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In recent few years, fying ad hoc networks are utilized more for interconnectivity. In the topological scenario of FANETs, IoT
nodes are available on ground where UAVs collect information. Due to high mobility patterns of UAVs cause disruption where
intruders easily deploy cyberattacks like DoS/DDoS. Flying ad hoc networks use to have UAVs, satellite, and base station in the
physical structure. IoT-based UAV networks are having many applications which include agriculture, rescue operations, tracking,
and surveillance. However, DoS/DDoS attacks disturb the behaviour of entire FANETwhich lead to unbalance energy, end-to-end
delay, and packet loss. Tis research study is focused about the detail study of machine learning-based IDS. Also, cognitive
lightweight-LR approach is modeled using UNSW-NB 15 dataset. IoT-based UAV network is introduced using machine learning
to detect possible security attacks. Te queuing and data trafc model is utilized to implement DT, RF, XGBoost, AdaBoost,
Bagging and logistic regression in the environment of IoT-based UAV network. Logistic regression is the proposed approach
which is used to estimate statistical possibility. Overall, experimentation is based on binomial distribution. Tere exists linear
association approach in logistic regression. In comparison with other techniques, logistic regression behaviour is lightweight and
low cost. Te simulation results presents logistic regression better results in contrast with other techniques. Also, high accuracy is
balanced well in optimal way.

1. Introduction

Integration of 5G wireless networks with FANETs is a new
concept which uses to improve coverage and reduce delay
[1–3]. Mobile ad hoc network is considered the primary idea
where VANET and FANET are emerged. UAV swarms or
group collectively make FANETs [4]. Tere can be either
signal or multi-UAVs system. Initially, UAVs are only

utilized to collect data from ground IoT nodes [5]. But,
nowadays, aerial vehicles have changed the dynamics of
every human which include smart farming using UAVs,
rescue operations, border surveillance, and many more.

In comparison with other traditional felds, FANETs are
very much cost low and can be deployed everywhere. Te
high mobility patterns of UAVs limit energy level in entire
network. Due to wireless connectivity in FANETs, internet
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of things plays an important role. Although, there exist two
ways of communication which consist of a2a (air-to-air) and
a2g (air-to-ground) [6]. Recently, Zigbee (IEEE 802.15.4) is
introduced in FANETs for secure and long-range commu-
nication. Mobile UAV pattern efects quality of service
(QoS) in the feld of IoT-based FANETs. In the conventional
UAV network, there exist satellite, ground base station, and
UAVs [7].

FANET network needs to be secured from cyberattacks
which reduce connectivity in between nodes and interrupt
communication. False data attack is one of the dangerous
threats during remote patient surgery or operation [8].
However, DoS/DDoS security attacks can be easily detected
with the help of the intrusion detection system. Various
research studies formulate that identifcation of cyberattacks
in FANETs is considered a major problem [9]. Intruder/
attacker UAVs can be used to steal data and jam potential
links [10, 11]. Terefore, a proposed system model will
consists of detecting ongoing cyberattacks like DoS/DDoS
and ping of death which is referred to as dynamic-IDS. Tis
research study will only expand to simulate detection of
attacks in FANETs. Furthermore, topological arrangements
of FANETs are shown in Figure 1. Te main points of the
research paper are as follows:

(i) Machine learning algorithms such as DT, RF,
XGBoost, AdaBoost, Bagging and logistic regression
are utilized

(ii) UNSW-NB 15 dataset is used for training and
testing data

(iii) Cognitive lightweight-LR approach is proposed to
detect attacks

(iv) Detailed comparative analysis is formulated using
machine learning techniques

Major contribution points of this study elaborate the
concept of machine learning algorithms which use to detect
possible cyberattacks. Comprehensive study is evaluated to
understand previous ideas and compare them with the
proposed solution. UNSW-NB15 dataset is utilized for ex-
perimentation and performance analysis of machine
learning classifers.

Figure 1 illustrates the concept of UAV network using
the concept of intruders. When unmanned aerial vehicles
tries to collect data from IoTground nodes at the same time
attackers use to deploy fake data packets which leads miss
information. Also, FANET network is presented which use
to have base station, satellite, and UAVs.

Apart from that machine learning techniques are used in
IoT, ad hoc networks, software defne networks, and many
other felds. Terefore, in machine learning data set is uti-
lized which use to have detailed data for the specifc area.
Classifers or algorithms are trained properly to evaluate the
performance.

Te rest of the article is structured with Section 1 which
consists of the study introduction where Section 2 is
composed of brief literature having past data about the
problem. Similarly, machine learning algorithms in Section
3 and Section 4 represent the proposed model. Section 5

demonstrates simulation results.Te theoretical analysis and
future direction is discussed in Section 6, which is explained
in the conclusion section.

2. Related Survey

In the literature section, limitations regarding traditional
IDS in other felds are discussed as follows.

Initially, IDS was designed for MANET, VANET, WSN,
and IoTnetworks which use to be vulnerable to cyberthreats
such as sinkhole, DoS/DDoS, and PoD. Sometimes, inside
the network, attack is initiated which is commonly called
sinkhole. While, due to DoS/DDoS security attacks the other
neighbor nodes become unavailable for legitimate user.
Abdollahi and Fathi implemented a novel IDS for internet of
things to identify abnormal data packets. Furthermore, false
alarm and missed detection should be reduced which cause
issues in network [12].

Real-time IDS can capture abnormal live data packets in
contrast with ofine. KDD cup 99 data set is commonly
utilized in machine learning algorithms to detect damaged
caused because of cyberattack [13]. Terefore, real-time IDS
are needed for recently emerged technology FANETs.

Identifcation of attacker through IDS is widely used
approach. Terefore, network-IDS usually collect data from
network through monitoring trafc.While, diferent signs of
intrusion and alert messages need detection otherwise IoT
network level becomes slow down. Deep learning algorithms
using KDD cup 99 is simulated through normal, DoS, Probe,
R2L, and U2R where high accuracy is examined. FANET is
low cost but intrusion can be happen quite easily due to high
mobility. Moreover, this study elaborates intelligent in-
trusion detection framework for UAVs. Authors proposed
signature-based IDS for FANETs [14].

Flooding attacks slow down entire process of FANET
networks. UAV-IDS-2020 is utilized which use to have
unidirectional and bidirectional fow in the data trafc

Figure 1: Physical arrangement of UAV network.
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management [15]. Table 1 presents various IDS in UAV
networks. In addition, information in Table 1 is mostly about
signature-based intrusion detection system. Various areas of
studies are conducted to identify cyberattacks. Also, advance
datasets are utilized for experimentation of diferent ma-
chine learning techniques.

3. Machine Learning Classifiers/Algorithms

Machine Learning is a term used in the computer science
branch that considerably desires to allow computers to
“understand” without being instantly programmed [21, 22].
Computers “understand” in machine learning by enhancing
their implementation at assignments through “background.”
In general, “background” usually implies suiting to in-
formation; therefore, there is not an exact border among
machine learning and statistical techniques [23]. Machine
learning techniques have demonstrated signifcant assurance
in furnishing answers to complicated issues [24]. A few of
the applications we employ every day from exploring the
Internet to recognizing the speech are the instances of
enormous strides created in recognizing the assurance of
machine learning [25]. Machine learning have two cate-
gories: frst is supervised learning and second is un-
supervised learning. Tese two categories will wrap all the
combination of classifcation, and techniques of clustering
[26]. Supervised learning strategies enclosed combination of
various base classifers; whereas, unsupervised learning
strategies enclosed anticipation maximization algorithms as
well clustering techniques. In addition, machine learning
techniques are used in diferent feld of studies to improve
overall performance.

3.1. DecisionTree. Machine learning is the method of learning
or dragging unique designs from extensive data sets by ap-
plying techniques from artifcial intelligence. Category and
forecast are the strategies employed to make out essential data
categories and indicate a probable trend [27].Te decision tree
is an essential category approach in the machine learning
classifcation. It is typically employed in commerce, manage-
ment, and detection of fraud [28]. As the typical approach of
the decision tree, ID3, C4.5, and C5.0 methods have the values
of increased organizing rate, powerful learning capability, and
straightforward structure. Yet, these methods are also in-
sufcient in a functional application [29]. When utilizing it to
categorize, there exists the issue of bending to select features
that have more weight and managing features that have fewer
weights. Decision trees are amazing techniques to enable
anyone to determine the most suitable method of activity [30].
Tey develop a favorably benefcial arrangement in which one
can set choices and investigate the potential consequences of
those choices. A decision tree is employed to describe
graphically the fndings, the possibilities, and the results related
to conclusions and occurrences [31].

3.2. Random Forest. Random forest is a unique approach in
the feld of machine learning that solves many complex
issues [32]. Random forest is a mixture of a sequence of tree

network classifers. Tis approach has numerous useful
features and has been signifcantly employed in the cat-
egorization, forecasting, and regression process [33].
Corresponding with the classic approaches random forest
has numerous useful integrities; thus, the extent of the
application of this unique approach is extremely com-
prehensive [34]. It is one of the most suitable learning
approaches. Generally, this technique is a regression-tree
approach that employs bootstrap collection and ran-
domization of forecasters to acquire an increased extent of
predictive accurateness [35]. Te principal disadvantage
of this unique approach is that an enormous number of
trees can make the approach slow and inadequate for real-
time forecasts. Generally, these approaches are quick to
prepare, but a little slow to make forecasts once they are
prepared [36].

3.3. Extreme Gradient Boosting. Te XGBoost is a brief
name for the extreme gradient boosting technique. It is
a unique approach that is also known as a tree-based
strategy that poses beneath the supervised component of
the machine learning domain [37]. Although it can be
employed for both categorization as well as regression
issues, all of the instructions and illustrations in this
technique guide the algorithm’s service for categorization
only [38]. It is an important and scalable performance of
gradient enabling framework. It sustains diverse accurate
operations, involving deterioration, categorization, and
ranking [39]. In comparison to the regular gradient
boosting, XGBoost employs its strategy of creating trees
where the score of the similarity and growth choose the
most suitable node breaks [40].

3.4.AdaBoost. Boosting algorithm is a famous approach in
the machine learning domain to solve the complex
problems. AdaBoost is the standard approach in the
family of Boosting [41]. Tis approach has the authority of
resisting overftting. Comprehending the secrets of this
sensation is a charming fundamental academic issue.
Multiple investigations are dedicated to describing it
through statistical theory and margin approach [42].
AdaBoost approach was the preferably suitable boosting
algorithm and stayed one of the most widely employed
and examined, with applications in multiple domains.
Also, this approach can be utilized to facilitate the exe-
cution of any algorithm used in machine learning [43].
Tese are approaches that accomplish precision just be-
yond random event on a categorization issue. Te most
appropriate and hence common method employed with
AdaBoost are decision trees along with level one [44].

3.5. Bagging Classifer. Bagging is a widely known en-
semble building strategy, where an individual classifer in
the ensemble is prepared on a separate bootstrap replicate
of the training group [45]. Te current outcome has
demonstrated that bagging can decrease the efect of
outliers in training data, particularly if the distant
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observations are resampled with a more inferior possi-
bility [46]. It is also known as Bootstrap aggregating,
which involves having individual models in the ensemble
voice with similar signifcance. To facilitate sample var-
iance, bagging trains every model in the ensemble
employing a randomly marked subset of the training
group [47]. As an instance, the random forest approach
incorporates random decision trees along with bagging to
acquire extremely elevated classifcation precision. Bag-
ging attempts to execute parallel trainees on undersized
sample inhabitants and then carries a norm of all the
forecasts [48]. Bagging operates by integrating forecasts
by voting, every model obtains equivalent signifcance
“Idealized” interpretation: Model several training groups
of size n and then create a classifer for each training group
and connect the classifers’ forecasts [49].

4. Cognitive Lightweight Logistic
Regression Approach

Logistic regression approach is employed to estimate the
statistical importance of individual separate variable with
reference to possibility [50]. It is a strong form of modelling
binomial efect. For instance: if the individual is stirring to
sufer from cancer or not by carrying weights 0 as well as 1.
Decision trees, as well as logistic regression, are extremely
famous approaches in the machine learning domain to solve
complex issues [51]. Instead of having so many advantages,
decision trees tend to have issues handling linear associa-
tions among variables as well as logistic regression has
problems with relations efects among variables [52, 53].
Terefore, logistic regression is lightweight and cognitive in
nature. Due to lightweight behaviour, LR is easy to deploy on
the UAV network. Figure 2 presents the fow chart of
cognitive lightweight-LR approach. Equations (1) and (2)
present the logic explanation of linear logistic regression
[54].

Y � β0 + β1X1 + β2X2 + β3X3 + · · · , (1)

logit(p) � ln
p

1 − p
  � β0 + β1X1 + β2X2 + β3X3 + · · · .

(2)

Figure 2 is the detailed fow chart regarding logistic
regression. Initially, training data are used to formulate and
train each function. Cost function is used to be calculated for
logistic regression to test overall data. While, testing binary
classifcation is utilized either “0” and “1” means “presence
of attack” or “absence of attack” is identifed easily.

5. Simulation Results

Te simulation environment is designed for IoT-based UAV
networks in anaconda python. UNSW-NB 15 dataset is used
which consists of various cyberattacks such as DoS/DDoS,

backdoors, fuzzers, exploits shellcode, and worms. Te
mentioned dataset consists of more than two million re-
cords. UNSW-NB 15 is a hybrid dataset where advanced
data network trafc is incorporated. Tree major problems
can be easily tackled using UNSW-NB 15 dataset like low
footprint, data trafc scenarios, and training/testing
methods. However, for light weight algorithms the men-
tioned dataset are giving better results. Binary classifcation
is utilized while simulating machine learning techniques
which include decision tree, random forest, XGBoost,
AdaBoost, bagging, and logistic regression [55–64]. Fur-
thermore, the data are divided in training and testing
modules which are as follows.

5.1. Data Training. Figure 3 provides detail information
about training dataset. During training almost 56.06% data
illustrates security attacks, while around 44.94% there is “no
attack.” Moreover, training dataset is quite balanced due to
that false alarm is reduced.

5.2.DataTesting. Figure 4 shows data regarding testing dataset
where 31.94% portion is for “no attack” scenario. However,
68.06% data are giving information regarding attacks.

Figure 5 depicts the detail information about training and
testing datasets. Te metric of high accuracy is maintained in
optimal way using UNSW-NB 15 dataset. In high accuracy,
there are two scenarios which include attack or no attack.
Furthermore, if there will be attack but in reality no attack will
be detected which will be false positive. Similarly, true negative
will be having no attack where no attack can be identifed.

Te overall results of machine learning classifers are
presented in Figure 6. Logistic regression performs well in
comparison with other algorithms. LR detects security attacks
for about 82.54%, while, random forest 71.59%, XG Boost
49.54%, DT 49.17%, Bagging 44.70%, and AdaBoost around
28.39%. Also, Figure 6 provides information about the results
of various machine learning classifers in the area of IoT en-
abled FANETs. Figure 7 shows the similar results of Figure 6.

5.3. Comparative Discussion of ML-Based IDS. Table 2
elaborates the detailed comparison regarding ML-based
intrusion detection system. Te approach of network-
based intrusion detection system is widely utilized. Also,
anomaly-based IDS is quite popular approach to detect
cyberattacks. In anomaly-IDS technique, a novel threshold is
needed to be designed for identifcation of security attacks.
While, signature-based IDS must have the concept of some
possible attacks features stored in database. Although
hybrid-IDS is the combination of anomaly and signature but
the use is quite less. Terefore, the proposed solution is
providing better possibilities to detect cyberattacks. In ad-
dition, Table 2 shows the studies which use to have in-
formation about diferent types of intrusion detection
system. Also, machine learning-based IDS are widely utilized
in the previous study.

Mobile Information Systems 5
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Figure 3: Training data for IoT-based UAV network.
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6. Conclusion

Machine learning-based techniques are deployed in IoT-
based UAV networks. Te main aim of this research study is
to propose a novel concept of detecting abnormal behaviour
using machine learning. Flying ad hoc networks is the
combinations of group of UAVs formulate a network.
FANET structure consists of UAVs, satellites, and ground-
based stations. While, IoT sensor nodes are deployed on
ground and UAVs use to collection information. However,
cognitive lightweight-LR approach has reduced false alarm
and balanced high accuracy in IoT-based UAV network.
UNSW-NB 15 dataset is utilized to check the performance.
Nowadays, security is one of the major concerns in almost
every feld of study. FANET-based IDS is the approach
utilized to detect possible cyberattacks. Te proposed ap-
proach has mimicked the overhead, and false data packets
are detected easily. Te simulation results shows that logistic
regression performed better in comparison with other
techniques. Te concept of IoT-based UAV networks can be
merged with smart cities in near future. In addition,

optimization techniques and graph theory will give new
directions to this study. Data trafc models and new datasets
are the need of futuristic cities.

6.1. Future Direction. In near future, UAV network will be
widely utilized for fying taxis in the concept of smart cities.
Terefore, artifcial intelligence, machine learning, deep
learning, reinforcement-based learning, and federated
learning can be utilized for intelligent IDS to detect
cyberattacks. While in smart cities internet of everything will
be used to advance communication. Routing protocols and
communication standards need to be further investigated.
Also, novel datasets need to be designed which will be
helpful for researchers and scientists for further experi-
mentations [77–79].

Data Availability

All the data used to support the fndings of this study are
included within the article.

Table 2: Detailed comparative study of ML-based IDS.

Reference Network-based
IDS

Host-based
IDS

Anomaly-based
IDS

Signature-based
IDS

Hybrid-based
IDS

Machine
learning-based IDS

Future
scope

[65] ✓ X ✓ ✓ X ✓ X
[66] ✓ X ✓ ✓ X ✓ ✓
[67] ✓ X ✓ ✓ X ✓ ✓
[68] ✓ X ✓ ✓ X ✓ ✓
[69] ✓ X ✓ ✓ X ✓ X
[70] ✓ X ✓ ✓ X ✓ ✓
[71] ✓ X ✓ ✓ X ✓ ✓
[72] ✓ X ✓ ✓ X ✓ X
[73] ✓ X ✓ ✓ X ✓ ✓
[74] X X X X X X ✓
[75] ✓ X ✓ ✓ X ✓ X
[76] ✓ X ✓ ✓ ✓ ✓ ✓
Proposed
work ✓ X ✓ ✓ X ✓ ✓
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