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Recently, deep reinforcement learning (DRL) has attracted increasing interest in the feld of intelligent navigation and path
planning in smart warehousing. Te latest imitation augmented DRL (IADRL) model has achieved good performance for the
cooperative transportation tasks of automatic guided vehicles (AGVs) and unmanned aerial vehicles (UAVs). However, this
model cannot always transport target cargoes with the optimized policy due to premature convergence. Terefore, we propose an
intelligent path planning model for AGV-UAV transportation in this paper. Te proposed model utilizes the proximal policy
optimization with covariance matrix adaptation (PPO-CMA) in the imitation learning and DRL networks, which enables the
AGV-UAV coalition to plan the optimal transportation route at a lower cost. Experiments conducted in simulation warehousing
scenarios demonstrated the proposed model and improved the accumulated training reward by more than 10%, outperforming
the existing state-of-the-art models in terms of efectiveness and efciency.

1. Introduction

With the rapid deployment of 5G networks worldwide, 6G
and its applications in the industry have attracted more and
more attention from researchers [1–3]. Te number of
materials stored in smart warehouses has increased sig-
nifcantly recently. Maximizing warehouse space utilization
is one way to make 6G smart warehouses more common in
the future. In modern intelligent warehousing, the trans-
portation of goods is mainly completed by automatic
guided vehicles (AGVs) [4]. Due to the limited reachable
height of the AGVs, it is impossible to transport goods at
higher positions, which constrains the height of the goods
storage racks in the warehouse, resulting in a waste of
warehouse space. When the quantity of goods exceeds the
afordability of the warehouse, additional warehouse space
can only be opened to store the goods, and the new
warehouse space means an increase in cost and a decrease
in proft.

With the development of hardware devices, more and
more unmanned aerial vehicles (UAVs) have been

developed for various operations, e.g., monitoring, ground
target tracking, optical remote sensing, and precision ag-
riculture [5–8]. Te most signifcant advantage of UAVs is
that they can conduct tasks at high positions. Applying
UAVs to cargo transportation tasks can overcome the
limitation of AGVs. However, the energy consumption of
UAVs is much higher than that of AGVs. Tus, the working
time and operational distance of UAVs are compromised,
making it impossible to carry out long-distance trans-
portation tasks [9]. Terefore, we cannot directly replace
AGVs with UAVs in cargo transportation tasks.

Based on the previous facts, we intend to combine AGV
and UAV to form a cooperative AGV-UAV transportation
for cargo transportation tasks and solve problems they
cannot complete alone. During transportation, UAVs can
target goods at higher positions, while AGVs can target those
at lower positions. For goods at a long distance and a high
position, the AGV can carry the UAV to the location of the
goods, and then, the UAV can fy to process the goods. In
this way, the UAV makes up for the height limitation of the
AGV, improving the space utilization of the warehouse
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efectively, and reducing the working time and the power
consumption of the UAV.

For AGV-UAV transportation, path planning is an es-
sential part of its navigation process. Selecting the shortest
transportation route during transportation can reduce
transportation costs in terms of time and energy. Recent
years have witnessed the emergence of various path planning
algorithms, including traditional path planning algorithms
(e.g., Dijkstra algorithm [10], A∗ algorithm [11], artifcial
potential feld algorithm [12]), and intelligent path planning
algorithms (e.g., genetic algorithm [13], particle swarm al-
gorithm [14], and ant colony algorithm [15]). Tese algo-
rithms achieved specifc achievements in path planning but
are easily disturbed by environmental factors and cannot
process data in large-scale state space. With the popularity of
artifcial intelligence, deep reinforcement learning (DRL) is
playing an increasingly important role in intelligent navi-
gation and path planning due to its excellent perception and
decision-making capabilities [16]. Particularly, Zhang et al.
proposed an imitation augmented deep reinforcement
learning (IADRL) model for transportation tasks in complex
environments [17]. Compared with the traditional algo-
rithms, IADRL enables the AGV-UAV coalition to ac-
complish cargo tasks at a lower cost.

However, IADRL may converge in advance and fall
into a local optimum in the training process [18]. To target
the previous problem, we propose an intelligent path
planning model for AGV-UAV transportation in this
paper. By introducing the proximal policy optimization
with covariance matrix adaptation (PPO-CMA) [19] into
the policies of the imitation learning (IL) and DRL net-
works, our model can not only learn the latent behavioral
features of the AGV-UAV coalition from the demon-
stration data but also provides behavioral decisions for the
coalition with better optimization policy. Experimental
results show that our model is superior to its rivals by
solving the premature convergence problem, enabling the
AGV-UAV coalition to complete the transportation task
at a lower cost.

Te remainder of this paper is organized as follows.
Section 2 discusses the related work, and the proposed
approach is detailed in Section 3. Section 4 presents the
experimental results and Section 5 concludes this paper.

2. Related Works

Path planning has recently been a hot issue in robotics
research, and the core requirement is to fnd an optimal path
from the starting point to the endpoint with the lowest cost
(e.g., distance, time, and energy). Existing algorithms can be
mainly divided into three categories: (1) traditional algo-
rithms, (2) intelligent algorithms, and (3) DRL-based
algorithms.

2.1. Traditional Algorithms. Traditional path planning al-
gorithms include the Dijkstra algorithm [10], A∗ algorithm
[11], and artifcial potential feld algorithm [12].Te Dijkstra
algorithm is a classic algorithm in the feld of path planning,

which uses a greedy policy to expand one node at a time to
traverse the nodes in the environment to achieve the shortest
path from the start to the end. Based on the Dijkstra’s al-
gorithm, the A∗ algorithm adds heuristic rules to converge
faster when nodes expand. Although the A∗ algorithm has
been widely used in many felds, the application scenarios
of the A∗ algorithm are limited to discrete spaces. Te
artifcial potential feld algorithm sets the gravitational
force between the agent and the target and the repulsion
force between the agent and the obstacle so that the agent
can reach the target position along the direction of the
resultant force. However, the force ratio for diferent
scenes can only be manually coordinated, making the
optimal confguration difcult to obtain, which limits its
applications in complex environments.

2.2. Intelligent Algorithms. Intelligent path planning algo-
rithms are a series of algorithms produced by observing
natural phenomena and animal habits, including the genetic
algorithm [13], particle swarm optimization (PSO) algo-
rithm [14], and ant colony algorithm [15]. Te genetic al-
gorithm imitates the selection and genetic mechanism of
nature to seek the optimal solution. However, it depends on
the initial population selection, and its convergence speed is
slow when solving large-scale problems. Te ant colony
algorithm and the PSO algorithm imitate the swarm in-
telligence behavior of ant colonies and bird swarms and have
good parallelism and fast convergence speed. Nevertheless,
the parameter setting afects the performance of these two
algorithms, making them easily fall into the local optimal
solution.

2.3. DRL-Based Algorithms. Reinforcement learning can
optimize the agent’s action policy by maximizing long-term
returns without background knowledge. It can fnd the
optimal path through continuous trial and error in a com-
pletely unknown environment [20]. Terefore, researchers
applied DRL to target path planning problems. Mirowski
et al. proposed a DRL method to train agents to navigate
within large and visually rich environments by introducing
memory and auxiliary learning targets [21]. Sallab et al.
presented the DQN algorithm for the discrete actions and
deep deterministic actor-critic algorithm for continuous
actions to lane keeping assist [22]. Chen et al. designed
a time-efcient navigation policy based on socially aware
collision avoidance with DRL, which can enable fully au-
tonomous navigation of a robotic vehicle in an environment
with many pedestrians [23]. Kendall et al. applied the DRL to
a full-sized autonomous vehicle, which can learn a policy for
lane following in a handful of training episodes via a single
monocular image as input [24]. By combining imitation
learning (IL) and DRL, Zhang et al. proposed an IADRL
model for the AGV-UAV coalition [17] to cooperatively and
cost-efectively accomplish tasks. However, the IADRL
model sufers from the local optimum problem due to the
convergence in advance. Terefore, there is still space to
enhance the path planning performance in AGV-UAV
transportation tasks.
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3. The Proposed Approach

3.1. Motivation and Challenges. As discussed in
Introduction Section, the IADRL model combines deep
reinforcement learning and imitation learning to learn the
cooperative and complementary behavior mode of
AGV-UAV transportation alliance from expert data and
interactive data. As the action policy adopted by IADRL,
however, the defects of proximal policy optimization (PPO)
itself may cause IADRL to fall into local optimum in the
learning process and thus be unable to fnd the optimal path.

To better analyze the shortcomings of PPO, we create an
environment only containing two-dimensional actions,
which facilitates us to visualize the distribution of the actions
chosen by the policy during the iterative process. In this
environment, the reward is negatively correlated with the
sum of squares of the actions chosen by the policy so that the
policy reaches the optimumwhen both actions chosen by the
policy are zero. In Figure 1, we visualized the distribution of
actions selected by diferent policies at diferent iterations,
where green represents positive-advantage actions and red
represents negative-advantage actions.

In the frst row of Figure 1, when the policy performs
multiple minibatch gradient descent with the same data in
PPO style without considering the clipping loss, the actions
chosen by the policy at 9 iterations deviate from the optimal
point. Such a situation happens because the negative-
advantage actions push the policy away from the
negative-advantage actions. In contrast, the positive-
advantage actions pull the policy towards the positive-
advantage actions. Each step of the updating process
moves the policy away from the negative-advantage actions,
eventually causing the strategy to deviate from the
optimal point.

As shown in the second row of Figure 1, compared with
the frst row, PPO does not deviate during the iterative
process but approaches the optimal point as the iteration
proceeds. However, the fnal policy still does not exactly
reach the optimal point. Tis is because PPO limits the
update range of the policy through the clipping loss to
prevent the policy’s deviation. But the clipping loss also
causes the policy to converge early and fall into the local
optimum [22].

Based on our research on reinforcement learning al-
gorithms, we noted that PPO-CMA [25] can solve the
previously mentioned problems of PPO well. PPO-CMA
prevents the early convergence of policy by using the
standard policy gradient loss instead of clipping loss and
updating the policy’s variance and mean with separate
networks, respectively. Moreover, PPO-CMA avoids the
policy deviation problem caused by negative-advantage
actions by converting negative-advantage actions to posi-
tive ones through a mirroring method. As seen in the third
row of Figure 1, PPO-CMA starts to converge only when it is
close to the optimal point and fnally reaches the optimal
point of the strategy exactly.

All these observations inspired us to propose a new
model based on PPO-CMA to solve the premature con-
vergence problem presented in IADRL and to provide path
planning for AGV-UAV alliances in transportation tasks.

3.2. Te Proposed Model. To deal with the problem of
premature convergence in IADRL, we propose a new model
for path planning of the AGV-UAV alliance using
PPO-CMA as the action policy. Specifcally, the clipping loss
is frst replaced by the standard policy gradient loss to
prevent premature convergence. Afterward, the mean and
variance of the policy are updated separately using separate
networks to further extend the variance in the optimal
search direction. Moreover, the negative-advantage action is
turned into a positive-advantage action by a mirroring
method.

Te AGV-UAV transportation coalition can be de-
scribed by the tuple 〈ϵ, o, a, r, c, M〉, where ϵ represents the
environment, r is the reward function, c ∈ (0, 1] is the
discount factor for future rewards, and M is the comple-
mentary cooperation model of the AGV-UAV. Te
o � (o1, o2) represents the observed values of the coalition
on the environment, consisting of o1 for the observation
value of the AGV and o2 for the observation value of the
UAV. Te a � (a1, a2) ∼ M means the action of the
transportation coalition, which consists of the action a1
taken by the AGV and the action a2 taken by the UAV. Te
goal is to learn a joint value-action function Qπ

c (o, a; θ) that
enables the AGV-UAV coalition to achieve maximum
overall reward (or minimum overall cost), while accom-
plishing various tasks.

According to the generative adversarial imitation
learning (GAIL) model [25], the IL model in this paper
includes a generator G and a discriminator D. Te generator
G, also the policy π in the DRL model, is responsible for
producing actions closer to the distribution of expert data
based on a given observation o to pass the detection of the
discriminator D. Te discriminator D distinguishes the
expert data from the data obtained by the generator G.
During the training process, the value function should be
maximized, described as follows [17]:

V(ω) � Eπ[log(D(o, a;ω))]

+ EτE
[log(1 − D(o, a;ω))] − λH(π).

(1)

Here, ω is the weight of the D, H(π) is the entropy of the
policy π [26], λ≥ 0 is the discount factor for H, and τE is the
expert policy provided by the demonstrated data.

Te value function Qπ
c in the DRL model is used to

process the received rewards and evaluate the current action
selected by policy π. Te training of the DRL model aims to
maximize the value function Qπ

c of the AGV-UAV, defned
by

Q
π
c (o, a; θ) � E rau(o, a) + cEa′∼π Q

π
c o′, a′( )  , (2)
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where θ is the parameter of the function Qπ
c , c ∈ (0, 1] is the

discount factor for future rewards, and rau is the augmented
reward function.

To prevent premature policy convergence, the following
standard policy gradient loss is used as the loss function of
the policy π instead of the clipping loss.

J(φ) �
1
K



K

i�1
A
π

oi, ai(  
j

ai,j − μj;φ oi(  
2

cj;φ oi(  
+ 0.5 logcj;φ oi( ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(3)

where φ is the parameter of the value function Jφ, i is the
mini-batch sample index, j indexes the operand variables,
and K is the number of sample batches. Aπ(oi, ai) represents
the advantage function for measuring the payof of taking
action ai in state oi.

In addition, the mean and variance of the policy are
generated using separate networks so that the variance
can be updated before the mean is updated. Tis allows
the policy to fnd the optimal point more quickly by
elongating the exploration distribution along the optimal
search direction rather than converging the variance
prematurely [27].

Considering that negative-advantage actions may cause
policy deviation, a mirroring technique is employed to
convert negative-advantage actions into positive ones. Given
the linearity of advantage around the current policy mean

μ(si), it is possible to mirror negative-advantage actions into
positive-advantage actions about the mean. Specifcally, we
set ai
′ � 2μ(si) − ai, Aπ(ai

′) � −Aπ(ai)ψ(ai, si), where
ψ(ai, si) is a Gaussian kernel that assigns less weight to
actions far from the mean.

4. Experimental Results and Analysis

In this section, we frst conducted the experiment of PPO
and PPO-CMA in the gym environment provided by
OpenAI. After that, we built an experimental environment
for the AGV-UAV problem and detailed the environment
confguration. Based on this, we demonstrated the efec-
tiveness and superiority of the proposed model by com-
paring the experimental results with other models.

4.1. Gym Experiment. From Figure 1, we can see that
PPO-CMA solves the problem of PPO’s early conver-
gence, and it is no longer disturbed by negative-advantage
actions. To better demonstrate the advantages of PPO-
CMA, we further compare the two algorithms in the gym
environment.

As can be seen from Figure 2, the experiments in
MountainCar-v0 and BipedalWalker-v3 show that
PPO-CMA can achieve higher rewards in the experiment,
which shows that PPO-CMA is superior to PPO.
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Figure 1: Multiple minibatch iterations of diferent policies in a two-dimensional action environment.
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Moreover, PPO-CMA is obviously faster than PPO in
convergence speed.

Figure 3 gives the variance of the two policies in the
training process. It can be seen that the sampling variance of
PPO-CMA reduces to the minimum value more slowly than
that of PPO, which efectively expands the exploration
variance, prevents the policy from falling into local opti-
mum, and achieves a better fnal training efect of PPO-
CMA.

4.2. AGV-UAV Transportation Experiment

4.2.1. Experimental Confguration. We designed a virtual
simulation scenario for the proposed model based on the
Unity3D ML-Agents platform [28], and we deployed an
AGV-UAV coalition with the size of 50m× 50m× 10m,
and the mission of the coalition was to complete the
transportation of goods in the shortest path. As shown in
Figure 4, the cyan-blue squares represent the AGV, the
yellow square represents the UAV, and the green, red, and
purple spheres represent the target cargoes at diferent
heights and positions.

In the experiments, each agent’s ray-cast sensor provided
by Unity3D collects the environment states. Te ray-cast
sensor casts rays into the surrounding environment and the
position of all detected objects and their distances can be
obtained. Te ray of the AGV only detects the environment
in the horizontal direction, while the ray of the UAV swings
up and down 45 degrees to detect the environment. Te
detection range of all rays is set to 20meters.Te observation
o of an AGV-UAV coalition is a vector containing envi-
ronmental information combined with all its detected ray
returns.

Te action of the AGV is expressed as a1 � [ax, ay],
and the action of the UAV is expressed as a2 � [az], where
ax, ay, and az represent the agent’s acceleration in the x, y,

and z directions. Te action of the AGV-UAV coalition is
composed of the action of the AGV and the UAV,
a � (a1, a2).

In the proposed model, the discriminator is set up with
two hidden layers of 128 neural units each. Meanwhile, the
value function is set up with three hidden layers with 512
units per layer, and the policy π is set up with three hidden
layers with 512 units per layer. In addition, the initial po-
sitions of the AGVs, the UAVs, and the target cargoes are
random.

Te environmental reward is designed based on the
situation that the AGV-UAV coalition may encounter. For
the coalition to learn the least expensive path, we set a small
penalty of 0.01 for each step of the coalition. Since the battery
life of the AGV is 5 to 10 times that of the UAV, we set the
penalty for each step of the UAV to be 6 times that of the
AGV. Terefore, under normal circumstances, the UAV
should be carried by the AGV to the destination, and then,
the UAV starts to work.We set the reward for each goal to be
120 to encourage the coalition to complete the task. Con-
sidering that there may be obstacles in the actual situation,
we set up obstacles in the scene and made a large penalty of
−30 for the coalition to collide with the obstacles. Te fnal
reward of 120 is obtained when the coalition has achieved all
objectives.

In the experiments, we can manually control the agent
to complete some simple tasks and record the data to
train the model as expert data. We collected the running
data of the agent for 10,000 steps, where the data includes
all basic scenarios of AGV and UAV cooperating to
complete the task. It should be noted that the expert data
enables the model to learn the cooperative and com-
plementary relationship between AGV and UAV, not to
learn the optimization policy of the path. Terefore, our
demo data only needs to refect the behavioral charac-
teristics of the AGV-UAV coalition. Tat is to say, the
AGV frst carries the UAV to the target position, and
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Figure 2: Rewards of PPO-CMA and PPO algorithms in MountainCar-v0 and BipedalWalker-v3 environments.
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then, the UAV takes of and starts to work. Moreover,
there is no need to artifcially optimize the route from the
coalition to the target.

4.2.2. Experimental Results. In the AGV-UAV trans-
portation task, the maximum training step for each episode
is set to 20,000. If the coalition gets all the goods, the episode
terminates immediately, otherwise, training continues until
the agent runs out of the maximum step. In the experiments,
we compare the proposed model with four models including
PPO, behavior cloning (BC) [29], GAIL, and IADRL for
performance evaluation. To ensure a fair comparison, we use
the same parameters, i.e., the number of targets, the learning
rate, and the maximum step, for all models.

Figure 5 frst compares the rewards obtained by all fve
models. Obviously, the proposed model has the highest
rewards, indicating the best optimization ability of path

planning. According to the results, the highest reward of the
proposed model is 4400, but the highest reward of IADRL is
less than 4000, resulting in more than 10% improvement.
Te IADRL outperforms the PPO, GAIL, and BC models
due to the combination of IL and DRL. Te PPO model can
learn policies based on the environment, so it can quickly
learn to avoid obstacles at the beginning of the training
process. However, without the guidance of demonstration
data, it cannot learn the behavior characteristics of the
AGV-UAV coalition, resulting in its training speed and fnal
reward being lower than IADRL and the proposed model. In
addition, it can be seen that the PPO, IADRL, and the
proposed models tend to converge in the end. But the GAIL
and BC models fail, which is basically consistent with the
theoretical conjecture that GAIL and BC only replicate the
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Figure 3: Exploration variances of PPO-CMA and PPO algorithms in MountainCar-v0 and BipedalWalker-v3 environments.
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actions and policies provided by the demonstration data, rather
than obtaining optimal policies by obtaining higher rewards.
As shown in Figure 6, the number of moving steps in each
episode of the BC and GAIL models is always equal to the
maximum step of 20000, which means that both of them fail to
complete the transportation task of all targets. Tis is because
these two models depend highly on expert data and cannot be
adaptively suitable for complicated environments.

During the training process, the agents collect data by
continuously interacting with the environment. Te training
samples can get more and more with the increment of moving
steps. To evaluate how well the proposed model performs in
diferent sizes of training samples, Figure 7(a) shows the ac-
cumulated training reward values for diferent periods

according to the training sample size. In particular, we colored
the reward curve in diferent periods: green for the period with
a small size of training samples, orange for a medium size, and
red for a large size. It can be seen that the reward is low but
increases faster when it has a small size of training samples. In
this case, our model still outperforms the IADRL and PPO
models with a higher reward, as shown in Figure 7(b).

Figure 8 shows the number of collisions between the
AGV-UAV coalition and obstacles in each episode. It can be
seen that the PPO, IADRL, and proposedmodels can quickly
reduce the number of collisions to a minimum after training
withmany collisions in the early stage of training. But the BC
and GAIL models keep a high number of collisions due to
lacking environmental rewards.
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Figure 6: Te number of running steps in each episode of the GAIL and BC models. (a) GAIL. (b) BC.
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To better show the superiority of the proposed model, we
use the following metrics for evaluation: (1) the mission
completion rate, that is, the percentage of goals reached by the
coalition in each episode to the total number of goals and (2)
the number of steps required to complete an episode of tasks.
Te IADRL and proposed models are further compared in
Figure 9, where (a) shows the task completion rate and (b)
shows the number of moving steps. It can be seen that the
completion rate of the proposedmodel is superior to that of the
IADRL model. However, after about 250 episodes, the com-
pletion rate of the proposedmodel reaches one and keeps stable
for the following episodes. According to Figure 9(b), in the
early learning stage, it is difcult for themodels to complete the
transportation of all goods without a suitable policy.Terefore,

the number of steps consumed by the models in each episode
reaches a maximum of 20000.With gradual training, the policy
is gradually optimized, and the number of steps for completing
an episode decreases. It can be seen that the proposed model
outperforms the IADRL in terms of task completion rate and
the number of moving steps.

4.2.3. Discussion. In this paper, we have taken into account
the energy constraints of the UAV and outlined the operational
guidelines for the AGV-UAV alliance. Te AGV will initially
transport the UAV to the desired location, where it will then
take of to the required altitude to complete the task. Tis
approach restricts the UAV’s operational radius to only the
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area directly above the AGV. Unfortunately, when the target is
beyond the AGV’s reach or can only be accessed via a lengthy
detour, the UAV’s limited range of motion will increase the
overall cost of completing the mission for the alliance.

For example, as shown in Figure 4, the purple target is
located directly above the obstacle. Although the UAV can
reach the height where this target is located yet it cannot
complete the transportation mission because the AGV
cannot reach directly below the target. In addition, the red
target in Figure 4 is located on the other side of the obstacle,
which requires the AGV to go around the obstacle to reach
directly below the target before the UAV can take of to
handle the target. In this case, if the UAV can move hori-
zontally, then as soon as the AGV reaches the vicinity of the
obstacle, the UAV can take of to handle the target and the
alliance can accomplish the task with less cost.

5. Conclusion

In this paper, an intelligent path planning model was
proposed for the AGV-UAV transportation task in 6G smart
warehouse environments. Te proposed model utilizes
PPO-CMA in the IL and DRL networks to prevent pre-
mature convergence of policy. Tis enables the AGV-UAV
coalition to learn behavior patterns and complete trans-
portation tasks at a lower cost. Te experiments conducted
in a simulated warehouse environment demonstrate that the
proposed model outperforms the baselines. In the future, the
focus will be on enabling the AGV-UAV alliance to ac-
complish transport missions in complementary and co-
operative working modes. In addition, exploring ways to
allow the UAV to move horizontally to further reduce costs
will be a topic of interest.
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