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Systems that employ multicarrier code division multiple access, commonly known as MC-CDMA, produce outstanding results in
terms of both the performance of the system as a whole and the efciency with which it uses the spectrum. However, multiple
access strategies are susceptible to interference despite their high spectrum efciency. Tis work aims to reduce multiple access
interference (MAI) by developing an MC-CDMA receiver. When MC-CDMA deteriorates nonlinearly, standard receivers,
namely, zero forcing (ZF), maximal ratio combining (MRC), minimum mean square error (MMSE), and equal gain combining
(EGC), are unable to cancel MAI. Neural network (NN) receivers are a better option due to their nonlinear nature. Based on the
simulation results, the suggested deep neural network- (DNN-)based schemes outperform the current baselines in terms of error
handling and usability. Tis research explores the viability and efectiveness of a DNN-based receiver designed for MC-CDMA
with nonlinearity degradations. Te focus of this research is on MC-CDMA.

1. Introduction

Temulticarrier (MC) technique has widespread application
in ffth generation (5G) and beyond systems that utilize the
concept of orthogonal frequency division multiplexing
(OFDM). Te technique known as multicarrier modulation
(MCM) is widely used in various wireless networks, in-
cluding the third generation partnership project (3GPP),
next-generation wireless fdelity (Wi-Fi) 6 and Wi-Fi 6E
systems (IEEE 802.11ax), and cellular vehicle-to-everything
(C-V2X) standards. To achieve a reasonably constant fading
rate, the data stream being communicated is typically seg-
mented into multiple substreams by several MC systems.
Tese substreams are then transmitted across parallel nar-
rowband subchannels. OFDM-based multipath cancellation
is an essential tool for both the current and future gener-
ations of wireless systems. Afordable receivers can

efectively mitigate problems associated with multipath
fading, including delay spreading and intersymbol in-
terference (ISI). Te data stream being transferred is typi-
cally segmented into multiple substreams by many MC
systems [1, 2].

Over the past few years, research has been conducted on
advanced MC approaches that utilize OFDM to enhance
dependability, spectrum efciency, and energy efciency.
Te OFDM method of broadband multicarrier modulation
splits a signal into a large number of orthogonal narrowband
channels, making it resistant to intersymbol interference
(ISI) [3, 4]. Another technique, called direct sequence code
division multiple access (DS-CDMA), utilizes spread spec-
trum technology to enable multiple devices to share the same
bandwidth while transmitting information [5]. DS-CDMA
has the potential to increase the overall system capacity.
Recognizing the individual benefts of both strategies,
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combining CDMA and OFDM has been proposed to le-
verage the advantages of both approaches. Tis combined
approach is known as the MC-CDMA system in technical
circles.

However, similar to other multiple access techniques,
MC-CDMA is susceptible to multiple access interference
(MAI) within the same cell, particularly when multiple users
share the same cell.Terefore, it is essential to have a receiver
capable of accurately detecting users while minimizing MAI
[6]. In [7–9], a new spreading matrix based on the rotating
Walsh–Hadamard spread OFDM was presented as a solu-
tion to address this challenge.

According to [10], when low-complexity detection
techniques such as minimal mean squared error (MMSE) are
used, S-OFDM outperforms its predecessor, S-OFDM, in
terms of overall performance. In a similar vein, [11] in-
troduced a dual-model OFDM (DM-OFDM) that employs
multiple identifable signal constellations to enhance spec-
tral efciency (SE). Tese approaches have shown greater
success but require an increase in receiver complexity to be
more efective. In this article, neural network (NN) will be
used to address these fundamental difculties.

In orthogonal frequency-division multiple access
(OFDMA), each user is assigned a unique orthogonal
subcarrier. On the other hand, MC-CDMA integrates
multicarrier modulation (MCM) and code division multiple
access (CDMA) to foster variation. Tis is achieved by
spreading data symbols for multiple users across the same set
of subcarriers [12].Tis is in contrast to OFDMA, which uses
a single set of subcarriers.

Zero-forcing (ZF), equal gain combining (EGC), and
maximum-ratio combining (MRC) are a few examples of
linear detection methods used in practical implementations
of MC-CDMA. Te combination of MC-CDMA and index
modulation (IM) has led to the development of a recent
method called IM-MC-CDMA [13–15]. Tis method
transmits data bits utilizing the indices of spreading codes.
However, these orthogonal systems cannot provide exten-
sive connectivity in future wireless networks due to limited
orthogonal resources. As the number of system users in-
creases, the detection method becomes more sophisticated.

Since the release of the frst MC-CDMA receivers into
the market, more than a decade has passed. Te maximum
ratio combining (MRC) receiver, a subclass of the linear
receiver family, is unable to eliminate phase distortions
caused by channel interference [16]. Although phase dis-
tortion caused by channel interference can be remedied,
faded signal magnitudes cannot be recovered with equal gain
combining (EGC) [17]. Moreover, nonlinear system dis-
tortions can occur in some communication systems due to
factors such as power amplifers and faded radio settings.

A considerable residual error is produced even when the
MMSE receiver recognizes the broadcast signal by com-
puting noise variance and channel covariance. While
a thorough search is key to achieving optimal performance
with the ML detector, its use in real-world systems is not
recommended due to the complexity and nonlinearity it
introduces. Numerous studies have explored the trade-ofs
between complexity and performance [18, 19].

Most classical detectors assume that the receiver pos-
sesses reliable information about the channel state. However,
in real-world systems, the channel state information needs to
be estimated, which increases the level of complexity.
Nonlinear system distortion can be considered an efective
decision boundary for signal detection in MC-CDMA, as the
optimal decision boundary for this problem is highly
nonlinear. In this context, artifcial neural network (ANN)
models, known for their capability in handling highly
nonlinear pattern categorization, can be considered an
advantageous option for signal detection [20, 21].

Artifcial neural networks (ANNs) are examples of
parallel and distributed architectures, where a large number
of interconnected units (neurons) process and learn from
inputs and encountered patterns simultaneously. Desirable
properties of ANNs, such as robustness, fnite memory, and
the ability to perform nonlinear classifcation, are relevant to
the challenge of signal detection. Consequently, ANNs have
gained popularity in recent years as multiuser detectors in
space division multiple access-orthogonal frequency di-
vision multiplexing (SDMA-OFDM) systems.Tese systems
have demonstrated superior performance compared to
standard linear approaches [22–24].

Among diferent types of ANNs, the multilayer per-
ceptron (MLP) is recognized as a straightforward and highly
efective pattern categorization technique [25–28]. Using the
MLP, input patterns can be classifed into nonlinear decision
boundaries. Taking advantage of this, Necmi Taspnar uti-
lized theMLPmodel as an authoritative signal discovery tool
in MC-CDMA systems [29–32].

In this study, the nonlinear falsifcation that occurs in
MC-CDMA networks is not taken into consideration, which
means that the DNN receiver does not make use of its full
potential. Te objective of this work is to identify
MC-CDMA system broadcasts in a nonlinearly distorted
environment, aiming to fully utilize the capabilities of the
DNN receiver and make the most of its potential.

Te rest of the document is structured as follows: Section
2 of this article discusses the mathematical description of the
received signal and the generalized MC-CDMA system
model. Section 3 covers conventional MC-CDMA receivers,
including EGC, ORC, and MMSE. For nonlinear
MC-CDMA systems, the details of the DNN receiver are
provided in Section 4. Te outcomes of the simulation study
are discussed in Section 5. Finally, the summary and con-
clusions of the report can be found in Section 6.

2. Model for the MC-CDMA System

Te transmitter section of the MC-CDMA system is illus-
trated in Figure 1. Te system has the capacity to serve K
users simultaneously, and a spreading code with N bits of
length is used to broadcast the data symbol for each user. To
perform an inverse fast Fourier transform (IFFT), the data
from k users is multiplied by a spreading algorithm. Te
output of the IFFT is then converted from serial to parallel
form and mixed with the data stream from the remaining
K–1 users to obtain the fnal result. Te channels receive this
signal and transmit it, but it undergoes nonlinear
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falsifcation and is afected by channel noise at the receiver
[33, 34]. To correct for the distortion of the serial data, a fast
Fourier transform (FFT) is performed on the parallelized
serial information. Te input signal is then received by
a signal detector, which uses the FFT to convert the distorted
serial information back into parallel form. Afterwards,
a signal detector receives the input signal. It is possible to
write the transmitted signal vector’s discrete baseband form
as follows:

xm � 􏽘
K

k�1
􏽘

N

n�1
s

k
n exp

j2πnm

N
􏼒 􏼓, m � 1, 2, ..., N,

s
k
n �

��
Ec

􏽰
b

k
c

k
n, n � 1, 2, ..., N,

(1)

where sk
n is the signal weights, ck

n is the nth chip of the k-th
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the energy per subcarrier.
Te received signal vector x � [x1, x2, . . . , xN]T corre-

sponding to transmitted vector is used to get the discrete
base band signal vector x; to put it another way,

y � NL(h⊗ x) + w, (2)

where NL is the nonlinearity,H is the impulse response, and
w is the AWGN noise.

In this case, N0 consists of an additive white Gaussian
noise (AWGN) with zero mean and power spectral density
of N0 on one side and a nonlinear function NL (.), h indicates
response of the channel [35, 36]. As a result, the nth sub-
received carrier’s symbol rn can be represented as follows:
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N

m�1
ym exp

−j2πnm

N
􏼒 􏼓, n � 1, 2, ..., N. (3)

3. Classification Detectors for MC-CDMA

Data symbols from each user are individually identifed at
the receiver using unique device-based spreading codes, as
illustrated in Figure 2. Te k-th device’s data symbol is
estimated for single-user detection as follows:

􏽢b
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N
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gnc

k
nrn, k � 1, 2, ..., K, (4)

where gn is a frequency domain equalization gain factor.
Nonlinear detectors such as maximum likelihood (ML) for
MC-CDMA have been explored in this area, along with
classic detectors such as orthogonality restoring combining
(ORC) and equal gain combining (EGC) [37]. Receiver gains
can be utilized to identify signals and diferentiate between
each user’s information by employing their unique
spreading code [38].

3.1. Equal Gain Combining (EGC). Equal gain combining
(EGC) is a receiver diversity technique commonly used in
multicarrier code division multiple access (MC-CDMA)
systems. MC-CDMA is a spread spectrum technique that
combines the advantages of both code division multiple
access (CDMA) and orthogonal frequency division multi-
plexing (OFDM). EGC is employed at the receiver to im-
prove the reliability of the received signal by combining
multiple copies of the transmitted signal.

In MC-CDMA, the transmitted signal is spread across
multiple subcarriers, and each subcarrier is modulated with
a diferent code. Tis allows multiple users to share the same
frequency band simultaneously. However, due to various
factors such as multipath fading, interference, and noise, the
received signal at the receiver may be degraded. EGC
operates by utilizing multiple receive antennas or multiple
receive paths to capture multiple copies of the transmitted
signal. Each copy may experience diferent channel condi-
tions due to the presence of multipath or interference. Te
objective of EGC is to combine these copies in a way that
maximizes the signal quality and reduces the efects of fading
and interference.

Te combining process in EGC involves adding up the
received copies of the signal after they are suitably weighted.
Te weights applied to each copy depend on the channel
conditions associated with that particular copy. Te com-
bining weights are typically determined based on the re-
ceived signal strength or the channel quality indicators. In
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Figure 1: System blocks for MC-CDMA transmitter.
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EGC, the combining weights are set to be equal, regardless of
the channel conditions of each receive path. Tis means that
each copy of the received signal is given equal importance in
the combining process. Te combined signal is then passed
through a demodulator to extract the original transmitted
data. By combining multiple copies of the transmitted signal,
EGC mitigates the detrimental efects of fading and in-
terference. It helps improve the overall signal quality, in-
crease the system capacity, and enhance the reliability of the
communication link in MC-CDMA systems.

Until there is a high degree of orthogonality in the
spreading codes of distinct users, the MC-CDMA receiver
performs admirably. However, multipath propagation in the
medium may destroy the orthogonality of spreading codes
[39]. A code’s orthogonality may be further harmed by the
MRC scheme’s optimal combination of multipath compo-
nents. By using equal gain combining (EGC), a detector that
corrects phase distortion, you can prevent this issue. Tus,
the EGC detector gn’s equalization gain is

gn �
H
∗
n

Hn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
. (5)

3.2. Maximal Ratio Combining. A powerful signal is
assigned greater weight by the diversity combiner in the
maximal ratio combining (MRC) scheme, as it enables more
reliable communication. Maximal ratio combining is an-
other receiver diversity technique commonly used in mul-
ticarrier code division multiple access (MC-CDMA)
systems. Similar to equal gain combining (EGC), MRC is
employed at the receiver to enhance the reliability and
performance of the received signal by combining multiple
copies of the transmitted signal.

In MC-CDMA, the transmitted signal is spread across
multiple subcarriers, and each subcarrier is modulated
with a diferent code. MRC utilizes multiple receive an-
tennas or receive paths to capture multiple copies of the
transmitted signal, each experiencing diferent channel

conditions due to multipath or interference. Te main
diference between MRC and EGC lies in the combining
weights used in the combining process. In MRC, the
combining weights are determined based on the channel
conditions associated with each receive path. Te com-
bining weights are set to be proportional to the inverse of
the received signal power or signal-to-noise ratio (SNR) of
each path.

Te combining process in MRC involves multiplying
each received copy of the signal by its corresponding
combining weight and then adding up the weighted
copies. Te objective is to give more weight to the copies
with better channel conditions (higher SNR) and less
weight to the copies with poorer channel conditions
(lower SNR). By assigning higher weights to the better
quality copies, MRC optimally combines the received
signals and maximizes the signal-to-noise ratio at the
output. Tis results in improved performance and in-
creased reliability in the presence of fading and in-
terference. After the combining process, the combined
signal is passed through a demodulator to extract the
original transmitted data. MRC efectively mitigates the
adverse efects of fading, interference, and noise, leading
to enhanced system capacity and improved overall per-
formance in MC-CDMA systems.

Equalization gain (gn) is calculated as follows:

gn � H
∗
n . (6)

Multiple user interference is possible due to the multi-
path propagation destroying the orthogonality of the various
spreading codes used by diferent users. It is possible that the
MRC and EGC detectors will fall short in eliminating
multiuser interference (MUI). In contrast, ORC or zero
forcing (ZF) equalizer retains the orthogonality of the in-
dividual users by cancelling the channel transfer function
(CTF). Te approximation and reversal efects of the CTF
can be used to negate this signal [40].

In other words, the ORC detector gn’s equalization gain
is provided by
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Figure 2: System blocks for MC-CDMA receiver.
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4. Proposed NN Receiver Based on Deep Neural
Network (DNN)

Figure 3 displays the receiver confguration of an
MC-CDMA system using neural network (NN). Te
MC-CDMA framework is initially followed, and then
training symbols are utilized to build the NN receiver model.
An adaptive method needs to be recursively executed during
network training to adjust the network’s free parameters
based on errors. Neural networks can be trained by mod-
ifying the weights between individual pairs of neurons until
the desired output is achieved. In the NN model shown in
Figure 3, a (N× 1)-dimensional recognized received classi-
fcation “r” is provided as input, which corresponds to
a (K× 1)-dimensional communicating signal vector “b.” Te
error is calculated by comparing the (K× 1)-dimensional
response vector of the neural system to the corresponding
response “b.” After training, the NNmodel is tested and used
as a signal detector.Te response provides an estimate of the
quality of the sender’s signal.

For nonlinear signal classifcation, the feed-forward
DNN model has been found to be the most successful. In
the brain’s three phases of neurons, there exists an input
phase, supplementary hidden phases, and one or more
output layers. Te activation functions of the hidden and
output phases can be chosen as nonlinear, taking into
account the characteristics of the channel. By using the
classic backpropagation (BP) method, the change in
network weights is calculated twice, allowing for the
training of a DNN network. An output is generated by
propagating an input vector through a network with
fxed weights. Te diference between the actual output
and the desired output is used to determine the output
error. Tis error is then propagated backward through
the network during the reverse pass, and the weights are
adjusted accordingly.

Figure4shows the structure of the DNN model that is
used for the MC-CDMA receiver. Input consists of N layers,
hidden input consists of HN neurons, and output consists of
K neurons. In this context,N refers to the whole length of the
chip, andK indicates the total number of people who will use

it. Neurons in these levels are linked together in a process
known as “feed forward.” Individual neuron in hidden phase
takes a summer and an activation rule that is not linear, as
shown in Figure 5.

Te output layer consists of a straightforward operator
for performing arithmetic operations.

It is possible to update the weights of DNN network
connections in a time-efcient manner by utilizing the
backpropagation (BP) technique, which is an iterative
process.

Using a deep neural network (DNN) in the context of
MC-CDMA involves harnessing the power of machine
learning to enhance various aspects of the system, including
channel estimation, interference mitigation, and signal de-
tection. While I can provide a high-level overview, it is
important to note that the mathematical derivation of
a specifc DNN architecture for MC-CDMA would require
a detailed understanding of the specifc design choices,
network architecture, and training methodology. Here is
a general outline of how a DNN can be applied to MC-
CDMA:

(i) Data Representation. Te input to the DNN consists
of the received signal samples or features derived
from them.Tese samples are usually represented as
complex-valued vectors, where each element cor-
responds to a diferent subcarrier.

(ii) Network Architecture. Te specifc architecture of
the DNN can vary depending on the application.
For MC-CDMA, a common choice is a feedforward
neural network with multiple hidden layers. Each
layer consists of a set of neurons that perform
nonlinear operations on their inputs.

(iii) Training Data. A DNN requires a large amount of
labeled training data to learn the mapping between
the input (received signal samples) and the desired
output (e.g., channel estimates or detected symbols).
Tis training data can be generated by simulating
various channel conditions and the corresponding
transmitted symbols.

(iv) Loss Function. A loss function is defned to quantify
the discrepancy between the DNN’s predicted
output and the ground truth labels in the training
data. Te choice of the loss function depends on the
specifc task being addressed, such as mean squared
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Figure 3: MC-CDMA receiver based on NN.
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error (MSE) for channel estimation or cross-
entropy loss for symbol detection.

(v) Backpropagation and Gradient Descent. Te DNN is
trained using an optimization algorithm called
backpropagation combined with gradient descent.
In this process, the gradient of the loss function with
respect to the network parameters is computed, and
the weights of the network are updated in the op-
posite direction of the gradient to minimize the loss.

(vi) Forward Pass and Inference. Once the DNN is
trained, it can be used for inference on unseen data.
Given the received signal samples as input, the DNN
performs a forward pass, propagating the input
through the network to produce the desired output,
such as channel estimates or detected symbols.

It is important to note that the specifc mathematical
derivation of a DNN for MC-CDMA depends on the net-
work architecture chosen, the training methodology
employed, and the specifc goals of the application. Detailed
derivations would involve defning the activation functions,
specifying the number of layers and neurons, and formu-
lating the loss function and the associated optimization
algorithm. Tese details would need to be addressed based
on the specifc design choices made for the DNN in MC-
CDMA.

To provide a mathematical representation of a deep
neural network (DNN) in the context of MC-CDMA, let us
consider a simple feedforward neural network architecture
with one hidden layer.Tis architecture can be used for tasks
such as channel estimation or symbol detection. Here are the
mathematical equations involved:
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(i) Input representation:

(1) Let x � [x1, x2, . . . , xn] be the received signal
samples or features, where n is the number of
subcarriers.

(2) Each xk represents the received signal sample on
the k-th subcarrier.

(ii) Hidden layer:

(1) Let h � [h1, h2, . . . , hm] be the output of the
hidden layer, wherem is the number of neurons
in the hidden layer.

(2) Each hj represents the output of the j-th neuron
in the hidden layer.

(3) Te output of the hidden layer can be computed
using an activation function such as the sigmoid
or rectifed linear unit (ReLU):
hj � f(􏽐(wjk ∗ xk) + bj), where wjk is the
weight connecting the k-th input to the j-th
neuron, bj is the bias of the j-th neuron, and f
(·) is the activation function.

(iii) Output layer:

(1) Let y � [y1, y2, . . . , yp] be the output of the
neural network, where p is the number of
outputs (e.g., channel estimates or detected
symbols).

(2) Te output layer can be computed similarly to
the hidden layer, with its own set of weights and
biases: yi � g(􏽐(vij ∗ hj) + ci), where vij is the
weight connecting the j-th neuron in the hidden
layer to the i-th output, ci is the bias of the i-th
output, and g(·) is the activation function
(which can vary depending on the task).

(iv) Loss function:

(1) A loss function is used to measure the dis-
crepancy between the network’s predicted
output y and the ground truth labels.

(2) Te choice of the loss function depends on the
specifc task, such as mean squared error (MSE)
for channel estimation or cross-entropy loss for
symbol detection.

(v) Training:

(1) TeDNN is trained by adjusting the weights and
biases to minimize the loss function using an
optimization algorithm such as stochastic gra-
dient descent (SGD) or Adam.

(2) Tis is done through backpropagation, which
involves computing the gradients of the loss
function with respect to the network parameters
and updating the weights and biases
accordingly.

Once the DNN is trained, it can be used for inference on
unseen data. Given the received signal samples x as input,
the network performs a forward pass, computing the hidden
layer outputs h and the fnal outputs y. Te specifc math-
ematical equations will depend on the architecture,

activation functions, and training methodology chosen for
the DNN in MC-CDMA.

5. Simulation Results

Figure 6 displays MC-CDMA systems with either linear or
nonlinear system distortion, along with the mean bit error
rate (BER) of sixteen diferent devices. Tis average BER
estimation considers the EGC, MRC, ZF, MMSE, MLP, and
DNN receivers. When nonlinear distortion is introduced to
the MC-CDMA system, linear detectors such as MMSE,
EGC, and MRC are unable to efectively reduce the dis-
tortions in the received signals, resulting in residual in-
terference. Tis is because linear detectors operate on
a linear basis, which explains their limitations in handling
nonlinear distortions. Te presence of nonlinearities sig-
nifcantly impacts the performance of classical receivers, as
measured by their BER. In contrast, MLP neural networks
have greater nonlinear classifcation capacity, enabling them
to perform closer to the ideal ML receiver. It is worth noting
that the MLP receiver achieves a signal-to-noise ratio (SNR)
of 18 decibels (dB), while the MMSE receiver requires an
SNR of 24 decibels (dB) to achieve an efective error rate
(BER) of 10–4. Tis highlights the improved performance of
the MLP receiver compared to the MMSE receiver.

Figure 7 displays the signal constellation estimates of
several receivers, demonstrating the efect of nonlinear
distortion. Te predicted signal constellation of User-1 is
shown in Figure 7, and this continues to Figure 8, with User-
1 continuously transmitting “−1” in a comprehensive data
frame at 12 dB. Classical receivers like MRC and EGC are
unable to automatically correct output symbol amplitude
and phase distortions. In contrast, MMSE assumes knowl-
edge of the channel covariance and noise variance. As
a result, its predicted symbols are located closer to the
decision boundary of binary phase shift keying, with few of
them even crossing it and entering the wrong half-plane.

Dynamic MLP receivers utilize phase improvement al-
gorithms during network training to compensate for ran-
dom amplitude and phase distortions in output symbols,
addressing the distortions that can occur. Consequently, the
predicted symbols cluster around the actual transmitted
signal in close proximity. Figure 9 illustrates the perfor-
mance evaluation of the MC-CDMA system when com-
municating with varying numbers of users, providing an
assessment of the robustness of the MLP receiver.

Figure 9 depicts the bit error rate (BER) of User-1 in
a nonlinear MC-CDMA at a dB level of 12 for various user
counts. As more users employ multiple access strategies such
as MC-CDMA systems, the multiple access interference
(MAI) increases.Te decrease in BER performance observed
in Figure 8 across all MC-CDMA receivers can be attributed
to the growing number of users.

Te MLP receiver incorporates varying numbers of
hidden nodes, allowing it to construct the necessary decision
boundaries for signal classifcation as the number of user
changes. However, the graph illustrates that the MLP’s
performance signifcantly declines compared to the other
traditional receivers. While the MLP receiver achieves a BER
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of 10−4 when the system communicates with ten users, the
EGC, MRC, and MMSE estimators display BERs of 0.04, 0.1,
and 0.01, respectively.

Although the ML receiver exhibits the best performance
among the MC-CDMA system’s receivers, its computational
complexity is extremely high.Te processing power required
for the ML receiver grows exponentially by 2mK for each

additional user and modulation order. To compare the
computational complexity of the ML detector with that of
the MLP receiver and the classical receivers proposed by this
research, Table 1 provides a contrast.

Te complexity of neural networks (NNs) is infuenced
by various factors such as the number of training samples
(NT) and data symbols in individual information frames,
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which play a crucial role in achieving the lowest mean square
error (MSE). As a result, the complexity of the MLP scales
linearly with NT and M. Refer to Table 2 for the selected
parameters for this investigation.

Table 3 represents the required signal-to-noise ratio
(SNR) values in decibels (dB) for diferent receiver

techniques in a particular scenario. Here is an explanation
of each receiver technique and the corresponding SNR
values:

(1) DNN (Deep Neural Network). In Figure 6, the DNN-
based receiver technique requires an SNR of 11 dB to
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achieve satisfactory performance. Tis suggests that
the DNN is designed to handle a certain level of noise
and interference while still being able to accurately
detect and recover the transmitted signal.

(2) MLP (Multilayer Perceptron). MLP is a type of neural
network architecture. In Figure 6, the MLP-based
receiver technique requires a slightly higher SNR of
11.5 dB compared to the DNN. Tis indicates that
the MLP architecture, which typically consists of
fully connected layers, may have slightly lower noise
tolerance or may require additional SNR to achieve
similar performance as the DNN.

(3) MMSE (Minimum Mean Square Error). MMSE is
a classic linear receiver technique that aims to
minimize the mean square error between the re-
ceived and estimated signals. In Figure 6, the MMSE-
based receiver technique requires a higher SNR of
15.5 dB. Tis suggests that the MMSE receiver re-
quires a stronger received signal compared to the
neural network-based approaches to achieve the
desired performance level.

(4) EGC (Equal Gain Combining). EGC is a receiver
diversity technique that combines multiple copies of
the received signal with equal weights. In Figure 6,
the EGC-based receiver technique requires an SNR
of 18 dB. Tis indicates that EGC, which combines
multiple receive paths with equal weights, requires
a higher SNR compared to the neural network and
MMSE techniques.

(5) MRC (Maximal Ratio Combining). MRC is another
receiver diversity technique that combines multiple
copies of the received signal with weights pro-
portional to the received signal power. In Figure 6,
the MRC-based receiver technique requires the
highest SNR of 21 dB among the mentioned tech-
niques. Tis implies that MRC, which gives more
weight to stronger received signals, requires the
strongest received signal among the receiver tech-
niques considered.

It is important to note that these SNR values are specifc
to the scenario or simulation mentioned in Figure 6 andmay
vary depending on the system parameters, channel condi-
tions, and performance requirements.

6. Conclusion

We propose an innovative DNN receiver for theMC-CDMA
system that can optimize both linear and nonlinear dis-
tortions in a fully data-driven manner. Te obtained results
indicate the required signal-to-noise ratio (SNR) values
in dB for diferent receiver techniques, namely, DNN, MLP,
MMSE, EGC, and MRC. Tese values refect the signal
quality needed for each receiver technique to achieve sat-
isfactory performance in a given scenario. Based on the
fgures, it can be observed that the DNN-based receiver
requires the lowest SNR of 11 dB, followed closely by the
MLP-based receiver at 11.5 dB. Tis suggests that the neural
network-based approaches, specifcally DNN, have relatively
better noise tolerance and can operate efectively even at
lower SNR levels. Te MMSE-based receiver requires
a higher SNR of 15.5 dB compared to the neural network-
based techniques. MMSE is a linear receiver that may be
more sensitive to noise and interference, requiring a stronger
received signal for accurate signal detection and recovery.
Te EGC-based receiver technique requires an even higher
SNR of 18 dB, indicating that the EGC diversity technique,
which combines multiple receive paths with equal weights,
demands a relatively stronger received signal to efectively
mitigate the efects of fading and interference. Lastly, the
MRC-based receiver requires the highest SNR of 21 dB
among the mentioned techniques. MRC is a diversity
technique that gives more weight to stronger received sig-
nals; consequently, requiring the strongest received signal
among the considered receiver techniques. Further research
and development could focus on the following aspects:

(1) Optimization of Neural Network Architectures. Ex-
ploring more sophisticated DNN or MLP architec-
tures and optimizing hyperparameters, employing
advanced training techniques, can potentially im-
prove the performance of neural network-based
receivers at lower SNR levels.

(2) Adaptive Receiver Techniques. Investigating adaptive
techniques that dynamically adjust receiver param-
eters, such as combining weights or equalizers, based
on the channel conditions and SNR can enhance the
efciency and adaptability of the receivers.

Table 2: Model attributes.

Parameter Description
Length of the chip (N) 64
Modulation type BPSK
Frame data (NF) 3000
Subcarriers 64
Spreading code type Walsh
Data symbols per frame
(M) 9000

Users (K) 16
Deployed medium SUI, Rayleigh
Number of training
symbols (NT)

2500

Nonlinearity b(k) � a(k)–0.1a3(k) + 0.2a2(k)

[25]
Te number of test symbols 9000
Learning rate parameter (μ) 0.85
MLP training algorithm Backpropagation

Table 3: Te SNR values required to achieve BER of 10−4 for
various receivers.

Figure no. Receiver SNR required in dB
Figure 6 DNN 11
Figure 6 MLP 11.5
Figure 6 MMSE 15.5
Figure 6 EGC 18
Figure 6 MRC 21
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(3) Hybrid Receiver Designs. Exploring hybrid receiver
designs that combine the strengths of diferent re-
ceiver techniques, such as combining neural
network-based processing with traditional linear
receivers or diversity techniques, can potentially
achieve better performance in various SNR regimes.

(4) Resource Allocation Strategies. Developing efcient
resource allocation strategies that allocate sub-
carriers and power optimally based on the channel
conditions and SNR can enhance the overall system
performance and maximize the utilization of avail-
able resources.
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