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Applying computer vision and machine learning techniques into sport tests is an efective way to realize “intelligent sports.”
Facing practical application, we design a real-time and lightweight deep learning network to realize intelligent pull-ups test in this
study. Te main contributions are as follows: (1) a new self-produced pull-ups dataset is established under the requirement of
including a human body and horizontal bar. In addition, a semiautomatic annotating software is developed to enhance annotation
efciency and increase labeling accuracy. (2) A novel lightweight deep network named PEPoseNet is designed to estimate and
analyze a human pose in real time.Te backbone of the network is made up of the heatmap network and key point network, which
conduct human pose estimation based on the key points extracted from a human body and horizontal bar. Te depth-wise
separable convolution is adopted to speed up the training and convergence. (3) An evaluation criterion of intelligent pull-ups test
is defned based on action quality assessment (AQA). Te action quality of fve states, i.e., ready or end, hang, pull, achieved, and
resume in one pull-ups test cycle is automatically graded using a random forest classifer. A mobile application is developed to
realize intelligent pull-ups test in real time.Te performance of the proposed model and software is confrmed by verifcation and
ablation experiments. Te experimental results demonstrated that the proposed PEPoseNet has competitive performance to the
state of the art. Its PCK@0.2 and frames per second (FPS) achieved were 83.8 and 30 fps, respectively. Te mobile application has
promising application prospects in pull-ups test under complex scenarios.

1. Introduction

Classical physical tests such as pull-ups test in university or
middle and primary school are routine examinations in
physical teaching. However, the current examination is
usually conducted manually. Temanual test always leads to
low efciency, inconsistent standards, and subjectivity. More
recently, China and other countries pay increasing attention
to ensure the fairness and objectivity of the sports tests. Te
vision-based AI technologies provide an efcient way to
enhance the test efciency and fairness. In addition, it will
also reduce the work burden of physical education teachers.

With the development of next generation of information
technology such as the Internet of Tings (IoT), cloud

computing, wearable devices, big data, and machine
learning, “intelligent sports” has become a hot area
attracting much attention of domain expert in the infor-
mation and sports feld [1, 2]. Automatic human pose es-
timation (HPE) is a common and critical task in an
intelligent physical ftness test. Te common practice is to
analyze images or videos of the examinee’s actions online or
ofine by employing computer vision and machine learning
techniques.

More recently, deep learning is widely applied to many
felds, e.g., predicting malfunctions of sensor and machinery
[3, 4], or detecting intracranial aneurysms [5], owing to its
powerful self-learning ability and adaptability of visual
processing tasks. Te deep learning networks are also

Hindawi
Mobile Information Systems
Volume 2023, Article ID 3649217, 15 pages
https://doi.org/10.1155/2023/3649217

mailto:bprbjd@163.com
https://orcid.org/0000-0002-9887-4704
https://orcid.org/0000-0001-6287-5425
https://orcid.org/0000-0002-6522-9856
https://orcid.org/0000-0002-3235-8811
https://orcid.org/0000-0003-0449-3108
https://orcid.org/0000-0003-4662-3433
https://orcid.org/0000-0003-1365-302X
https://orcid.org/0000-0002-8390-7809
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3649217


introduced in the feld of HPE [6]. Most of the HPE algo-
rithms identify human body joints based on the capture of
key point graph of the human body. We adopted this
strategy to realize intelligent physical testing function in our
frst application software, i.e., the video stream captured by a
camera was converted into a stream of a key point graph
based on the traditional HPE algorithm. Te size of a key
point graph was normalized according to the distance from
the nose to the hips. However, it was found that not all the
captured key points were useful. So, several sets of key points
(including wrists and shoulders, elbows and buttocks, left
and right ankle, and left and right knee) were designated to
reduce the data redundancy and computational cost.
However, there still exists limitations of the traditional HPE
algorithms when applying them to practical physical testing.
For example, in the test of pull-ups or sit-ups that require
equipment assistance, the negligence of key points of the
auxiliary equipment may lead to misjudgment or cheating
actions (If an examinee just stands on the ground and
imitates the test actions, it is hard to discern the cheating
actions in terms of vision-based technology).

Terefore, comprehensive utilization of key points of
both human body and equipment is a promising strategy to
improve the performance of HPE. Inspired by this idea, we
design a lightweight deep learning network and a mobile
application to estimate and analyze human poses in a pull-
ups test. Te main contributions are as follows: (1) We
establish a benchmark dataset containing more than 2,000
images for pull-ups test and develop a semiautomatic an-
notating software for labeling key points of human body and
equipment. (2) A novel deep learning network named
PEPoseNet is designed to jointly estimate the key points of
human body and equipment. Te network adopted depth-
wise separable convolution (double encoder-decoder) to
improve estimation accuracy and speeded up the training by
pretraining and freezing the gradient backpropagation of the
heatmap branch. (3) An AQA algorithm for key point es-
timation of human body and equipment generated by
PEPoseNet is designed, and an intelligent pull-ups test
mobile application is developed. Te application can realize
real-time assessment of fve states, i.e., ready or end, hang,
pull, achieved and resume in one pull-ups test cycle, and rate
each cycle and total movement.

Te remainder of the paper is organized as follows. Te
related works of HPE in sports are reviewed in Section 2.Te
proposed model, i.e., PEPoseNet and related dataset are
described in Section 3. Section 4 presents the experiments
and results, as well as comparisons of the state of the art
methods. Te concluding remarks are drawn in Section 5.

2. The Related Work

Human pose estimation (HPE) refers to determine or judge
human body posture by processing and analyzing images or
videos. Currently, HPE has wide applications in many felds
such as virtual reality (VR) [7], human health [8, 9], motion
capture systems [10], and human computer interaction
(HCI) [11]. Originally, the traditional machine learning
methods were employed to estimate human posture. For

example, Eichner et al. applied conditional random felds
(CRF) to learn potential relationships between appearance of
diferent body parts and annotated images [12]. Shakh-
narovich et al. utilized a parameter-sensitive hashing
function to estimate the joints of human body. However,
since the frst popular CNN model, i.e., AlexNet emerged,
the deep learning methods displayed abrupt developments
in HPE, owing to their powerful self-learning ability and
remarkable performance [13, 14]. For instance, Newell et al.
proposed the classical stacked hourglass networks archi-
tecture which provided inspiration for many subsequent
works [15]. Cao et al. proposed a convolutional pose ma-
chine to fnd the position of each joint and adopted a part
afnity feld to assemble the joints [16]. Bazarevsky et al.
proposed BlazePose which estimates human pose by means
of a set of code with high FPS [17].

Based on the research of HPE, some studies have begun
to pay attention to the model of action quality assessment
(AQA) [18]. Te AQA task aims to design a system that can
automatically and objectively evaluate some specifc human
actions through video or images. AQA is currently being
developed in many practical application scenarios, such as
surgical skill rating, medical rehabilitation test, athlete
posture correction, coaching system, operation compliance
analysis, and dangerous action monitoring. Te evaluation
module can be classifed into three types, i.e., regression
scoring, grading, and pairwise sorting. In this study, fol-
lowing the human pose estimate, we adopt grading to assess
action quality of the fve states in one pull-ups test cycle.

In sports feld, many actions are often diferent from
daily movements. It is usually difcult to track complicated
movements and high speed actions, just like the explosive
actions in fencing and challenging body postures in yoga. In
addition, the occlusion and interference of sport equipment
also raise difculty in localizing the targets. Many eforts
have been made to improve the performance of HPE and
AQA in sports. Zecha et al. proposed a method of posture
correction for underwater training [19]. Neher et al. im-
proved a stacked hourglass network to predict the attitude of
hockey players and stick at the same time [20]. Trejo and
Yuan developed an interactive system which adopted
Adaboost to perceive several postures of learning yoga and
provided users with the function of posture correction [21].
Promrit and Waijanya proposed video posture embedding
by adopting the triplet-loss technique and applied one-shot
learning to detect a badminton player’s posture [22]. Suda
et al. presented a method that predicts the ball trajectory of a
volleyball toss 0.3 s before the actual toss by observing the
motion of setter player [23]. Xu et al. proposed self-attentive
LSTM and multiscale convolutional skip LSTM to predict
total element score (TES) and total program component
score (PCS) in fgure skating [24]. Xiang et al. [25] divided
the diving process into four stages: beginning, jumping,
dropping, and entering into the water and adopted four
independent P3D models [26] to complete feature
extraction.

For the pull-ups test, the horizontal bar is needed just
like the equipment to fx one’s feet in sit-ups. However, the
infuence of auxiliary equipment is often ignored in posture
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estimation. Terefore, detecting and localizing the key
points of equipment may provide complementary infor-
mation for HPE and AQA. In this work, we train a deep
learning network by feeding the key points of human body
and equipment. Ten, a grading assessment of action quality
is carried out using a random forest classifer. Te well-
trained network is ported to embedded platforms for con-
frming its practicality. Te intelligent pull-ups test can be
carried out with satisfactory performance.

3. The Proposed Method

Te workfow of realizing intelligent pull-ups test based on
PEPoseNet is shown in Figure 1. Tere are three modules
that are marked using dotted boxes, i.e., dataset module,
PEPoseNet module, and assessment module. Te dataset
module completes data collection and labeling. Te PEPo-
seNet module trains and tests samples with a lightweight
network architecture. Te assessment module is responsible
for actions quality assessment of pull-ups test.

3.1.DataCollection andAnnotation. In the feld of sport and
physical exercise (SPE), there exist several popular data sets,
e.g., Leeds Sports Pose (LSP) [27], Frames Labeled In
Cinema (FLIC) [28], and Penn Action [29]. However, to the
best of our knowledge, there are no available public pull-ups
datasets till now. Terefore, we need to establish a self-
produced pull-ups dataset for research.

Te self-produced pull-ups dataset is named SDUST-
PUT, which includes 263 images extracted from online
videos and 1,737 images taken from volunteers. Te images
should contain a subject and horizontal bar at the same time.
Diferent postures were considered, e.g., standing under the
horizontal bar, preparing to jump, and various stages of
doing pull-ups.

Figure 2 demonstrates four example images of diferent
states in SDUST-PUT. Figures 2(a) and 2(b) are taken from
volunteers and represent ready or end and hang, respec-
tively, while Figures 2(c) and 2(d) are extracted from online
videos and represent pull or resume and achieved, respec-
tively. To annotate the images efciently, we develop a piece
of software running on a Windows or Mac system based on
the futter framework [30]. Te annotator can label human
joints and key points of equipment in a semiautomatic style.
At frst, the OpenPifPaf algorithm [31] is employed to label
human joints automatically. Ten, the users only need to
annotate a small number of key points of the equipment and
correct a smaller number of inaccurate points annotated by
OpenPifPaf. Te efciency of data annotating enhances
greatly using the developed software. Te annotating results
are saved as .json format. In order to avoid inaccurate
annotation for compressed images, the annotator records
the distance ratio instead of direct distance.

Te distance ratio of the key point and the left border is
recorded as the value of horizontal axis, and the distance
ratio of the key point and the upper border is recorded as the
value of vertical axis. Te annotator is publicly available for
download at https://github.com/PEPoseNet/PEPoseNet.

Te annotator can also be used to label similar datasets
related to human posture estimation. Figure 3(a) illustrates
the running interface of the annotator, while Figures 3(b)
and 3(c) illustrate two example labeling results.

3.2. Te Proposed PEPoseNet. Figure 4 illustrates the overall
architecture of the proposed PEPoseNet, along with the
structure of diferent blocks. As shown in Figure 4(a), the
backbone is inspired by Google’s BlazePose [17]. It consists
of two hierarchical networks, i.e., the heatmap network and
the key point network. Te backbone adopts three types of
convolution layer structure, i.e., Block 1, Block 2, and Block
3 as illustrated in Figures 4(b)–4(d), respectively. Te three
blocks are flled with diferent colors for easy discrimination.
Te Block 1 combines simple depth-wise separable convo-
lution and regular convolution as shown in Figure 4(b).
Except for the similar depth-wise separable convolution and
regular convolution layers, the Block 2 in Figure 4(c) adopts
a Maxpool layer to hierarchically reduce image scale,
whereas the Block 3 in Figure 4(d) adopts an upsampling
layer to hierarchically increase image scale. Te design of
these blocks is to facilitate them running on mobile plat-
forms or embedded devices.

3.2.1. Te Heatmap Network and the Key Point Network.
Te basic structure of the heatmap network is illustrated at
right side in Figure 4(a), which is similar to the stacked
hourglass networks proposed by Newell et al. [15]. Te
encoder receives original image with size of 512× 512. A
series of depth-wise separable convolutions followed by the
maximum pool layer are carried out in sequence. In the
implementation procedure, the number of channels in-
creases step by step to extract potential information with
diferent scales. Ten, the encoder output 8× 8× 288 heat-
maps. In the connection of encoder and decoder, the re-
sidual structure [35] is adopted to reduce information loss.
Te decoder adopts multilayer upsampling operation to
continuously increase the size of heatmap. Te depth-wise
separable convolution is utilized to further decode infor-
mation at diferent scales.

In the training procedure, how to capture the key points
of the original images efectively is an important issue. Here,
we employ a 2D Gaussian kernel in the loss function of the
heatmap network to extract rough center of key points as
close as possible.Te loss function of the heatmap network is
as follows:

lHMN � CP M
P ⊙ P − P

∗
( 

����
����
2
2 + CE M

E ⊙ E − E
∗

( 
����

����
2
2,

(1)

where P and E represent the predicted heatmap of human
joints and key points of equipment, respectively, P∗ and E∗

represent the corresponding ground truths. Mp and ME

represent the mask of human joints and equipment key
points, respectively, which are utilized to assign diferent
weights to positive and negative samples. Tat is, the weight
of positive samples is 1, while negative samples is 0.1. Te
symbol ⊙ denotes element-wise product. Cp and CE
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represent the training weight of human joints and equip-
ment joints, respectively.

As shown in Figure 5, the center of each heatmap is
searched in terms of the label data (coordinates of the key
point), and a heatmap is formed by setting the nearest pixel
to be closer to 1, while the pixels away from the center are set
to 0. In such a way, each original image produced 15
heatmaps with size of 128×128 that are corresponding to 15
key points.

Te heatmap network output abundant information of
key points that will feed to the key point network for ac-
curate localizing key points. From Figure 4(a), we can see
that the front layers of the heatmap network are connected
to the decoder of a key point network. Two specifc mod-
ifcations are made in the construction of the key point
network. First, we exploit intermediate data of the heatmap
decoder instead of the fnal output. It is observed that a large
amount of efective information exists in the intermediate
data, rather than in the fnal convolution layer. Second, only
forward propagations are retained in the training procedure
of the key point network (denoted as dotted arrows in
Figure 4(a)), the gradient backpropagations between the key
point decoding and the output heatmaps are frozen. Tis
modifcation can efectively avoid afecting the generation of
heatmap in the training of a key point decoder. Te loss
function of the key point network is divided into two parts,
i.e., classifcation loss and regression loss. It is defned as
follows:

lKPN � lHMN + λlREG, (2)

where lHMN represents the classifcation loss which is same
as the loss function of the heatmap network. lREG represents

the regression loss function which indicates the position
diference between the predicted point and the label point. λ
is a constant for balancing the two kinds of losses. It is set to
0.05 in this work.

Te regression loss function is defned as follows:

lREG � 
i∈G

1
zi

SmoothL1 Oi − Oi
∗

( , (3)

where O and O∗ represent the predicted position and the
corresponding label of key points, respectively. G is a set of
label points type. Z represents the area of human body,
which can be estimated as follows:

Z �

���������

∆x
2

+ ∆y
2



, (4)

where Δx and Δy are the maximum distance between the
horizontal and vertical coordinates in the real label, re-
spectively. SmoothL1 is a thresholding function defned as
follows:

SmoothL1
�

0.5x
2
, |x|< 1,

|x| − 0.5, Otherwise.

⎧⎨

⎩ (5)

Figure 6 illustrates a demo result of the heatmap network
and the key point network. In Figure 6(a), the original image
and the 15 predicted heatmaps are presented. It can be seen
that the centers of the heatmaps are very close to the real
positions of human body joints and key points of horizontal
bar. In Figure 6(b), the refned key points are output by the
key point network. It is obvious that the two key points of
horizontal bar can provide a good positioning reference for
pull-ups test.
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Figure 1: Te workfow of intelligent pull-ups test based on PEPoseNet.
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3.2.2. Te Pretrained Network. In the training procedure of
the deep learning network, overftting will occur if the
amount of data is small.Tere are two solutions to overcome
this problem, i.e., data augmentation and transfer learning
based on the pretrained network. In this work, we are prone
to adopt pretrained scheme as the LSP [27] and FLIC [28]
dataset and are suitable for pretraining the network. Since
the LSP and FLIC dataset did not require containing a
horizontal bar, the images with consistent labels of SDUST-
PUT are screened out for pretraining the deep network. In
the pretraining procedure, we frst train the heatmap net-
work. Ten, the key point network is trained by fxing the
parameters of the heatmap network. Te pretraining is
satisfactory because percentage of correct key-points (PCK@
0.2) can achieve 85.1 after 200 epochs. Terefore, the pa-
rameters of pretraining on the LSP and FLIC dataset are
adopted as initialization parameters when training the

PEPoseNet on SDUST-PUT. It is noted that the parameters
of the heatmap network output layer and key point network
output layer should be replaced by random values.
Benefting from the transfer learning, the training efciency
and generalization ability of the PEPoseNet improved
obviously.

3.3. ActionQualityAssessment of Pull-UpsTest. Te pull-ups
test is an important physical test item in many felds such
as in school and troops, which consists of a series of
complex actions. It is a challenging task to realize intel-
ligent pull-ups test based on the analysis of images or
videos. Two visual processing tasks should be conducted
in intelligent pull-ups test, i.e., human pose estimation
(HPE) and action quality assessment (AQA). Te afore-
mentioned PEPoseNet is capable of conducting human

(a) (b) (c) (d)

Figure 2: Example of pull-ups images at diferent states in SDUST-PUT. (a) Ready or end and (b) hang are taken from volunteers; (c) pull/
resume; (d) achieved are extracted from online videos.

(a) (b)

(c)

Figure 3: (a) Te running interface of the annotator. Te label symbols are small circle flled with diferent colors. (b) Labeling results of a
straight front shot. (c) Labeling results of an oblique front shot.
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Figure 4: Continued.
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pose estimation. However, it still has no reports about
automatic action quality assessment for pull-ups test. In
this study, we present a complete process for intelligent
evaluation scheme of pull-ups test. First, we divide the
movements in one pull-ups cycle into fve states, i.e., ready
or end, hang, pull, achieved, and resume, as listed in
Table 1. Te division is presented by experienced teachers
who have been occupied in physical education and pull-
ups test for more than 20 years.

Figure 7 illustrates the fve states and the sequence re-
lations. It can be seen that the ready or end state represents the
start and stop of a set of pull-ups. Te hang state refers to the
body is hanging from the horizontal bar (arms fully extend is
required).Te pull state refers to lift one’s body with his or her
arms. Te attained state refers to keep the head above the
horizontal bar.Te resume state refers to relax one’s arms and
return to the hang state. In one pull-ups cycle, it is required
that no obvious bending and swinging of the body or legs.

……

Ground truth of the heatmaps

2D Gaussian kernel

Ground truth of key points

× 15

Figure 5: Te mechanism of producing ground truth of the heatmaps by employing a 2D Gaussian kernel.

DepthwiseConv

Conv 3×3

MaxPool 2×2

DepthwiseConv

Conv 3×3

×n

(c)

UpSampling

DepthwiseConv

Conv 3×3

(d)

Figure 4: Te architecture of the proposed PEPoseNet. (a) Te backbone being made of two functional network, i.e., heatmap network and
key point network. (b)Te structure of block 1, (c) the structure of block 2, and (d) the structure of block 3.Te channels denoted by dotted
arrow refer to that they have forward propagation only and have no gradient backward propagation. Te “Conv” refers to standard
convolution layer, while the depthwiseConv refers to depth-wise separable convolution [32–34].
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Second, we design a grading assessment solution for each
state in one pull-ups cycle. As show in Figure 8, the standard
action and nonstandard action of each state are illustrated.
In order to make automatic grading, we adopt a random
forest classifer in the assessment module. 21 videos (con-
taining 8718 frames) are collected from volunteers for
training the classifer. In order to ensure the robustness of
action evaluation, the distances and angles of all key points
in n− 4th, n− 2th, nth, n+ 2th, and n+ 4th frames are
considered, as shown in Figure 9. Te angle refers to the one
between the horizontal direction and line connected by the
two key points. Te other four frames are selected to obtain
more obvious features in time dimensionality. In addition,
several angles between the lines with obvious changes were
also selected as features. For each frame, there are 2,270
features that can be used for making the assessment. Te
coordinate values of each set of the key points are divided by
the distance between two hip joints to normalize the data.
Te spatial-temporal features of the key points of human
body and equipment, output from PEPoseNet, are fed to the
classifer to obtain the state of the nth frame.

In practical application, the state streams coming out of
the random forest are fltered by a mode flter. Ten, the
software counts the number of pull-ups using the cycle of
states, and grades each cycle using action evaluation. Figure 10
illustrates the automatic scoring scheme of practical pull-ups
test. We assume a complete pull-ups test has N cycles, and
each cycle has M frame. Ten, the total score of this pull-ups
test can be calculated as follows: (1) Calculating the cumu-
lative scores in each cycle. For each frame in one cycle, if the
action is standard, the grading value 1 is assigned. Otherwise,
the grading value is assigned to 0.5. Ten, the score of each
cycle is obtained by cumulatively summing the score of each
frame divided by the number of frame (M). (2) Calculating
the cumulative scores in one test. Tat is, the score of each
cycle is summed directly to obtain the total score.

4. Experiments and Results

4.1. Dataset and Evaluation Metrics. Tree datasets includ-
ing the self-produced SDUST-PUT and two public dataset,
i.e., LSP [27] and FLIC [28] were used to train and generalize
the proposed PEPoseNet. Te LSP dataset contains 2,000
images of a single player who are doing actions in bad-
minton, baseball, and gymnastics. Te FLIC dataset contains
more than 5,000 tagged frame images extracted from the
movies. Among these datasets, the .png images that have
same label points as the images in the SDUST-PUT dataset
are selected and scaled to 512× 512.Tese images are utilized
for pretraining the deep network. Te SDUST-PUT dataset
contains 2,000 pull-ups images that are required to include
human body and horizontal bar at the same time. Te ratio
of training set and test set is 7 : 3.

Te accuracy of key point detection is measured by
percentage of correct key-points (PCK), which refers to the
percentage of detections that fall within a normalized dis-
tance of the ground truth [28].Te PCK is defned as follows:

PCK@T �
iδ di/d≤T( 

i1
, (6)

where i represents the number of the joint points, di rep-
resents Euclidean distance between the ith predicted point
and its ground truth, and d represents the normalization
scale factor. In this work, we adopt the Euclidean distance
between left shoulder and right hip. Tdenotes the threshold
value (T� 0.2 in this work).

In order to verify the practicability of the model and
software proposed in this study, 21 pull-ups videos collected
from volunteers were utilized to test the PEPoseNet and the
traditional HPE algorithms. Te key points from the
PEPoseNet and the traditional HPE algorithms are
extracted, respectively. Ten, action quality assessment is
carried out by implementing the random forest classifer.

nose right_shoulder left_shoulder right_elbow

left_elbow right_wrist left_wrist right_hip

left_hip right_knee left_knee right_ankle

left_ankle right_bar left_bar original

(a) (b)

Figure 6: Demo heatmaps and key points extracted from one subject using the heatmap network and the key point network, respectively.
(a) Te original image and 15 predicted heatmap nodes and (b) the extracted key points of human joints and horizontal bar.
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Four quantitative metrics, i.e., accuracy, precision, recall,
and F1 are adopted to evaluate classifcation performance of
PEPoseNet and traditional HPE algorithms. Te defnitions
are as follows:

Accuracy(s) �
TPs + TNs

TPs + FNs + FPs + TNs

,

Precision(s) �
TPs

TPs + FPs

,

Recall(s) �
TPs

TPs + FNs

,

F1(s) �
2 × Precision(s) × Recall(s)

Precision(s) + Recall(s)
,

(7)

where the subscript s stands for a state or an action. TPs
represents the number of correctly classifed s frame. TNs
represents the number of correctly classifed non-s frame.
FPs represents the number of wrongly classifed s frame, and
FNs represents the number of wrongly classifed non-s frame.

4.2. Implementation Details. In the training of the PEPo-
seNet, TensorFlow 2.0 python library [36] was called. Te
input color images were resized to 512× 512× 3. Te output

was coordinates of 15 key points. Adam optimizer [37] was
employed to speed up the training. Te learning rate was
0.001. Te initial weights adopted the results of the pre-
trained model training on the LSP and FLIC datasets. 200
epochs were implemented on Tesla P100 16G Nvidia GPU.
Considering the limited computing power of the embedded
or mobile platform, we also tested the performance on AMD
Ryzen 7 3700X CPU without GPU.

To the best of our knowledge, there are no related pull-
ups test deep networks to make comparison. Tus, we
compare with two latest OpenPifPaf [31] and MediaPipe
[38] (optimized by BlazePose) as they also carry out human
posture estimations. Te model parameters are provided by
their ofcial webs.

4.3. Ablation Experiment Schemes. We design four ablation
experiments to evaluate the efects of key modules of the
proposed method. Te PEPoseNet-A architecture is designed
to evaluate the efect of the heatmap network, i.e., directly
input the heatmap output to the key point network or input
the intermediate layer information of the heatmap network
instead.Te PEPoseNet-B architecture is designed to evaluate
the stability of the output of the heatmap network. In the
baseline architecture of PEPoseNet, the heatmap network is
trained independently. Ten, the key point network is trained

Table 1: Te fve states in one pull-ups cycle and their assessment criteria.

States Assessment criteria
Ready or end Stand below the horizontal bar
Hang Body hanging from the horizontal bar, arms are required stretching completely
Pull Lift one’s body with his/her arms
Attained Keep the head above the horizontal bar
Resume Relax one’s arms and return to the hang state

Ready or End Hang Pull ResumeAttained

Figure 7: Illustration of the fve states in one pull-ups cycle along with the sequence order.
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Ready or End

Actions
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Figure 8: Illustration of standard and nonstandard actions in each state.
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n+4
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Figure 9: Te schematic diagram of selected features in action quality assessment of pull-ups test. (a) Te distance between two hip joints is
employed as a standard, (b) additional bar key points, (c) the distance and angle between two key points, and (d) auxiliary reference angle.
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based on the trained heatmaps in the condition of freezing the
channel of heatmaps. Te PEPoseNet-B architecture removes
the freezing of the heatmap network and enables it to be
adjusted in the training of the key point network. Te
PEPoseNet-C architecture is designed to evaluate the role of
pretraining. As the ground truth of OpenPifPaf or MediaPipe
is not consistent with the fnal output of the PEPoseNet, it is
uncertain to determine whether pretraining brings positive or
negative efects. Terefore, the PEPoseNet-C architecture is
trained only on the SDUST-PUT dataset without adopting
pretraining. Te PEPoseNet-D architecture is designed to
evaluate the efect of the two key points of the bar. Tat is, in
the baseline of the PEPoseNet, the two key points of the bar
are considered and attend to make decision in the following
AQA algorithm, while the PEPoseNet-D architecture
removes the two key points. Tus, it can be determined the
role of the two key points of the bar by comparing the results
of the PEPoseNet-D and baseline PEPoseNet.

4.4. Experiment Results

4.4.1. Te Performance of the Baseline PEPoseNet.
Table 2 lists the estimation accuracy of 15 key points. Te
right bar and left bar refer to two sides of the horizontal bar

in pull-ups test. Te other 13 key points refer to the critical
positions of human body for posture estimation. It can be
seen that all the PCK values are larger than 80. It refects that
the key points can be captured accurately and efciently by
introducing the cascaded operations of the heatmap and key

Cycle 1

Cycle 2

Cycle N

Frame 1 Frame 2 Frame m Frame M Score

standard (1) standard (1) non-standard (0.5) standard (1)

standard (1) standard (1)

standard (1) standard (1)standard (1) standard (1)

non-standard (0.5) non-standard (0.5)

(1+1+ ... + 0.5 + ... + 1)/M
= 0.87

...
...

...
...

...
...

...
...

...
...

...
...

...... ......

...... ......

...... ......

(1+0.5+ ... + 0.5 + ...+1)/M
= 0.75

(1+1+ ... + 1 + ...+1)/M
= 1

Total score = 0.87+0.75+...+1

Figure 10: Te automatic scoring scheme of practical pull-ups test. For each cycle, the grading value 1 or 0.5 is assigned to each frame in
terms of whether the action is standard. Te score of standard action is 1 and that of nonstandard is 0.5. Te total score is obtained by
cumulatively summing the cumulative scores of each cycle.

Table 2: Te estimation accuracy of 15 key points using the
PEPoseNet on SDUST-PUT.

Key points PCK@0.2
Nose 85.2
Right shoulder 84.2
Left shoulder 83.9
Right elbow 84.1
Left elbow 84.0
Right wrist 83.6
Left wrist 83.8
Right hip 82.0
Left hip 82.6
Right knee 84.2
Left knee 84.1
Right ankle 83.5
Left ankle 83.8
Right bar 81.0
Left bar 80.2
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point network and depth-wise separable convolution. Te
FPS of the PEPoseNet achieved 32.Te results indicated that
the test accuracy and speed of the proposed model is ac-
ceptable for practical application.

4.4.2. Te Results of the Comparative and Ablation
Experiments. Table 3 lists the comparison results in terms of
PCK and frame per second (FPS). It can be seen that the PCK
of OpenPifPaf achieved 88.7, but its FPS was only 0.4. It

means that the computational cost of OpenPifPaf is ex-
pensive that will limit its transplant to mobile or embedded
devices. Te PCK of MediaPipe was 84.2 that was slightly
higher than 83.8 of the PEPoseNet. However, its FPS 27 was
smaller than 32 of the PEPoseNet.Te slightly higher PCK of
MediaPipe may become from the larger training set and
optimization tricks supported by Google engineers. In
contrast, the PEPoseNet achieved the best FPS owing to the
depth-wise separable convolution. In practice, high FPS is
the most attractive characteristics for transplanting the

Table 3: Average PCK and FPS of diferent models.

Models/methods PCK@0.2 FPS
OpenPifPaf 88. 0.4
MediaPipe 84.2 27
PEPoseNet-baseline 83.8 32
PEPoseNet-A 58.4 27
PEPoseNet-B 80.1 31
PEPoseNet-C 76.1 31
Te values in bold represent the best data for this metrics.

Table 4: Comparison of state classifcation conducted by PEPoseNet and MediaPipe in pull-ups test.

Metrics Models
States

Ready or end Hang Pull Achieved Resume

Accuracy
PEPoseNet 0.998 0.992 0.992 0.994 0.991

PEPoseNet-D 0.952 0.988 0.986 0.985 0.983
MediaPipe 0.951 0.986 0.985 0.985 0.982

Precision
PEPoseNet 0.995 0.9 6 0.989 0.968 0.984

PEPoseNet-D 0.875 0.954 0.973 0.901 0.957
MediaPipe 0.871 0.950 0.971 0.904 0.953

Recall
PEPoseNet 0.990 0.9 8 0.988 0.9 9 0.981

PEPoseNet-D 0.721 0.976 0.987 0.972 0.974
MediaPipe 0.709 0.974 0.985 0.969 0.974

F1 score
PEPoseNet 0.993 0.9  0.988 0.9 3 0.982

PEPoseNet-D 0.791 0.965 0.980 0.935 0.966
MediaPipe 0.782 0.962 0.978 0.935 0.963

Te values in bold represent the best data for this metrics.

Table 5: Comparison of action classifcation conducted by PEPoseNet and MediaPipe in pull-ups test.

Metrics Models Standard actions
Nonstandard action

Legs bent Excessive swing Nonstandard hands distance

Accuracy
PEPoseNet 0.980 0.990 0.993 0.994

PEPoseNet-D 0.981 0.991 0.984 0.990
MediaPipe 0.980 0.983 0.990 0.991

Precision
PEPoseNet 0.965 0.990 0.988 0.980

PEPoseNet-D 0.974 0.969 0.969 0.978
MediaPipe 0.9 4 0.967 0.977 0.968

Recall
PEPoseNet 0.982 0.9 2 0.9 8 0.982

PEPoseNet-D 0.973 0.974 0.968 0.977
MediaPipe 0.972 0.966 0.976 0.974

F1 score
PEPoseNet 0.9 4 0.981 0.983 0.981

PEPoseNet-D 0.974 0.971 0.968 0.978
MediaPipe 0.973 0.967 0.976 0.971

Te values in bold represent this best data for this metrics.
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model into mobile or embedded devices. In addition, the
PEPoseNet has the advantage of being able to locate the key
points of equipment. Te PCK and FPS of the PEPoseNet-A
decreased obviously compared to the baseline model. It
indicated that a large amount of feature data lost in the
heatmap. Direct usage of the heatmap is not conducive to the
key points.Te PCK reduction of the PEPoseNet-B indicates
that the scheme of frozen back-propagation routes is ef-
fective. Te heatmap network is freed from the interference
of the key point network. Te results of PEPoseNet-C
demonstrated that the efectiveness of a pretraining model
based on the common HPE datasets.

Tables 4 and 5 list the performance of action quality
assessment conducted by the PEPoseNet and the
MediaPipe, respectively. Te four quantitative metrics of
the PEPoseNet were obviously superior to that of the
MediaPipe. It refects the efectiveness of introducing the
information of the key points of the equipment. Te key
points extracted from the horizontal bar are helpful to
provide reference localization information that are crucial
for determining the movement states more accurately and
robustly. For example, it is hard to identify and distin-
guish the Ready or End state in terms of only the key
points of human body. If we take relative position of the
examinee and the horizontal bar into consideration, it is
easy to make correct determination by judging whether
his or her hands hold the bar.

After successful training and testing of the PEPoseNet,
we transplant the model into Android and iOS mobile
platforms. Te TFLite of TensorFlow and the cross-
platform of Flutter are adopted. Te developed mobile
App can perform intelligent pull-ups test with friend
interface and efcient implementation. Figure 11 illus-
trates the App interface in practical pull-ups test. Te
application is tested on more than 100 volunteer students.
Te results indicate that the application is suitable for
practical pull-ups test with satisfactory accuracy and
robustness. It provides the function of grading assessment
and count of the pull-ups that is benefcial to avoid the
cheating actions or false scores.

5. Conclusions

In this work, we proposed a novel deep learning model
named PEPoseNet for intelligent pull-ups test based on the
key point estimation of human body and horizontal bar. A
self-produced pull-ups dataset containing 2,000 color im-
ages collected from volunteers and Internet was established
(SDUST-PUT). Te data were normalized and annotated
semiautomatically. Te lightweight deep network adopted
backbone containing the heatmap network and the key point
network.Te depth-wise separable convolution was adopted
to speed up the training and convergence. A grading as-
sessment standard of 5 states in one pull-ups cycle was
defned and implemented in the framework. A simple au-
tomatic grading score scheme was designed. A robust and
friendly mobile application was developed for practical pull-
ups test. Te validation, comparison, and ablation experi-
ments were carried out to evaluate the proposed model and
software. Te experimental results demonstrated that the
proposed PEPoseNet and the mobile application can im-
prove the efciency, practicability, and fairness of pull-ups
test. In the following work, we will continue to expand the
size of dataset, investigate more efcient schemes to speed up
the deep network, and explore more elaborate scoring
scheme. Furthermore, the extension of the network and
software to other sport projects will be explored and realized.

Data Availability

Some of the data that support the fndings of this study are
openly available in https://github.com/PEPoseNet/
PEPoseNet. Other data are available from the correspond-
ing author upon reasonable request.
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