4(i) show the delay factor distribution
from AAC to WEA under the intelligent sensing and
wireless communication data analysis. With the delay
aggregation graph, the infuence degree on each

determinant of delay on the regional distribution is dis-
crepant, except the hardest-hit areas located in Beijing,
Shanghai, and Guangzhou. On the other hand, it is worth
noting that critical delays have also occurred in Xizang.
Combined with the correlation analysis of delay factors, the
results present that the infuencing factors do not play a
decisive role in Xizang delay. Terefore, besides the
infuencing factors, the delay in Xizang may also be caused
by airport operation failures.

For the determinants in the IoT structure of airport
delay, the AAC aggregation map can express the distribution
of airport fow and capacity delays. Trafc can delay dis-
tribution, concentrated in the Shanghai Pudong Airport and
Shanghai Hongqiao Airport, as a high-high agglomeration
area in the AAC variable. Beijing Capital International
Airport, Guangzhou Baiyun Airport, and Shanghai’s two
airports have a high-high cluster (means the delays situation
of airport and its nearby airports in the surrounding areas
are both serious.) at the DFC, NDF, and PTD airports.
Except for the metropolises and frst-tier cities, airports
worthy of attention include Yunnan Changshui airport,
Inner Mongolia Baita airport, and Sanya Phoenix Airport.
As a tourist city with high demand throughout the year, they
have a high degree of agglomeration in NHA, ACR, WEA,
and PTD.

Moran’s I that calculated with the GeoDa software has
displayed the 0.67 airport delay, indicating that the airport
delay is not entirely random in spatial distribution with
specifc spatial correlation. Figure 5 is a scatter plot of
Moran’s I. Tis shows that the spatial big data mined from
each fight path in the airport IoT has spatial correlation in
the airport delay grid.

Table 4 shows the regression results for OLS, SLM, and
SEM. Comparing the basic model and the spatial model, the
Log L values of SLM and SEM are more signifcant, the AIC
value and the SC value are smaller than OAS’s AIC and SC,
the spatial model is better than the basic model, and the
ftting efect is also better than OLS. Terefore, the tradi-
tional regression model may have specifc limitations in
analyzing delay, which also implies the necessity of the
spatial regression model. On the other hand, comparing
SLM and SEM, it is found that the SLM has a more sub-
stantial Log L value, a more signifcant LR value, a smaller
AIC value and an SC value, and a better SLM estimation
efect. Te result shows that the delay between China’s
airports has a strong proximity efect, while the spatial
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heterogeneity of delays (errors) is relatively weak. In the
SLM model, the airport delay has signifcant spatial efects
with spatial correlation coefcient ρ� 0.9863, indicating that
100 airport delays have an extreme spatial dependence under
the proximity efect in the airport grid.

As aforementioned, it is vital to provide some policy
suggestions to reduce the aiport delay, as shown by
conducting statitical analysis to the relevant intelligent
fight sensing and communication data and combining the
correlation degree of each determinant to airport delay in
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Figure 4: Aggregation map of an airport delay IoT system. (a) Te distribution of delay grid. (b) Te distribution of AAC. (c) Te
distribution of DFC. (d)Te distribution of NDF. (e)Te distribution of PTD. (f )Te distribution of ATL. (g)Te distribution of NHA. (h)
Te distribution of NHA. (i) Te distribution of WEA).

Table 3: Te results of OLS model with multivariable in airport delay IoT.

Variable
Ordinary least square (OLS)

Coef Std. err z P

AAC −0.0333 0.0374 −0.8898 0.3759
DFC 0.2881 0.0903 3.1908 0.0020
NDF 0.2252 0.0636 3.5436 0.0006
PTD −0.0640 0.04461 −1.4333 0.1552
ATL 0.2706 0.1812 1.4932 0.1388
NHA −0.0419 0.0163 −2.5669 0.0119
ACR 0.0145 0.0295 0.4921 0.6239
WEA 0.1077 0.0517 2.0816 0.0402
Constant −0.3461 0.9085 −0.38092 0.7042

R2 R2 (adj.) F-statistic Prob (F)
0.4359 0.3963 8.7897 7.82369e− 009
LogL. AIC SC
19.8936 −21.7872 1.6594
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the spatial dimension. Due to the diferent scales, systems,
and natural conditions, the policy should consider the
diversity of the environmental conditions among the
airports especially in the rapid development stage of IoT
technology. Te number of direct fights and new fights
has a more signifcant impact on airport delays. However,
in recent years, the quantity demand and planning of new
airports and fight routes would increase by verging to
multifold levels. Te overall optimization can funda-
mentally reduce airport fight delays and control the
economic loss while meeting the transportation demand.

Take-of and landing conditions in the delay IoT system
are also important factors that afect the fight delay. Airport
congestion mainly comes from aircraft operation fow and
fight capacity. Combined with the spatial distance, taking
the delay impact of regional infuencing factors into account
as airport take-of and landing queue structure adjustment
and evacuation may bring unexpected benefts to solve the
delay issues. In the airport IoT network, fight delay also
needs to consider a transmission delay. Te congestion of
airspace capacity would also afect the operational structure
of the airport. On the other hand, although the passenger
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Figure 5: Moran’s I scatter plot.

Table 4: Comparison of regression results between SLM and SEM.

Variable
SLM SEM

Coef. Std. err z P Coef. Std. err z P

AAC −0.005 0.01367 −0.388 0.6978 0.0032 0.01586 0.2029 0.8392
DFC 0.0968 0.03364 2.8789 0.004 0.0849 0.03777 2.2485 0.0245
NDF 0.0616 0.0238 2.5882 0.0097 0.0247 0.02836 0.8706 0.384
PTD −0.012 0.01716 −0.667 0.5045 −0.003 0.01913 −0.133 0.8944
ATL 0.0639 0.06781 0.9424 0.346 0.0403 0.07643 0.5273 0.598
NHA −0.009 0.00609 −1.377 0.1687 −0.003 0.00682 −0.315 0.7524
ACR −0.014 0.01079 −1.301 0.1934 −0.017 0.01209 −1.397 0.1623
WEA 0.02 0.01952 1.0252 0.3053 0.006 0.02285 0.2642 0.7917
WAAC −0.031 0.07891 −0.393 0.6943 −0.019 0.08889 −0.215 0.8301
WDFC −0.12 0.08469 −1.416 0.1569 −0.086 0.09464 −0.905 0.3655
WNDF −0.049 0.12212 −0.395 0.6925 −0.022 0.13496 −0.165 0.8687
WPTD 0.0031 0.05811 0.0544 0.9566 −0.016 0.06491 −0.252 0.8012
WATL 0.0551 0.11145 0.4946 0.6209 0.004 0.12643 0.0318 0.9747
WNHA 0.0319 0.03677 0.8675 0.3857 0.0208 0.04078 0.51 0.61
WACR 0.0408 0.05215 0.7826 0.4338 0.0356 0.05909 0.602 0.5471
WWEA 0.0773 0.12081 0.6401 0.5221 0.0851 0.13443 0.6332 0.5266
Constant −1.088 0.37027 −2.938 0.0033 2.3556 1.12365 2.0964 0.036
ρ 0.9863 0.00931 105.99 0 — — — —
λ — — — — 0.9918 0.00564 175.99 0
R2 0.920964 0.89792
Log L 113.067 99.725176
AIC −190.134 −165.45
SC −143.241 −121.162
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throughput and the allocation of heavy aircraft will afect the
delay of the airport, they are negatively related to the delay in
the spatial. Terefore, when considering the allocation of
passenger fow and aircraft types, airlines only need to
consider its impact on the delay of a single airport.

Although the occurrence of fight delay is irresistible and
the recovery of delay is uncontrollable when special weather
conditions occur, the weather information system is a de-
cisive factor with particular regional characteristics.
According to the agglomeration distribution, in this case,
Sanya, Haikou, and Shenzhen are cities which greatly af-
fected by the weather. At the same time, due to the inter-
action of spatial distance between cities, marine climate
characteristics, and the weather among airports, there is a
strong correlation between the three airports in weather-
induced delays. Te weather conditions shall also be con-
sidered when the airport conducts a route schedule. How-
ever, from the overall point of view, compared with other
determinants, there are few and concentrated areas strongly
afected by weather factors. So, it is relatively easy to improve
the delay in the high concentration area caused by weather
factors.

 . Conclusion

Te Internet of Tings, big data, artifcial intelligence, 5G,
and other new technologies are still in continuous im-
provement. With these technologies, fight delay has formed
a framework of delay mining technology systems in smart
airport grids with advanced technology, open data fusion,
security, and reliability. After the data set of airports, aircraft,
fights, and passengers is collected through the IoT tech-
nology, this paper frstly utilized spatial autocorrelation to
process multivariables-delay determinants (using intelligent
fight location and communication data) and analyzed the
spatial distribution characteristics of the airport delays grid
in China. Basic regression models and geographically
weighted regression models were then used to study the
driving factors and regional diferences in an airport delays
information system.Te results demonstrated the validity of
the spatial econometric regression model. Secondly, the
spatial aggregation characteristics of China’s airport delays
were high aggregation and low accumulation, while DFC,
NDF, and WEA positively correlated with the delay time. At
the same time, the results of the geographically weighted
regression model revealed that diferent spatial diferences
between multiple factors would lead to diverse efects of civil
aviation delays. Te spatial regression model can more
systematically and intuitively understand various determi-
nants in the airport system in diferent regions. Tis method
can also be applied to other relevant studies, for example,
time-space analysis of delay factors, or apply the fndings to
delays in the study of systemic grid structure propagation
and delay assessment.

Te delay space analysis of the aircraft execution process
is an efective measure to ensure the operation of fights. Te
results of delay distribution in the airport grid are directly
related to the adjustment and control of fight operations.
Based on the analysis of multiple determinants, big data and

multiattribute data excavated by the Internet of Tings
application development techniques are used to conduct
spatial assessment modeling. From the perspective of fight
trajectory, weather, and passenger demand learning, it is
signifcant to explore the spatial distribution level, delay
difusion level, and determinants of delay during fight
execution. Furthermore, the results of spatial delay analysis
can help the airport IoT technology to reallocate fight
operation support equipment and facilities according to the
distribution of abnormal areas involved in a fight delay.
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