
Research Article
A Lightweight Binarized Convolutional Neural Network
Model for Small Memory and Low-Cost Mobile Devices

Xuan Qi , Zegang Sun , Xue Mei , and Ryad Chellali

College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China

Correspondence should be addressed to Xue Mei; mx@njtech.edu.cn

Received 9 November 2022; Revised 4 March 2023; Accepted 14 March 2023; Published 12 April 2023

Academic Editor: Yugen Yi

Copyright © 2023XuanQi et al.Tis is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, the high cost of implementing deep neural networks due to their large model size and parameter complexity has
made it a challenging problem to design lightweight models that reduce application costs. Te existing binarized neural networks
sufer from both the large memory occupancy and the big number of trainable params they use. We propose a lightweight
binarized convolutional neural network (CBCNN) model to address the multiclass classifcation/identifcation problem. We use
both binary weights and activation. We show experimentally that a model using only 0.59M trainable params is sufcient to reach
about 92.94% accuracy on the GTSRB dataset, and it has similar performances compared to other methods on MNIST and
Fashion-MNISTdatasets. Accordingly, most arithmetic operations with bitwise operations are simplifed, thus both used memory
size and memory accesses are reduced by 32 times. Moreover, the color information was removed, which also reduced drastically
the training time. All these together allow our architecture to run efectively and in real time on simple CPUs (rather than GPUs).
Trough the results we obtained, we show that despite simplifcations and color information removal, our network achieves
similar performances compared to classical CNNs with lower costs in both in training and embedded deployment.

1. Introduction

Deep neural networks (DNNs) are making remarkable
progresses every day and involved in many application
felds. Computer vision, natural language processing and
many other domains beneft from these progresses opening
doors to new solutions to hard problems. Convolutional
neural networks (CNNs) are the most common method in
use these days. CNNs solve various visual problems such as
image classifcation, recognition, or detection. New CNN
models are constantly proposed and improved, such as
ResNeXt [1] and SK-Net [2]; however, their architecture
does not change much during the last decade. Te main
improvements were possible thanks to the computational
power availability: the use of GPU-based machines as well as
the increase of the associated memories allows CNNs to
achieve outstanding performances. A natural question
aroused that is it possible to reach similar or better per-
formances at a lower computational cost? Tat is to say, is it
possible to have CNNs or equivalent, running or cheaper

machines with less memory (typically mobile phones for
instance) and having comparable results? Tis new open
problem has been addressed recently and people started to
develop methods based on model compression and binar-
ization. Yoshua Bengio in his seminal work [3] introduced
a method for training binarized neural networks (BNNs).
Indeed, in the training phase, binary weights and activations
replace the real ones in the gradients operations as for CNNs.
Tis greatly reduces the used memory size, the access times
to it, and replaces most arithmetic operations with bitwise
operations, which fts exactly with the initial quest of keeping
the same efectiveness at a lower cost.

Our work takes inspiration from BNN [3]. We focused
mostly on two points: (i) fnding the conditions to reduce the
number of trainable params and (ii) deriving the best
preprocessing operation, all together with keeping the
highest performances possible at the lowest cost possible.
Moreover, we show also the color information is not nec-
essary and the brightness in images is sufcient to reach
similar performances to classical CNNs in executing the

Hindawi
Mobile Information Systems
Volume 2023, Article ID 5870630, 11 pages
https://doi.org/10.1155/2023/5870630

https://orcid.org/0000-0003-1118-9008
https://orcid.org/0009-0001-2687-297X
https://orcid.org/0000-0002-4751-0644
https://orcid.org/0000-0003-3395-2254
mailto:mx@njtech.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5870630


same tasks. We obtain good experimental results. Tis
double compression method has the following three
advantages:

(1) Efectively reducing the amount of calculation in the
training process and accelerate the training speed of
the model.

(2) Greatly reducing the memory space occupied by
the model.

(3) Greatly reducing the actual application
deployment cost.

2. Related Work

2.1. Information Loss. Unlike optimizing the binary process
directly at the convolution layer, LAB2 [4] directly considers
the binary loss and applies the near-end Newton algorithm
to the binary weights. CI-BCNN [5], through learning to
strengthen graph models, mining channel-level interaction,
and iterating pop count, reduces symbol inconsistency in
binary feature graphs and retains the input sample in-
formation. LNS [6] proposes to predict binary weight by
monitoring noise learning and training binary functions.
ProxyBNN [7] utilizes basis and coordinate submatrices to
form the weight matrix prior to binary conversion, while
IR-NET [8], RBNN [9], IA-BNN [10], SLB [11], and
BBG-NET [12] optimize, reshape, activate, and allocate
weights for the binary conversion process.

2.2. Network Structures. In the existing binary research on
classical networks, there are some problems, such as too
much memory, more parameters, complex network model
structure, and relatively high application cost due to
inheriting the structure of classical neural networks.
Moreover, diferent binarized neural network architectures
will not only afect the performance of binarized convolu-
tional neural networks, but also afect the actual hardware
deployment cost. Subsequent researchers have made a series
of enhancements to BNN [3], such as BBG-Net [12] and
Real-to-Bin [13], which aim to improve the accuracy of
ResNet and other high-performance conventional networks.
DMS [14] has efectively narrowed the precision gap be-
tween full-precision networks. BATS [15], BNAS [16], NASB
[17], and high-capacity-expert [18] have proposed special-
ized NAS approaches to design architectures for searching
BNN and comparing the accuracy of similar network models
with some binarized conventional networks, such as ResNet.
Meanwhile, high-capacity-expert [18] applies a conditional
calculation method called expert convolution in BNN,
combining the convolution group with the above method.
MoBiNet-Mid [19] and Binarized MobileNet [20] propose
a new, lighter BNN structure with better precision perfor-
mance in reference to Mobilenet-V1. MeliusNet [21] and
ReActNet [22] design a new BNNmodel structure with a less
foating point and binary operations (FLOPs/BOPs) calcu-
lation cost, which has better accuracy than full-precision
lightweight MobileNet. BNN-BN-free [23] incorporates the
BN-free [24] concept and presents a method of constructing

a network architecture without batch normalization, which
has been replaced by the scaling factor. FracBNN [25]
reasonably extends the topology of ReActNet, reconstructs
the network block. BCNN [26] designs a specifc network
structure specifcally for the ImageNet data classifcation
task, and its model is more lightweight than MeliusNet and
ReActNet. Te binary operation based on the classical
network sometimes wastes computational resources while
dealing with some practical small-scale engineering appli-
cations. At the same time, the model needs more memory
space and increased application cost. We get a lot of in-
spiration on the basis of previous research, and then we
design a lightweight CBCNN model to meet the hardware
deployment problem in reality.

2.3. Training Strategy. Te choice of training schemes and
technique also afects the best accuracy of the neural net-
work. Main/subsidiary [27] proposes a method for pruning
BNN flters. Bop [28] and UniQ [29] each propose a new
optimizer for training BNN. Referring to the lottery ticket
hypothesis [30], MPT [31] designs a simpler scheme to learn
BNN with high precision pruning and quantifying the full
precision CNN with random weighting. Real-to-bin [13]
designs a two-step training strategy using the method of
transfer learning to train BNN by learning the real-value
retraining network. By implementing this training strategy,
highly accurate models such as ReActNet [22], high-ca-
pacity-expert [18], and BCNN [26] are ultimately trained.
Additionally, BNN-stochastic [32] proposes a relaxed ap-
proach to stochastic methods that enhances the accuracy of
the CIFAR-10 dataset. Te above research has laid a solid
foundation for the development of the binarized network,
which greatly reduces the computational complexity and
gradually increases the accuracy. Facing the needs of
hardware deployment in application, a sequential model
dual compression binarized convolutional neural network
structure CBCNN is studied to make the network structure
lighter.

2.4. CBCNN (Compress Binarized Convolutional Neural
Network). CBCNN is a sequential model structure, which
makes the model simpler than others. We binarize the
network weights and activation functions to participate in
the errors back-propagation. During training, binarized
weights and activation values are involved in the calculation
of gradients. When making predictions, the weights and
activation values of the network are binary (−1/+1).

Tis section describes our proposed compress binarized
convolutional neural network (CBCNN) framework and the
related training details.

2.5. Model. Te core target in our CBCNN is to reasonably
compress the params of BCNN to make the model more
lightweight. CBCNN contains three types of blocks, which we
named Binary Block 1, Binary Block 2, and Image Com-
pression Block as shown in Figure 1, where Binary Block 1
contains a Binary_C (the binary convolution layer),

2 Mobile Information Systems



aMaxPooling layer as well as a batch normalization layer, and
Binary Block 2 contains a Binary_D (the binary dense layer)
and a batch normalization layer. In addition, we design Image
Compression Block to efectively compress the dataset. Our
network architecture is shown in Figure 2, where diferent
blocks are set for diferent input size. We evaluated our model
with three datasets of two diferent sizes, 32 ∗ 32 ∗ 1, 28 ∗
28 ∗ 1, and 28 ∗ 28 ∗ 1, respectively.

Te Binary_C layer is designed to extract features. We
carry out a series of experiments on the confguration of
diferent blocks, and fnally choose the model structure
reasonably according to experimental results.Te kernel size
is 3 ∗ 3, and the pool size is 2 ∗ 2.

2.6. Training. As the GTSRB [33] dataset contains RGB
color images, we use Image Compression Block to carry out
some data preprocessing before training. Te input images

are converted from RGB to YUV, and the two color channels
U and V are removed, while the brightness channel Y is kept
and used as the input of the network. Meanwhile, we use the
histogram equalization and the standardize features
methods for training. In addition, the fnal mapping of
histogram equalization is shown in equation (1), where Sk is
the target pixel value, rk is the original pixel value, L is the
gray level, Pr(rj) is the probability of rj in the original image,
MN is the total number of pixels in the image, and nj

represents the number of pixels with j in the original image.
Ten, the standardize features method is presented as shown
in equation (2), where μ is the mean value of the image, m is
the image matrix, σ is the standard variance, and P repre-
sents the pixel value of the image. For Fashion-MNIST [34]
and MNIST [35], which are themselves grayscale images of
a channel, we do not carry out additional processing before
training.

Sk � T rk(  � (L − 1) 
k

j�0
Pr rj  �

L − 1
MN



k

j�0
nj , k � 1, 2, 3, . . . L − 1, (1)

Std �
m − μ

max(σ, 1.0/
��
P

√
)

. (2)

We introduce the implementation principles of Bina-
ry_act (the binary activation function), Binary_C (the binary
convolutional layer), and Binary_D (the binary dense layer),
respectively. Te calculation rules of the single-layer gradient
in the CBCNN model we defned are shown in Algorithm 1,
where x is the weight of the input, gx is the current gradient of

the input, y is the weight of the output, and gy is the gradient
of the output.Te process of Algorithm 1 is shown in Figure 3.

In order to train each layer of the CBCNN model
according to Algorithm 1, we use the “hard_sigmoid”
function as follows:

hard sigmoid(x) � h s(x) �

0, x≤ 1,

0.5∗x + 0.5, −1<x< 1,

1, x≥ 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

In the training process of the CBCNN model, in order to
realize the forward propagation algorithm and backward
propagation algorithm (Algorithm 1), we defne the in-
termediate function “cross” in equation (4). “S_G” means the
stop gradient.

cross(x) � x + S G ⌊x +
1
2
⌋ − x . (4)

We defne the activation function of the CBCNN model
as Binary_act (equation (5)), where “S_G” means the stop
gradient and “h_s” means the “hard_sigmoid” function in
equation (3).

Binary act(x) � 2∗ h s(x) + S G ⌊h s(x) +
1
2
⌋ − h s(x)   − 1. (5)

As for Binary_C, we propose the function Binary kC

(equation (6)) to binarize the kernel of the convolutional
layers in the CBCNNmodel. WC is the value of the kernel
in convolutional layers, where “S_G” means the stop

Mobile Information Systems 3



Image Compression
Block Binary Block 1

Binary Block 1 Binary Block 1

Binary Block 1 Flatten Binary Block 2 Binary_D Output

32*32*3 32*32*1

BN

43 neurons

(a)

28*28*1 Binary Block 1

Binary Block 1 Binary Block 1

Binary Block 1 Flatten Binary Block 2 Binary_D Output
BN

10 neurons

(b)

Figure 2: CBCNN architecture. (a) Te size of neural network input is 32× 32×1 on GTSRB. (b) Te size of neural network input is
28× 28×1 on fashion-MNIST and MNIST.

0.7

0.8

-0.2

-0.2

0.3

-0.3

-0.4

0.6

0.8

1

1

-1

-1

1

-1

-1

1

1

(a)

0.7

1.8

-0.2

-0.2

0.3

-0.3

-0.4

0.6

1.8

0.7

0

-0.2

-0.2

0.3

-0.3

-0.4

0.6

0

(b)

Figure 3: (a) Forward propagation process in Algorithm 1. (b) Backward propagation process in Algorithm 1. Te parameters in the left
square are input, and the parameters in the right square are output. Teir positions in the square correspond one to one.

Binary_C

MaxPooling2D

BN

Binary_act

Binary Block 1

(a)

Binary_D

BN

Binary_act

Binary Block 2

(b)

Remove color
channels

Histogram
equalization

Standardize
features

Image
Compression

Block

Data augmentation

(c)

Figure 1: (a) Binary Block 1. (b) Binary Block 2. (c) Image Compression Block.

4 Mobile Information Systems



gradient and “h_s” means the “hard_sigmoid” function
(equation (3)). Trough function equation (6), we
convert the value between [−H1, H1] to –H1 or H1.

Binary kC WC, H1(  � 2∗H1 ∗ h s
WC

H1
  + S G ⌊h s

WC

H1
  +

1
2
⌋ − h s

WC

H1
    − H1. (6)

As for Binary_D, we propose the function Binary kD

(equation (7)) to binarize the kernel of the dense layers in the
CBCNNmodel, WD is the value of the kernel in dense layers,
where “S_G” means the stop gradient and “h_s” means the

“hard_sigmoid” function (equation (3)). Trough function
equation (7), we convert the value between [−H2,H2] to –H2
or H2.

Binary kD WD, H2(  � 2∗H2 ∗ h s
WD

H2
  + S G ⌊h s

WD

H2
  +

1
2
⌋ − h s

WD

H2
    − H2. (7)

3. Experimental Results

We tested our models on three diferent datasets (GTSRB
[33], Fashion-MNIST [34], and MNIST [35]) and compared
them to other neural network models that use convolution
and binary methods.

3.1. GTSRB Test and Analysis. In order to better simulate
the classifcation problems in actual engineering, in this
article, we choose a more challenging and practical dataset
(43 classes of trafc signs) to evaluate the performance of
our model. We choose German Trafc Sign Recognition
Benchmark (GTSRB) [33], a database for trafc sign
recognition provided by the INI Institute of Neural

Computation in Germany. Finally, 51840 images, more
than 1700 instances, a total of 43 classes were obtained.
According to the number of trafc sign pictures of each
class, we reasonably divide them into a training set and
a validation set. We have a training set with 39209 samples
and a validation set with 12630 samples. To our knowl-
edge, this article is the second to evaluate binarized neural
networks on the GTSRB dataset. Our data of each class
and their number distribution in the training set are
shown in Figure 4. Our data of each class and their
number distribution in the validation set are shown in
Figure 5. On the GTSRB dataset, we compare against
methods [36–40], Faster R-CNN [41], and 5 traditional
methods [42] on test (12630 images). Te result is shown
in Table 1.

Input: x, gx
Output: y, gy

(1) Begin
(2) Case 1: Forward propagation
(3) if x≤ 0
(4) y� −1, gy � 0
(5) end if
(6) else
(7) y� 1, gy � 0
(8) end else
(9) Case 2: Backward propagation
(10) if x≤−1
(11) y� −1, gy � 0
(12) end if
(13) if −1 < x< 1
(14) y� x, gy � gx
(15) end if
(16) else
(17) y� 1, gy � 0
(18) end else
(19) end

ALGORITHM 1: Rules for calculating the gradient of a single layer in CBCNN.

Mobile Information Systems 5



Train Samples (one per class)
00 01 02 03 04 05 06 07 08 09 10 11

12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42

(a)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Tr
ai

n 
Pe

rc
en

ta
ge

05 10 15 20 25 30 35 4000
Train Class Label

Train Distribution

(b)

Figure 4: (a) Number of training set classes. (b) Number of training set quantity distribution of each class.

Test Samples (one per class)
00 01 02 03 04 05 06 07 08 09 10 11

12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42

(a)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Te
st 

Pe
rc

en
ta

ge

05 10 15 20 25 30 35 4000
Test Class Label

Test Distribution

(b)

Figure 5: (a) Number of validation set classes. (b) Number of validation set quantity distribution of each class.

Table 1: Te accuracy performance of diferent methods is compared on the GTSRB dataset.

Methods Accuracy (%) Params (M)
HOG+SVM [42] 77.6 —
LBP+ SVM [42] 71.1 —
LBP+RF [42] 69.7 —
PI + LDA+ SVM [42] 82.3 —
LDA+RF [42] 82.3 —
Faster R-CNN [41] 91.8 —
Multiscale CNN [36] 95.4 —
MobileNet [39] 88.15 —
ShufeNet [39] 88.99 —
EfNet [39] 91.79 —
Multicolumn [37] 99.46 90
Weighted multiconvolutional [38] 99.59 75.3
DCR (bitwise operation) [40] 92.86 0.83
CBCNN (ours, bitwise operation) 92.94 0.59

6 Mobile Information Systems



We set some training parameters, the epoch is 1000. We
use batch normalization with a minibatch of size 200 to
speed up the training. Te optimizer used is “Adam” and the
loss function used is “squared hinge”. We use the learning
rate as an initial value of 10−3 and an end value of 10−4. Te
accuracy and loss we obtained are shown in Figure 6, and the
accuracy of the model reaches 92.94%. In Table 1, we can
clearly see that CBCNN is superior to the fve traditional
methods in [42], the accuracy is 1.14% higher than that of
Faster R-CNN [41] and only 6.65% lower than the current
state-of-the-art result [37]. However, the memory of our

model is only 6.81MB, trainable params are only 0.59M, and
bitwise operation can be performed at the same time.

3.2. Fashion-MNISTTest andAnalysis. Fashion-MNIST [34]
is a dataset composed of objects related to clothing, shoes,
and bags. Te training set and test set of Fashion-MNIST
have a consistent distribution with the training set and test
set of MNIST. To our knowledge, this article is the frst to
evaluate binarized neural networks on the Fashion-MNIST
dataset. We compare the test (10000 images) with other

0 200 400 600
epoch

800 1000

0.2

0.4

0.6

0.8
ac

cu
ra

cy

model accuracy

train
validation

(a)

0 200 400 600
epoch

800 1000

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0

lo
ss

model loss

train
test

(b)

Figure 6: (a) Accuracy of CBCNN training and validation sets on GTSRB. (b) Te loss of CBCNN on GTSRB.

Mobile Information Systems 7



advanced methods [43–48] on the Fashion-MNIST dataset,
and the result is shown in Table 2.

We set some training parameters, the epoch is 500. We
use batch normalization with a minibatch of size 50 to speed
up the training. Te optimizer used is “Adam” and the loss
function used is “squared hinge.” We use the learning rate as
an initial value of 10−3 and an end value of 10−4. Te accuracy
and loss we obtained are shown in Figure 7, and the accuracy
of themodel reaches 92.86%. In Table 2, we can clearly see that
the accuracy of CBCNN is only 4.05% lower than that of the
current best method [48]. However, thememory of ourmodel
is only 1.89MB, trainable params are only 0.48M, and bitwise
operation can be performed at the same time.

3.3.MNISTTest andAnalysis. MNIST is a benchmark image
classifcation dataset [35]. It is made up of 28 × 28 grayscale
images, representing numbers between 0 and 9, and contains
60000 training sets and 10000 test sets. In BNN [3], the
binary MLP method is used to obtain the best accuracy of
99.04% on MNIST, but the design of MLP makes the model
occupy a large amount of memory. We compare the results
tested by the CBCNN method with other methods, and the
result is shown in Table 3.

Our experimental parameter confguration is the same
as the Fashion-MNIST test. Te accuracy and loss we
obtained are shown in Figure 8, and the accuracy of the
model reaches 99.32%. In Table 3, we can see that the best
accuracy of CBCNN is 0.28% higher than that of the
current best method [3] in binarized neural networks.
Moreover, the memory of our model is only 1.89MB,
trainable params are only 0.48M, and bitwise operation can
be performed at the same time.

4. Discussion

We analyze the model performance of CBCNN as follows.

0
0.75

0.80

0.85

0.90

0.95

100 200 300
epoch

400 500

ac
cu

ra
cy

model accuracy

train
validation

(a)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 100 200 300
epoch

400 500

lo
ss

model loss

train
test

(b)

Figure 7: (a) Accuracy of CBCNN training and validation sets on Fashion-MNIST. (b) Te loss of CBCNN on Fashion-MNIST.

Table 3: Te accuracy performance of diferent methods is
compared on the MNIST dataset.

Methods Accuracy (%) Params (M)
SOPCNN [49] 99.83 1.4
No routing needed [50] 99.87 1.5
Efcient-CapsNet [51] 99.84 0.16
BNN (Torch7) [3] 98.60 —
BNN (Teano) [3] 99.04 —
CBCNN (ours, bitwise operation) 99.32 0.48

Table 2: Te accuracy performance of diferent methods is compared on the Fashion-MNIST dataset.

Architecture Accuracy (%) Params (M) Search methods
ResNeXt-8-64 + random erasing [43] 96.2± 0.06 34.4 Manual
ResNet-110 + random erasing [43] 95.9± 0.13 1.7 Manual
VGG8B [44] 95.47 7.3 Manual
DeepCaps [45] 94.46 7.2 Manual
WRN-28-10 + random erasing [43] 96.3± 0.03 36.5 Manual
DARTS (2nd order) + cutout + random erasing [47] 96.57 2.6 Gradient-based
Fine-tuning DARTS [48] 96.91 3.2 Gradient-based
Neupde [46] 92.40 0.4 Manual
CBCNN (ours, bitwise operation) 92.86 0.48 Gradient-based

8 Mobile Information Systems



4.1. Memory Size and Accesses. Compared to 32-bit DNNs,
CBCNN has 32 times less memory and 32 times less memory
access. Tis will efectively reduce energy consumption by
more than 32 times. At the same time, after the network
layers and training data are efectively compressed, the used
memory will be greatly reduced, which is more suitable for
embedded deployment.

4.2. Forward Pass Efciency. During forward pass (run
time and training time), CBCNN drastically reduces
memory size and access and replaces most arithmetic
operations with bitwise operations. We think CBCNN
can reduce the time complexity by 60% on dedicated
hardware [3].

4.3. Binary Activations and Weights. In CBCNN, the net-
work’s activations and weights are both limited to −1 or +1.
Tus, a large number of 32-bit foating-point operations are
replaced by 1-bit operations and consequently the actual
application cost is drastically reduced.

4.4. Binary Filters. CBCNN has binary flters, and 2D flters
of size 3× 3 repeat themselves. If dedicated hardware and
software are used, we can apply unique 2D flters on each
feature map and add the results to obtain the convolutional
results of each 3D flter [3].

According to the experimental results, the memory
sizes of our models in the three datasets are 6.81MB,
1.89MB, and 1.89MB, respectively, which is enough for
our models to be deployed on the chip with very limited
memory. In addition, our models work in the way of
bitwise operation, which is enough to be applied to
hardware circuits containing only low memory elements.
Te operation of reducing model parameters greatly re-
duces the application cost of the models in mobile terminal
devices. At the same time, we provide developers with an
idea of the binarized convolutional neural network model

after double compression, so that developers can reason-
ably confgure the number of binary blocks according to
their own project requirements.

5. Conclusions

In this article, we propose a lightweight neural network
CBCNN (compress binarized convolutional neural network)
to solve the problem of image multiclassifcation recogni-
tion. We compress both the datasets and the binarized
convolutional neural network structures when dealing with
the multiclassifcation problem. CBCNN obtain the most
advanced results in binarized convolutional neural networks
on GTSRB [33], Fashion-MNIST [34], and MNIST [35]. In
addition, in the process of the forward pass (running and
training), the CBCNN model replaces most arithmetic op-
erations with bitwise operations and reduces the memory
size and memory access 32 times. Furthermore, the dual
compression method (the network structure and dataset)
greatly reduces the memory space occupied by the model
and enables the potential for loading neural networks onto
portable devices that have severely limited memory, which is
more conducive to neural network embedded deployment.
Experimental results show that CBCNN has a slightly lower
accuracy than the convolutional neural network when
dealing with multiclassifcation problems, but CBCNN has
a lower cost in hardware deployment. High-performance
neural network architecture sometimes causes waste of
computing resources when dealing with some practical
engineering problems. Moreover, excessive reliance on high-
performance hardware increases the application cost. In the
future, we will continue to work on improving the per-
formance of binarized neural networks by changing the
network structures and training strategies.

Data Availability

Our code is available at https://github.com/AI-Xuan/
CBCNN. All experimental datasets are public datasets.

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0 100 200 300
epoch

400 500

ac
cu

ra
cy

model accuracy

(a)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 100 200 300
epoch

400 500

lo
ss

model loss

(b)

Figure 8: (a) Accuracy of CBCNN training and validation sets on MNIST. (b) Te loss of CBCNN on MNIST.

Mobile Information Systems 9

https://github.com/AI-Xuan/CBCNN
https://github.com/AI-Xuan/CBCNN


Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

Xuan Qi and Zegang Sun contributed equally to this work.

Acknowledgments

Tis work was supported by the National Natural Science
Foundation of China (Grant no. 61973334).

References

[1] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” in Pro-
ceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5987–5995, Honolulu,
Hawaii, July 2017.

[2] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel net-
works,” in Proceedings of the 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 510–
519, Long Beach, CA, USA, June 2019.

[3] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Binarized Neural Networks: Training Deep Neural
Networks with Weights and Activations Constrained to +1 or
−1,” 2016, https://arxiv.org/abs/1602.02830.

[4] L. Hou, Q. Yao, and J. T.-Y. Kwok, “Loss-aware binarization
of deep networks,” 2017, https://arxiv.org/abs/1611.01600.

[5] Z. Wang, J. Lu, C. Tao, J. Zhou, and Q. Tian, “Learning
channel-wise interactions for binary convolutional neural
networks,” in Proceedings of the 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 568–
577, Long Beach, CA, USA, June 2019.

[6] K. Han, Y. Wang, and Y. Xu, “Training Binary Neural Net-
works through Learning with Noisy Supervision,” 2020,
https://arxiv.org/abs/2010.04871.

[7] X. He, Z. Mo, and K. Cheng, “Proxybnn: Learning Binarized
Neural Networks via Proxy Matrices,” Computer Vision –
ECCV, vol. 12348, 2020.

[8] H. Qin, R. Gong, and X. Liu, “Forward and backward in-
formation retention for accurate binary neural networks,” in
Proceedings of the 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2247–2256,
Washington, DC, USA, June 2020.

[9] M. Lin, R. Ji, and Z.-H. Xu, “Rotated binary neural network,”
2020, https://arxiv.org/abs/2009.13055.

[10] H. Kim, J. Park, C.-H. Lee, and J.-J. Kim, “Improving accuracy
of binary neural networks using unbalanced activation dis-
tribution,” in Proceedings of the 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pp. 7858–7867, Virtual, June 2021.

[11] Z. Yang, Y. Wang, and K. Han, “Searching for Low-Bit
Weights in Quantized Neural Networks,” 2020, https://
arxiv.org/abs/2009.08695.

[12] M. Shen, X. Liu, and K. Han, “Balanced binary neural net-
works with gated residual,” in Proceedings of the ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 4197–4201, Barcelona, Spain,
May 2020.

[13] B. Mart́ınez, J. Yang, A. Bulat, and G. Tzimiropoulos,
“Training binary neural networks with real-to-binary con-
volutions,” 2020, https://arxiv.org/abs/2003.11535.

[14] Y. Li, R. Gong, F. Yu, X. Dong, and X. Liu, “Dms: difer-
entiable dimension search for binary neural networks,” 2020,
https://arxiv.org/pdf/2103.13630.pdf.

[15] A. Bulat, B. Mart́ınez, and G. Tzimiropoulos, “Bats: Binary
Architecture Search,” 2020, https://arxiv.org/abs/2003.01711.

[16] K. P. Singh, D. Kim, and J. Choi, “Learning Architectures for
Binary Networks,” 2020, https://arxiv.org/abs/2002.06963.

[17] B. Zhu, Z. Al-Ars, and H. P. Hofstee, “Nasb: neural archi-
tecture search for binary convolutional neural networks,” in
Proceedings of the 2020 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8, Glasgow, UK, July 2020.

[18] A. Bulat, B. Mart́ınez, and G. Tzimiropoulos, High-capacity
Expert Binary Networks, 2021, https://arxiv.org/abs/2010.
03558.

[19] H. T. Phan, D. T. Huynh, Y. He, M. Savvides, and Z. Shen,
“Mobinet: a mobile binary network for image classifcation,”
in Proceedings of the 2020 IEEE Winter Conference on Ap-
plications of Computer Vision (WACV), pp. 3442–3451,
Snowmass Village, CO, USA, March 2020.

[20] H. T. Phan, Z. Liu, and D. T. Huynh, “Binarizing mobilenet
via evolution-based searching,” in Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition (CVPR), pp. 13417–13426, Washington, DC, USA,
June 2020.

[21] J. Bethge, C. Bartz, H. Yang, Y. Chen, and C. Meinel,
“Meliusnet: Can Binary Neural Networks Achieve Mobilenet-
Level Accuracy?,” 2020, https://arxiv.org/abs/2001.05936.

[22] Z. Liu, Z. Shen, M. Savvides, and K.-T. Cheng, “Reactnet:
Towards Precise Binary Neural Network with Generalized
Activation Functions,” 2020, https://arxiv.org/abs/2003.
03488.

[23] T. Chen, Z. A. Zhang, and X. Ouyang, “Bnn - bn � ?”: training
binary neural networks without batch normalization,” in
Proceedings of the 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW),
pp. 4614–4624, Virtual, June 2021.

[24] A. Brock, S. De, S. L. Smith, and K. Simonyan, “High-
performance large-scale image recognition without normal-
ization,” 2021, https://arxiv.org/abs/2102.06171.

[25] Y. Zhang, J. Pan, and X. Liu, “Fracbnn: accurate and fpga-
efcient binary neural networks with fractional activations,”
2021, https://arxiv.org/abs/2012.12206.

[26] A. J. Redfern, L. Zhu, andM. K. Newquist, “Bcnn: a binary cnn
with all matrix ops quantized to 1 bit precision,” 2021, https://
arxiv.org/abs/2010.00704.

[27] Y. Xu, X. Dong, Y. Li, and H. Su, “A main/subsidiary network
framework for simplifying binary neural networks,” 2019,
https://arxiv.org/abs/1812.04210.

[28] K. Helwegen, J. Y. Widdicombe, and L. Geiger, “Latent
weights do not exist: rethinking binarized neural network
optimization,” 2019, https://arxiv.org/abs/1906.02107.

[29] P. Pham, J. A. Abraham, and J. Chung, “Training multi-bit
quantized and binarized networks with a learnable symmetric
quantizer,” IEEE Access, vol. 9, pp. 47194–47203, 2021.

[30] J. Frankle and M. Carbin, “Te Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks,” 2019, https://
arxiv.org/abs/1803.03635.

[31] J. Difenderfer and B. Kailkhura, “Multi-prize lottery ticket
hypothesis: fnding accurate binary neural networks by
pruning a randomly weighted network,” 2021, https://arxiv.
org/abs/2103.09377.

[32] A. Livochka and A. Shekhovtsov, “Initialization and transfer
learning of stochastic binary networks from real-valued ones,”
in Proceedings of the 2021 IEEE/CVF Conference on Computer

10 Mobile Information Systems

https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1611.01600
https://arxiv.org/abs/2010.04871
https://arxiv.org/abs/2009.13055
https://arxiv.org/abs/2009.08695
https://arxiv.org/abs/2009.08695
https://arxiv.org/abs/2003.11535
https://arxiv.org/pdf/2103.13630.pdf
https://arxiv.org/abs/2003.01711
https://arxiv.org/abs/2002.06963
https://arxiv.org/abs/2010.03558
https://arxiv.org/abs/2010.03558
https://arxiv.org/abs/2001.05936
https://arxiv.org/abs/2003.03488
https://arxiv.org/abs/2003.03488
https://arxiv.org/abs/2102.06171
https://arxiv.org/abs/2012.12206
https://arxiv.org/abs/2010.00704
https://arxiv.org/abs/2010.00704
https://arxiv.org/abs/1812.04210
https://arxiv.org/abs/1906.02107
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2103.09377
https://arxiv.org/abs/2103.09377


Vision and Pattern Recognition Workshops (CVPRW),
pp. 4655–4663, Nashville, TN, USA, June 2021.

[33] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Te
German trafc sign recognition benchmark: a multi-class
classifcation competition,” in Proceedings of the Te 2011
International Joint Conference on Neural Networks,
pp. 1453–1460, San Jose, CA, USA, August 2011.

[34] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel
image dataset for benchmarking machine learning algo-
rithms,” 2017, https://arxiv.org/abs/1708.07747.

[35] Y. LeCun, L. Bottou, Y. Bengio, and P. Hafner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[36] T. Wei, X. Chen, and Y. Yin, Research on Trafc Sign Rec-
ognition Method Based on Multi-Scale Convolution Neural
Network, Xibei Gongye Daxue Xuebao/Journal of North-
western Polytechnical University, Fremont, CA, USA, 2021.

[37] D. C. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column
deep neural networks for image classifcation,” 2012, https://
arxiv.org/abs/1202.2745.

[38] S. Natarajan, A. K. Annamraju, and C. S. Baradkar, “Trafc
Sign Recognition Using Weighted Multi-convolutional
Neural Network,” IET Intelligent Transport Systems, Wiley,
Hoboken, NJ, USA, 2018.

[39] I. Freeman, L. Roese-Koerner, and A. Kummert, “Efnet: an
efcient structure for convolutional neural networks,” in
Proceedings of the 2018 25th IEEE International Conference on
Image Processing (ICIP), pp. 6–10, Athens, Greece, October
2018.

[40] Z. Sun, X. Qi, and X. Mei, “Dcr: dual compression method for
trafc signs recognition and embedded deployment,” in
Proceedings of the 2022 7th International Conference on
Computational Intelligence and Applications (ICCIA),
pp. 195–199, Nanjing, China, June 2022.

[41] P. Cheng, W. Liu, Y. Zhang, and H. Ma, “Loco: Local Context
Based Faster R-Cnn for Small Trafc Sign Detection,” Mul-
tiMedia Modeling, vol. 10704, 2018.

[42] L. Kai, H. Bing, and Z. Jingtao, “Trafc sign detection and
recognition based on conditional random feld and multi-
scale convolutional neural network,” Computer Applications,
vol. 38, no. 2, pp. 270–275, 2018.

[43] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random
Erasing Data Augmentation,” 2020, https://arxiv.org/abs/
1708.04896.

[44] A. Nøkland and L. H. Eidnes, “Training Neural Networks with
Local Error Signals,” 2019, https://arxiv.org/abs/1901.06656.

[45] J. Rajasegaran, V. Jayasundara, S. Jayasekara, H. Jayasekara,
S. Seneviratne, and R. Rodrigo, “Deepcaps: going deeper with
capsule networks,” 2019, https://arxiv.org/abs/1904.09546.

[46] Y. Sun, L. Zhang, and H. Schaefer, “Neupde: Neural Network
Based Ordinary and Partial Diferential Equations for Mod-
eling Time-dependent Data,” 2020, https://arxiv.org/abs/
1908.03190.

[47] H. Liu, K. Simonyan, and Y. Yang, “Darts: diferentiable
architecture search,” 2019, https://arxiv.org/abs/1806.09055.

[48] M. Tanveer, M. U. K. Khan, and C. M. Kyung, “Fine-tuning
darts for image classifcation,” 2021, https://arxiv.org/abs/
2006.09042.

[49] Y. S. Assiri, “Stochastic Optimization of plain Convolutional
Neural Networks with Simple Methods,” 2019, https://arxiv.
org/abs/2001.08856.

[50] A. Byerly, T. Kalganova, and I. D. Dear, “No routing needed
between capsules,” Neurocomputing, vol. 463, pp. 545–553,
2021.

[51] V. Mazzia, F. Salvetti, and M. Chiaberge, “Efcient-capsnet:
capsule network with self-attention routing,” Scientifc Re-
ports, vol. 11, no. 1, p. 14634, 2021.

Mobile Information Systems 11

https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1202.2745
https://arxiv.org/abs/1202.2745
https://arxiv.org/abs/1708.04896
https://arxiv.org/abs/1708.04896
https://arxiv.org/abs/1901.06656
https://arxiv.org/abs/1904.09546
https://arxiv.org/abs/1908.03190
https://arxiv.org/abs/1908.03190
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/2006.09042
https://arxiv.org/abs/2006.09042
https://arxiv.org/abs/2001.08856
https://arxiv.org/abs/2001.08856



