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Lane mark detection is an important task for autonomous driving. Many researchers have proposed many models. But the driving
environment is much more complex, especially for some challenging scenarios, such as vehicle occlusion, severe mark deg-
radation, heavy shadow, and so on. It is difficult to detect lane mark in a limited local receptive field under the above scenarios. For
that reason, we propose a lane mark detection network based on multihead self-attention. It can find spatial relationships among
lane mark points in the global viewpoint and enlarge its feature map’s receptive field equally. For further extracting global and
contextual features, it fuses global information and local information together to predict classification and location regression.
Finally, it can promote accuracy of lane mark detection greatly especially in challenging scenarios. In the TuSimple benchmark, its
accuracy is 95.76% overwhelming all other methods, and its FPS is 170.2, which is the second-highest one. In CULane benchmark
its F1 achieves 75.55% and FPS reaches 170.5. Both of them are the highest compared to other methods. Our proposed model
establishes a new state-of-the-art among real-time methods.

1. Introduction

Lane detection [1, 2] based on vision sensors is one of the
core technologies in the auto-driving field. Currently, it is
not only an important foundation for lane departure
warning and lane keeping functions but also a key tech-
nology to accomplish ADAS (advanced driving aided sys-
tem) [3, 4]. However, there are so many sorts of lanes in the
realization world. For example, there are solid, broken, dash,
merging, and splitting lanes. Lane patterns are diverse.
Besides that, there are some challenging driving scenarios,
including those involving heavy shadows, severe vehicle
occlusion, and severe road mark degradation. Even so, there
are some corner cases such as merging and splitting. In an
urban environment, lanes are susceptible to illumination,
load wear and tear, occlusion, etc. It is more challenging and
makes a higher claim to algorithm generalization and
robustness.

To resolve those existing problems, many researchers put
forward some different technical solutions. In traditional
computer vision, it heavily depends on some assumptions,
such as that lanes and boundaries are continuous and

parallel [5]. Also, it utilizes edge detection operators, a
histogram, prior knowledge, and recognition to extract lane
candidate points. Finally, it takes advantage of line fitting or
the Hough [6-9] transformation to obtain the lane line
parameters. More recently, the development of CNN se-
mantic segmentation [10-16] or instance segmentation
[17-21] is paid most attention. It extracts spatial or structural
information between pixels or from slice to slice in the
process of lane detection [22-26]. Although it can resolve
some challenging scenarios like vehicle occlusion, severe
road mark degradation, and heavy shadows, its huge
computation cost and much slower speed hinder its real-
time application and performance, as shown in Figure 1.
Consequently, recurrent neural networks, long short-term
memory, gated recurrent neural networks, and attention
mechanisms have been firmly established. They do well in
coping with time series signal processing and sequence
modeling. Especially for lane line occlusion, it can extract
textual or semantic information from continuous frames.
In this work, we present a lane mark detection network
based on multihead self-attention [27]. It is a lightweight
model and is applied in real-time application. Its accuracy is
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FiGure 1: Illustration of challenging scenarios in lane mark de-
tection. Most challenging scenarios are vehicle occlusion, huge
shadows, and severe road mark degradation which result from lane
detection difficulties.

much better than most state-of-the-art models. TuSimple
and CULane are used as our benchmarks to evaluate our
experimental results. This paper has three extensions, as
follows:

(i) A lane mark detection network based on anchors
and multiheader self-attention: we propose a new
network architecture combining row anchors with
multiheader self-attention. It promotes accuracy a
lot compared with that in [17, 28-32].

(ii) Multiheader self-attention mechanism: we propose
a multihead self-attention method to extract global
information, which further improves the
performance.

(iii) Presentations and experiments: two datasets are
collected for performance evaluation. One is
TuSimple dataset, and the other one is CULane
dataset. These two benchmarks are utilized for
quantitative evaluation for different scenarios, such
as city lanes and rural lanes, in day and night
conditions. It can promote the research and de-
velopment of autonomic driving.

2. Related Work

In the past two decades, researchers have made great efforts
on lane detection technology. Especially when DCNN,
LSTM, and Attention emerge, it brings a new viewpoint to
lane detection methods. Totally, these methods are sorted to
some categories such as traditional methods, segmentation
network, anchor-based methods, and attention-based
methods. In this section, we briefly summarize each
category.

2.1. Traditional Computer Vision-Based Lane Detection.
Generally speaking, traditional computer vision methods are
mainly concerned with gray images, edge detection opera-
tors, and ROI in order to detect lane edges. Generally, it
divides lane detection into two stages. One stage is lane edge
searching and detection. During lane edge detection pro-
cessing, it takes the IPM transformation, Sobel operator,
Gaussian filter, steerable filter [33], and Gabor filter [34]
with kernels in different directions, gradient, color, and
texture. The other stage is lane fitting. So, many methods are
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extensively exploited to fit lane line; the input is a gray image,
not the original RGB image. It brings about multi-
preprocessing methods such as template matching [35],
Hough transformation, polar randomized HT [36], curve-
line fitting, Catmull-Rom spline [37], B-snake [38], and so
on.

2.2. Lane Detection Based on Segmentation. Global infor-
mation, local information, textual information, and se-
mantic information are very important for lane detection,
especially in vehicle occlusion scenarios. The segmentation
network intensifies communication among pixels in a larger
receptive field. The main research directions are as follows:

(1) Pixel-wise segmentation: the authors in [39] propose
atrous convolution and bilinear interpolation to
acquire a larger receptive field in order to get much
higher classification accuracy. It utilizes atrous
spatial pyramid pooling with different sampling rates
to aggregate multiscale feature maps. It also takes
fully connected CRF [18] to interact with pixels to
accomplish lane edge localization and classification
precisely. But its huge computation is boring for real-
time applications. For better efficiency, the authors
in [17] propose spatial CNN (SCNN), which limits
communication from slice to slice and not pixel to
pixel. Every layer takes former input to apply con-
volution operation and nonlinear activation, and
sends result to the next layer sequentially. Similarly,
SCNN treats rows or columns of feature maps to
communicate with each other. So, it reduces com-
putation greatly compared with that in [39]. But its
computation speed is lower than 10 frames per
second.

(2) Row-wise or column-wise segmentation based on
the anchor. Lane detection based on pixel-wise
segmentation [40-42] requires more computational
cost, and it also cannot cope with challenging con-
ditions such as severe occlusion and extreme lighting
conditions because of its limited receptive field. For
that reason, the authors in [43] propose a row-wise
DNN network oriented on row anchors. Its back-
bone is based on ResNet. Lane detection is described
as selecting certain cells. Its loss functions include
classification loss, location loss, and structure loss.
The row anchors are predefined and include w + 1
dimensions. So it can pay more attention to global
information and contextual information. The com-
putation cost is closely connected with anchor
numbers, anchor dimensions, and lane quantity; it
has nothing to do with image pixels. Therefore, it
reduces computation cost greatly and promotes lane
detection accuracy in no-visual-clue condition [44].
In some studies, the authors put forward a sparse
top-down formulation with a large receptive field
opposite a down-top formulation in the segmenta-
tion network [28, 45-47]. The reason is that tradi-
tional segmentation networks have some
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shortcomings, such as its computation speed is much
slower and has a no-visual-clue problem. To resolve
it, a hybrid anchor framework including row anchor-
driven and column-anchor-driven representations
are proposed, where the former is better for ego lane
detection and the latter is right for side lane de-
tection. To cope with global information, it proposes
ordinal classification losses, including base classifi-
cation loss and mathematical expectation loss. The
space between classes is continuous.

2.3. Lane Detection Based on Attention Mechanism. The
authors in reference [48] propose an attention-guided lane
detention model. It utilizes different backbones to extract
features such as ResNet-18, ResNet-34, ResNet-101, and so
on. But extracting feature maps by means of a DCNN
network like the ResNet model easily results in a narrow
receptive field. So it adopts a self-attention mechanism to
produce a weight vector for every local feature vector. Fi-
nally, it implemented matrix multiplication to obtain a
global feature map. By doing this, it can predict the lane’s
existence and its position under conditions of occlusion. [49]
proposes expanded-self attention (ESA) module to extract
global contextual information. Its main purpose is to divide
ESA into HESA (horizontal expanded-self attention) and
VESA (vertical expanded-self attention), respectively. Every
one predicts the probability of lanes along the horizontal and
vertical directions. It is easily seen that it enlarges the re-
ceptive field and acquires global contextual information. So
it can promote lane detection accuracy, especially in oc-
clusion scenarios.

3. Proposed Approach

In this section, we put forward a lane detection network
based on multihead self-attention. Meanwhile, it combines a
typical DCNN network such as ResNet-34 with two pre-
diction subnetworks, one for classification and another for
regression.

3.1. System Overview. Lane lines represent all sorts of dif-
ferent shapes, types, and colors. For example, it includes
solid lines, dotted lines, straight lines, curve lines with
different curvatures, emerging lines, and splitting lines.
Besides those, some challenging conditions are difficult to
handle, such as heavy shadow, severe mark degradation, and
vehicle occlusion. Although DCNN is capable of extracting
feature maps with convolutions and pooling operations with
different kernel sizes and strides, but pooling operations
enlarge the receptive field while causing large position
offsets. So it requires a trade-off between receptive field,
classification, and position accuracy, especially for chal-
lenging conditions.

For that reason, we design a multihead self-attention
mechanism which taking feature maps of DCNN as inputs.
In order to obtain global information, we utilize multiheader
to match anchor vectors in different spatial positions. Every
head represents global contextual and semantic information
among anchors, as shown in Figure 2. So it can summarize
and fuse all the global information equally to expand re-
ceptive field. Therefore, it also improves classification and
location accuracy after sending global anchors to prediction
networks.

3.2. Network Design

(1) Backbone: its backbone is ResNet-34, imported from
torchvision.models.ResNet-34 which has four layers
and one fully connected layer. Each layer has dif-
ferent residuals, which are three, four, six, and three,
respectively. Its convolution kernel is three multi
three. The channel numbers are 64, 128, 256, and 512
separately. The output of ResNet-34 is a feature map
€ RO*HWo - For reducing dimension and
computation cost, it applies 1 x 1 convolution onto it
and  generates channel-wise feature = map

!
aloca_l c RCb XHb'Wb.
(2) Multiheader self-attention: we propose
ay, € RNXHbter’ A = [a%)ocal) alloca.l, . aiocal’ "
a}fcal, . ai{’,“_all] and N is the number of anchors. The

points of the feature map ay ., are composed of
anchors. Every row anchor is represented by (x;, y;)
coordinate frame where y; (i = 1,2,..., N,) is equally
spaced and predefined. x;(i =1,2,N,) is offset,
which is the horizontal distance between the pre-
diction line and the anchor line. N,, is the predefined
number in Y direction. It is easily seen that a
multihead mechanism can project the d dimension
queries, keys, and values h times including different
and learned linear projection matrices to get d di-
mension queries, keys, and values, such as

head; = Self Attention(alocalowg, alocaIOWiK, alocalowiv).
(1)
In self-attention mechanism, we compute it by
modified dot-product attention, which scales the dot

products by 1/+/dy. d; is represented by W,eH,,. The
process likes as follows:

. QK'
Self Attention (Q, K, V) = soft max[| —— |V. (2)

NZR

After we perform the attention function in parallel,
they will be concatenated as follows:

MultiHead (Qmultihead’ Kmultihead’ Vmultihead) = Concat (headl > headZ’ e headn)' (3)
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Finally, we will apply linear projection on multihead
to get agp, as follows:

C

aglobal = MultiHead (Qmultihead’ Kmultihead’ Vmultihead).w >

(4)

where the projections are matrices as follows:
W? € RHbObeHbOWb’ WII< € RHbObeHbOWb’
WY c RHbObeHbOWb, and Wc € R8~H;,-Wb><Hh-Wb' Ev-
ery head; e RVH*Wo(i=1,2,n) and n is the
number of heads shown as Figure 3. We also notice
that MultiHead € RN®*Wo*Hy S0, a . has the
same dimension as aj,;.

global

(3) Classification model and regression model: before
coming into the classification and regression models,
we will concatenate a;,,; and a,.p, together. Also, it
becomes an  augmented feature  vector
Ay € R>He*Ws S0, it will be pushed into the clas-
sification model L, and regression model L, eqsion-
Finally, Lg,, predicts lane line probability
C; ={cp»€1>-+sCjrr i} There are K + 1 probabili-
ties all together while K represents the number of
lane line and another class is for background or

invalid proposal. L predicts the offset set I, =

global

regression

(r, {xo,xl, v Xy ooy Xy ,1}). r is the number of valid
n

offsets in x direction.

(4) Loss function: in the process of training, we find that
the easy negatives can overwhelm training and lead
to degenerate models. To resolve it, we propose
focal_loss [49, 50] to act as the loss function of the
classification model and it follows as this:

Lclass (pt) = focal _loss (pt)’

(5
=-a,(1-p,)" logp,.

In our paper, we set a, = 0.25 and y = 2. For regression
model, we adopt Smooth L1 as the loss function. So, our loss
function for training combines those two loss functions
together. It is defined as follows:

N,

n-1

N,
Lossmtal (Ci’ li) = we Z Lclass (Ci’ cz*) + Lregression (li’ 11*)’
i=0

(6)

c;,1; represent prediction output of classification and re-
gression for anchor i, respectively, and ¢,1 are ground
truth of anchor i. For balancing factor w, we set w = 10.

4. Experiments

The widely-used TuSimple [51] and CULane lane detection
datasets are used to evaluate our model. In the TuSimple dataset,
there are 6,408 annotated images. We split it into a training set
(3,268), a validation set (358), and a test set (2,782). The
maximum lane marking number is 5. In the CULane [29, 52]
dataset, it is also split into a training set (88,880), a validation set
(9,675), and a test set (34,680). The maximum lane marking
number is 4.

4.1. Implementation Details. Every input image resolution is
H, x W, =360 x 640. It takes 15 epochs on CULane and
100 epochs on TuSimple, whose number of images is less
than the former. The learning rate is set at 0.0003, the batch
size is set at 8, the total anchor number N is set as 1000, and
the offset number N, is set at 72. All experiments are
computed on a personal computer with an 11" Gen Inter(R)
Core(TM) i7-11700@2.5 GHz and NVIDIA GeForce GTX
1660 SUPER.

4.2. TuSimple Dataset

4.2.1. Dataset Introduction. The TuSimple dataset includes
6,408 clips, where every clip consists of 20 frames collected in
one second. The last frame is labeled with lane ground truth.
All the images are of forehead driving scenarios on the high
way. The annotations and testing are focused on the current
and left/right lanes.

4.2.2. Evaluation and Testing Metrics. In order to compare
the performance with other methods, we calculate the ac-
curacy using default TuSimple metrics. It is as follows:
chipp clip
ZClipTclip
where P is the number of true prediction lane points in
current clip and T ;, is the total number of ground truth lane
points. A lane point is taken as a true positive if its distance from
the corresponding label lane point is less than or equal to 15
pixels. While those lane points with distance greater than 20 are
taken as negatives. Between them false positives and false
negatives are reported and anchors are also dropped. The testing
results of the multihead lane detection model based on the
TuSimple dataset are shown at Figure 4.

Accuracy =

> (7)

4.2.3. Results. To verify the accuracy of our model, we compare
it with several state-of-the-art models. We choose different
backbones, such as ResNet-18 and ResNet-34. The qualitative
results are shown in Table 1. We know that lane marker de-
tection is extensively applied in real-time conditions. So, it needs
high requirements for real-time. From Table 1, we can easily see
that the runtime speed of our proposed model can reach from
167.5 to 170.2. Generally speaking, the camera frame rate is
about 30 to 60 or so. So it can cope with it, and it will not cause
the jam. More importantly, the algorithmic flow of auto-driving
consists of perception, prediction, planning, and controlling.
From perception to planning, generally, it cannot surpass
100 ms. Therefore, it is better not to exceed 25 ms. The FPS of
our proposed models is between 5.875ms and 5.970 ms. It is
only 23.5% to 23.88%. Consequently, it can satisfy the real-time
requirements. But because the scenarios in the TuSimple dataset
are not relatively complex, our proposal model has a huge
amount of room to improve.

4.3. CULane Dataset

4.3.1. Dataset Introduction. The CULane dataset [52] com-
prises 55 hours of videos consisting of urban, highway, and rural
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FIGURE 4: Examples of generated scenes from a multihead lane detection model based on the TuSimple dataset.

TaBLE 1: Comparison among different lane mark detection models
based on the TuSimple dataset.

Model

Accuracy (%) FP FN  FPS

ResNet-18 [31] 9269 00948 0.0822 312
ResNet-34 [31] 92.84  0.0918 0.0796 169
ENet [32] 93.02 00886 0.0734 1354
2-head self-attention 9576  0.0407 0.0301 170.2
(ours)
4-head self-attention 9555  0.0339 0.0329 169.5
(ours)
8-head self-attention 9549  0.0414 0.0311 167.5
(ours)

The significance of bold values means they are the most accurate or they are
the lowest error rate.

FIGURE 5: Examples of generated scenes from a multihead lane
detection model based on the CULane dataset.

scenarios. All the images have a resolution of 1640 x 590. There
are 133,235 frames in total. They are split into a training set that
has 88,880 frames, 9,675 for validation, and 34,680 for testing.
The test set includes 9 challenging driving scenarios, such as
normal, crowd, highlight, shadow, arrow, curve, cross, night,
and no line.

4.3.2. Evaluation and Testing Metrics. For judging whether a
model detects a lane marker correctly, the metric is the F1
according to the CULane dataset’s official references. It
considers lane marking as a line with 30 pixel width. So,
predictions whose IoUs are greater than 0.5 are treated as
true positives. The testing results of multihead lane detection
model based on CULane dataset are shown as Figure 5. The
metric F; — measure is given as follows:

_ 2 x Precision x Recall

F. =
! Precision + Recall

TP
Precision = —— 8
recision TP £ FP (8)

TP

Recall = ————.
TP + FN

5. Results

The results of our model, along with those of other state-of-the-
art models, are shown in Table 2. We know that CULane dataset
is much complex compared with TuSimple dataset. It has more
challenging scenarios, such as crowd, highlight, shadow, and
night. So, we also see that our proposal model is best in
challenging scenarios, such as crowds, highlights, and nights. In
most challenging scenarios, we achieve better results, except in
the shadow scenario alone. We also know that lane marker
detection is sensitive to time. From the results of CULane
dataset, we can see that FPS of our proposed models is between
167.8 and 170.5 about. That is to say that it takes
5.865 milliseconds to 5.959 milliseconds from getting image
input to outputting lane marker points. From the previous
analysis, we can also easily see that it can satisfy not only the
camera frame rate but also the real-time requirements in auto-
driving scenarios.

5.1. Ablation Study. This experiment evaluates the impact of
the different-head self-attention mechanism in our proposed
model. In Table 3, we can easily see that the 2-head self-attention
model achieves the highest accuracy, which is 95.76%. But every
different-head self-attention model shows no obvious difference
in accuracy. It grows up only 0.33% between highest one and
lowest one. In Table 4, we also see that 8-head self-attention
overwhelms all other proposal models while increasing 0.12%
on Fl. The 2-head self-attention model achieves the highest
recall while leading 0.12% compared with the other two pro-
posal models. On precision 8-head self-attention, it outperforms
other proposal models, rising by about 0.47%. Analyzing the
results from the TuSimple dataset, we chose 8-head self-at-
tention to act as our lane detection model. Our main purpose is
F1 and precision. But we also know the difference is not
obvious.
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TaBLE 2: Comparison among different lane mark detection models based on the CULane dataset.
Model Total Normal Crowd Highlight Shadow Arrow Curve Cross Night No line FPS
SCNN [17] 71.60 90.60 69.70 58.50 66.90 84.10 64.40 1990  66.10 43.40 7.5
ERF-Net [29] 73.10 91.50 71.60 66.01 71.30 87.20 71.60 2199 67.10 45.10 85.87
R-34-SAD [28] 70.70 89.90 68.50 59.90 67.70 83.80 66.02 1960  64.60 42.20 75
R-34-E2E [30] 71.50  90.40 69.90 61.50 68.10 83.70  69.80 2077 6320  45.01 —
2-head self-attention (ours) 75.43  91.46 73.62 66.24 64.07 87.09 6619 1329 69.96 48.68 170.5
4-head self-attention (ours) 75.52 91.34 73.56 66.18 66.81 86.79 65.60 1115 70.30 47.89 169.6
8-head self-attention (ours) 75.55 91.43 73.85 66.19 69.68 87.02 65.81 1286  69.85 48.18 167.8
The significance of bold values means that F1 is the most highest one.
TaBLE 3: Ablation study results on the TuSimple dataset.
Model Accuracy (%) FP FN
2-head self-attention 95.76 0.0407 0.0301
4-head self-attention 95.55 0.0339 0.0329
6-head self-attention 95.43 0.0350 0.0335
8-head self-attention 95.49 0.0414 0.0311
TaBLE 4: Ablation study results on the CULane dataset.
Model TP FP FN Precision (%) Recall (%) F1 (%)
2-head self-attention 72766 15281 32120 82.64 69.37 75.43
4-head self-attention 72636 14839 32250 83.03 69.25 75.52
8-head self-attention 72649 14762 32237 83.11 69.26 75.55
6. Conclusion Data Availability

In this paper, we propose a lane marker detection network
based on multihead self-attention. It combines row an-
choring with multihead self-attention to extract global
information to resolve challenging scenarios like vehicle
occlusion. It also achieves state-of-the-art performance.
On the TuSimple dataset, our proposal method achieves
the second-highest accuracy while being much faster than
the top-F1 method [28]. On the CULane dataset, our
proposal method outperforms other methods. In addition
to this, we also find that our proposed approach can be
used widely in image classification problems. In [53], it
segments the pap smear image using the appropriate
threshold. A texture descriptor is proposed titled modified
uniform local ternary patterns (MULTP). Then, an op-
timized multilayer feed-forward neural network is used to
classify the pap smear images. The proposed deep neural
network is optimized using a genetic algorithm in terms of
the number of hidden layers and hidden nodes. In [54], a
new version of local binary pattern, that is called com-
pleted local quartet patterns, is proposed to extract fabric
image local texture features [53, 54] have enough relation.
Although we put forward a proposed lane mark detection
model, there are some limitations. For example, how to
make every head independent in order to focus different
subspace and how to set rational anchor number and
offset number all need further research. Besides that, it
also needs to trade off computation efficiency and com-
putation complexity in the model. For a much better way
in the future, we will search for a new architecture syn-
thetically combining encoder-decoders, RNNs, and
GAN .

Previously reported TuSimple and CULane data were used to
support the findings of this study and are available at https://
github.com/TuSimple/tusimple-benchmark and https://
xingangpan.github.io/projects/fCULane.html. These prior
studies and datasets are cited at relevant places within the
text as references [16, 41, 47-52].
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