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Fifth-generation (5G) technology is one of the keys to the Industrial Revolution known as Industry 4.0 as it provides faster
connectivity and allows a greater number of devices to be connected simultaneously. In the transport sector, newly produced
vehicles are equipped with various sensors and applications to help drivers perform safe maneuvers. However, moving from
semiautonomous to fully autonomous vehicles to cooperating systems remains a major challenge. Many researchers have focused
on artifcial intelligence (AI) techniques and the ability to share information to achieve this cooperative behavior.Tis information
can be made up of diferent data, which can be obtained from diferent sensors such as laser imaging detection and ranging
(LiDAR), radar, camera, global positioning system (GPS), or data related to the current speed, acceleration, or position. Te
combination of the diferent shared data is performed depending on the approach of each navigation algorithm. Tis data fusion
will allow a better understanding of the environment but will overload the network, as the trafc generated will be massive.
Terefore, this paper addresses the challenge of achieving this cooperation between vehicles from the point of view of network
requirements and computational capacity. In addition, this study contributes to advancing theory into real-world practice by
examining the performance of cooperative navigation algorithms in the midst of the migration of computational resources from
onboard vehicle equipment to the cloud. In particular, it investigates the transition from a cooperative navigation algorithm based
on a decentralized architecture to a semidecentralized one as computationally demanding processes previously performed
onboard are performed in the cloud. Additionally, the paper discusses the indispensable role of 5G in fulflling the escalating
demands for high throughput and low latency in these services, particularly as the number of vehicles increases. Te results of the
tests show that the AI acting alone cannot achieve optimal performance, even using 100% of the computational capacity of the
onboard equipment in the vehicle. However, a system that integrates 5G and AI-based joint decisions can achieve better
performance, reduce the computational resources consumed in the vehicle, and increase the efciency of collaborative choices by
up to 83.3%.

1. Introduction

Every year, trafc accidents represent the leading cause of
injury deaths worldwide, where 94% of the accidents are due
to decisions on maneuvers made by drivers. One of the
infuencing factors is the complex interaction on the road,
while other factors include atmospheric conditions [1].
Notably, in 2022, the European Union (EU) witnessed over

twenty thousand fatalities resulting from road accidents,
underscoring the severity of the issue [2]. A consequence of
these trafc accidents is the physical efects, which can vary
from an injury to the loss of life. In addition, there are
psychological and socioeconomic consequences. Tis is
because the people involved in these accidents may manifest
symptoms of depression and anxiety. For instance, the study
conducted on the tracking of a population of road trafc
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accidents in the Rhône (ESPARR) showed that if the acci-
dent causes a severe injury, there is a 32% probability of
stopping work for at least one year, so the family economy is
afected [3, 4].

Terefore, to have a safer road, the exchange of vehicle
information and cooperative decision-making are two of the
fundamental aspects to be taken into account. However, as
a real-time service, the information must be sent with ultra-
low latency, meaning that the time required to travel from
one point to another must be extremely low.

Te importance of latency is that it directly impacts the
performance of the autonomous vehicle as its decisions are
based on the data received. Moreover, these decisions must
be made immediately after the vehicle receives the in-
formation. Terefore, if the data do not arrive in time, the
vehicle will execute a maneuver with erroneous data, which
can lead to an accident.

Consequently, successful cooperation will contribute to
preventing and reducing the number of accidents, gas
emissions, and trafc congestion, as well as saving fuel and
mitigating environmental impact [5–8]. For instance, Liu
et al. conducted a study showing that, with full market
penetration of autonomous vehicles, average energy con-
sumption is reduced by 62% [9]. However, Dikshit et al.
conducted a study on AI-based trafc management systems,
demonstrating that applying AI algorithms improves sus-
tainable urbanmobility.Within the study, specifcally in case
2, they show the coordination of autonomous vehicles in
Pittsburgh. With this, it is evident that their proposed al-
gorithms allow for facilitating communication and co-
ordination among vehicles [10]. In addition, Jafar et al.
showed an in-depth study on how the application of mul-
tivehicle cooperation algorithms can signifcantly reduce
travel times and, at the same time, reduce accidents leading
to multiple collisions, as these types of accidents cause up to
50% of urban trafc congestion [11].

However, achieving multivehicle cooperation can be
difcult due to the variety of possible situations in modern
trafc, such as intersections, preferences, lane merging,
freeway entry/exit, bottlenecks, and trafc lights. In addition,
due to the constant increase in vehicles on the road, the
amount of data trafc fow increases exponentially, thus
requiring the use of multicast/broadcast messages.

Multicast messages will be used when a vehicle requires
sending data to specifc vehicles. In contrast, broadcast
messages will be used when it requires sending data to all
actors on the road. Terefore, to provide services such as
vehicle maneuvering that rely on real-time data collected
from onboard and road sensors, a robust, fast, and reliable
network is needed. It is the time for 5G technology.

Te potential beneft of vehicles knowing each other’s
behavior on the road is evident in a platooning system. It
allows increased efciency and reduces fuel consumption
through the use of shared information and joint actions that
ensure a safe and efcient distance between vehicles. Tis
system relies on vehicle-to-vehicle (V2V) communications
to keep the follower at a prudential distance from the leader

and vehicle-to-infrastructure (V2I) communications to al-
low the leader to decide about passing or not through an
intersection [12].

Te design of cooperative systems involves the co-
existence of diferent onboard sensors, vehicle types, and
algorithms. To tackle the problems of achieving coexistence,
AI techniques have been introduced. AI has been applied to
many felds, such as machine vision, mapping, route
planning, and big data analysis. However, using machine
learning (ML) algorithms implies a high computational cost.
Terefore, onboard equipment will have to be high-tech,
which will increase the monetary cost of deploying these
systems.

In view of the high cost of deployment, this is a major
concern at the time of design. To solve these concerns, the
features referred to in the third-generation partnership
project (3GPP) technical specifcation for 5G New Radio
(NR) versions 16 to 18 are used. Tey allow a reduction in
the computational capacity required in vehicles and enable
the implementation of their functions in the cloud. Tis
guarantees a high-performance system with a low-cost de-
vice in the vehicle.

Implementing services such as cooperative vehicles,
autonomous vehicles, or Industry 4.0 applications such as
holograms require many computational and communica-
tion network resources. For instance, Mercedes-Benz pre-
sented a prototype called the Mercedes-Benz S-Class S 500
Intelligent Drive, where they explained the technical con-
ditions for the implementation of autonomous driving [13].
Similarly, Tesla has also shown a vehicle with full autono-
mous driving capability, where the systems are designed to
allow the vehicle to drive both short and long distances with
no intervention from the person behind the wheel [14]. It
should be noted that for fully autonomous driving, in ad-
dition to AI algorithms, 5G technologies are needed to meet
the communication network requirements [15].

Terefore, all the resources needed for these use cases
lead to signifcant costs during their deployment. It is im-
portant to keep in mind that the theoretical performance
ofered is directly afected by the communication network
and the hardware capacity of the equipment used by the
vehicle. In view of the abovementioned fact, the contribu-
tions of this paper can be summarized as follows:

(1) A study of the latest advances in integration between
5G technology and artifcial intelligence (AI)

(2) A study on how combining both technologies will
impact cost reduction and improved decision-
making efciency of cooperative vehicle systems

(3) A study of the throughput and latency required by
a semidecentralized architecture of cooperative
vehicles

Te remainder of the document is organized as follows:
Section 2 covers the frst part of the technical background
related to 5G technology. Section 3 covers the second part of
the technical background related to artifcial intelligence.
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Section 4 presents an explanation of the algorithms used.
Section 5 evaluates and discusses the results obtained.
Section 6 presents the main conclusions of the study. Section
7 highlights some of the main lines of future research.

2. Related Work: Part 1—The Role of
5G Technology

Te preceding discussion highlighted the need for robust,
reliable, and low-latency communications, where 5G plays
a key role. 5G NR is the global standard for unifed wireless
communication with a higher data rate and support of three
types of communication: enhanced mobile broadband
(eMBB), massive machine-type communication (mMTC),
and ultra-reliable and low-latency communication
(URLLC).

Release 15 specifcation contains the initial description of
the 5G. After that, the following specifcations, from Release
16 to Release 18, address key elements for the deployment of
these services, such as intelligent transportation system (ITS)
that covers secure transportation services and solutions,
vehicle-to-anything (V2X) technology that enables the ex-
change of information, and URLLC that provides highly
reliable communication links [16, 17].

Release 16 focuses on very low latency and improved
reliability by increasing the monitoring frequency of the
control channel. Tese features are crucial for use cases that
require communication between multiple services, such as
factory automation, power distribution, and the trans-
portation industry [18, 19]. Meanwhile, Release 17 is
designed to support use cases with high mobile data trafc
and NR customization demanded by, e.g., automotive, lo-
gistics, and media [18].

Release 18 will cover the area of AI/ML focused on
deploying applications centered on data collection and
improved mobility optimization, extended reality, and in-
telligent network solutions. Furthermore, it will include
Reduced Capability (RedCap) solutions for user equipment
(UE), which will allow the user to reduce device cost and
power consumption by reducing the number of radio re-
ceivers and radio transmitters [20, 21]. Terefore, 5G
technologies will enable the deployment of diferent V2X use
cases, thanks to their higher bandwidth, ultra-low latency,
and higher reliability.

As mentioned earlier, V2X use cases are expected to send
a large volume of data over a network with low latency and
high data rate, i.e., with a round-trip time of approximately
1ms. To address these needs, new features such as fexible
spectrum and fexible numerology were added to the 5G NR
architectures.

Tese features will ensure efcient bandwidth utilization
and enable lower latency communication. Terefore, 5G will
support intelligent transportation use cases such as an au-
tonomous car, as it is capable of providing a data rate of
100Mb/s and 50Mb/s for downlink (DL) and uplink (UL),
respectively, with 99.99% reliability and user latency up to
1ms [22]. However, the impact on data privacy of these new
digital applications and services that have access to our
information is a matter of concern for many users [23, 24].

2.1. Privacy Protection. Te need to share information be-
tween diferent actors is one of the requirements in V2X use
cases, as in the cooperative perception scenario. However,
many concerns arise because of the diferent types of attacks
that the network can receive, such as, attacks against
availability, data integrity, authenticity, and confdentiality.
In the case of the frst one, an example is the jamming attack,
which can degrade network performance by interfering with
packet transmission. Te second one can be mentioned as
GPS signal spoofng, which involves falsifying GPS signal
data such as position, velocity, and time (PVT) to fool a GPS
unit or a specifc receiver. In the case of the third one, we can
fnd Sybil here; the attacking node spoofs many identities in
the road network. Finally, in the last one, we can cite a lo-
cation tracking attack; this consists of that the location of the
vehicle through a certain period is considered as if it were
a kind of personal data [26–29].

Several standards include deterministic security, and
quality of service (QoS) guarantees to address the diferent
security issues. For instance, in Release 16 of 3GPP, direct
communication (PC5) and 5G network communication
(5G-Uu) interfaces are operations to communications V2V
and V2I, respectively [30–32].

2.2. V2X Use Cases. In use cases such as platooning or re-
mote driving, it is necessary to transmit a large number of
messages in real time with high reliability and low latency.
For instance, the required latency for advanced vehicles is in
the order of 3 to 100ms. Tese messages may contain data
provided by diferent sensors, such as a laser, velocimeter,
accelerometer, and other information that can warn others
about its future intentions. All this knowledge will allow the
system to prioritize trafc optimization and have better
energy management [33, 34]. Tere are many other possible
use cases enabled by 5G features, but this paper focuses on
those that are possible within the advanced driving concept,
such as cooperative maneuvers and cooperative perception.

2.2.1. Cooperative Maneuvers. As the name implies, co-
operative maneuvering allows coordinating moves between
vehicles by exchangingmessages (see Figure 1). For instance,
vehicles can exchange messages about the trafc environ-
ment or the actions planned by the sender. Tey can also be
cooperative messages to infuence local planning among the
participants or specifc actions indicated by the sender
[33, 35]. Tis precise information allows vehicles to have
complete knowledge of their surroundings. For example,
Cooperative Awareness Message (CAM) sends maneuver
coordination information, while Maneuver Coordination
Message (MCM) sendsmaneuvers between vehicles [36–38].

Another example is 5G for Connected and Automated
Road Mobility in the European UnioN (5G-CARMEN)
project, which showed a proprietary digital twin based on
simulation for automated vehicles connected to 5G. One of
the use cases presented focuses on cooperative maneuvers
applied to a group of vehicles. Tese vehicles share messages
in real time and privately about information collected by
sensors such as LiDAR, radar, and onboard cameras. Tis
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approach demonstrated how vehicles can periodically decide
to change lanes and even react safely when a vehicle within
the system is manually driven [39]. In the meantime,
Koopmann et al. proposed a decentralized approach called
“game-theoretic.” Tis approach was designed to negotiate
cooperative maneuvers at urban intersections. Te authors
assume that an intelligent trafc management system (TMS)
is deployed with a complete view of the environment. Using
this information, they generate movement recommenda-
tions for vehicles without directly controlling them [40].

Intervehicle cooperation can be realized using a cen-
tralized architecture where all data obtained by vehicle
sensors are sent to the cloud, which processes them. Once
processed, the cloud will be responsible for fnding an op-
timal solution and notifying the vehicles of the most ap-
propriate action to be executed. Another way of cooperation
is through a decentralized architecture, which implies that
there will be direct data exchanges between vehicles.
Terefore, each vehicle will be in charge of fnding its op-
timal action, considering nearby vehicles’ reactions. In other
words, when a vehicle wants to initiate a cooperative process,
it frst sends a maneuver proposal to the other vehicles, and
they can either accept it or send an alternative proposal. Tis
approach requires a high computational capacity in each of
the vehicles to achieve optimal coordination and thus avoid
dangerous situations. For this reason, cooperative semi-
decentralized architecture is the subject of focus in
this paper.

2.2.2. Cooperative Perception. In contrast, cooperative
perception (see Figure 2) allows the vehicle to have a better
awareness of its surroundings, also helps avoid road colli-
sions, and improves the efciency of the road [41]. For
instance, if a vehicle has only a viewing angle of fewer than
120 degrees, this could cause blind spots for the vehicle and
low detection accuracy. In other words, it cannot see objects
behind corners, curves, or in invisible areas. In these cases,
the vehicle can achieve a complete view of the area by
sharing the raw data information from nearby vehicles.
Moreover, in case of adverse weather conditions or poor

lighting, redundant data can help mitigate the negative
impact of these phenomena by improving data reliability
[42, 43].

Tere are many techniques to achieve a cooperative
perception; collaborative vision, selection of data to trans-
mit, and federated learning (FL) are the most outstanding
ones. Only important data are transmitted by selecting the
data to be transmitted, so communications consume fewer
resources because fewer data are transmitted. In contrast, FL
enables vehicles to share the weights of the model with
neighboring vehicles, thus reducing the need for massive
data transfers [25, 44].

Finally, collaborative vision focuses on the fusion of
high-level data from multiple sensors. Algorithms such as
You Only Look Once (YOLO) use these data to implement
three-dimensional (3D) object detection functionality. Tis
enables trafc safety monitoring and driving assistance, all
within 5G-based scenarios [45, 46].

A study of diferent projects of cooperative perception
was presented by Caillot et al., where manymachine learning
algorithms were used to estimate positions, detect other
vehicles and obstacles, and cover blind spots caused by other
vehicles, especially at intersections and trafc circles. Te
diferent sensors used were lasers, cameras, radars, and GPS,
and they were placed on bridges, and street lights on roads,
especially at intersections [47]. Meanwhile, Zhou et al.
suggested an enhanced cooperative information perception,
in which an ultra-fast fltering system is proposed to opti-
mize the received data. Tis means that, after fltering, only
the information important for vehicle navigation is dis-
played, thereby eliminating visual noise and facilitating the
understanding of the environment [48]. Additionally, an
interesting approach was proposed by Cui et al. where a tilt
model is obtained based on intervehicle perception; in other
words, frst, the information is encoded in a point-based
representation to transmit compact messages between ve-
hicles; secondly, the 3D LiDAR data from the diferent
vehicles are aggregated and fnally analyzed [49].

In short, vehicle perception of the environment is im-
portant for improved decision-making. However, equipping
a vehicle with high technology increases the cost of
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Figure 1: Use case of cooperative maneuvers: (a) the purple vehicle attempts to change lanes. (b) Te cooperative maneuvers fail to occur,
resulting in multiple collisions. (c)Te process of cooperative maneuvering begins, leading the blue car to accept the purple vehicle’s request
to change lanes by transmitting a speed reduction message. (d) Te process concludes successfully with the lane change completed.
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deploying these services. However, if only low-tech sensors,
such as a camera, are available, it is not certain that all
relevant objects will be detected. On top of that, the sensor
can fail due to diferent factors such as noise, environmental
conditions, or even manufacturing defects. Considering
these facts, the higher the level of technology onboard, the
higher the accuracy of environmental detection and the cost
of deployment.Terefore, the big question is as follows: How
can onboard computation demand be reduced and still
deploy successful cooperative systems? Here, AI plays an
important role.

3. Related Work: Part 2—The Role of
Artificial Intelligence

Besides stable communication, AI has become a promising
feld for deploying cooperative autonomous vehicles. AI is
a branch of computer science that focuses on developing
technology to give machines the ability to mimic human
behavior. Te purpose is to make their response to an event
similar to human behavior. In other words, machines will be
able to perform tasks that require skills such as learning,
reasoning, and self-correction.

ML and deep learning (DL) are two subfelds of AI. Te
main idea of both is to obtain data, analyze them, learn from
them, and apply the acquired knowledge to solve or execute
tasks. In the case of ML, the algorithm is trained to perform
a specifc task. For instance, entertainment platforms use
data from user choices to create a user profle and predict
what the user might like in order to recommend future
content.

However, DL is a subset of ML that uses neural networks
to make decisions, which are getting better and better as the
neural network can self-correct to improve its prediction.
For example, suppose we have a vehicle that wants to move
from one point to another without a map, at the beginning of
the journey. In that case, it will take the wrong direction, but
as it collects data and the neural network is trained, it will be
able to reach its destination successfully.

In addition, ML encompasses the multi-robot system
(MRS) feld, which focuses on studying scenarios shared by
several robots, where the actions executed by each of them

infuence the behavior of the others. Tese robots can in-
teract competitively in those scenarios in which they have
diferent objectives, where each robot tries to obtain the
highest reward and make the others obtain the lowest one.
Te reward represents the quality of the action or decision;
i.e., if it is correct, it will have a positive incentive (reward),
and if it is incorrect, it will have a negative one
(punishment).

Multi-robots can focus on cooperative, competitive, or
mixed tasks. When focusing on cooperative tasks, the al-
gorithms can be designed for a static or dynamic envi-
ronment depending on whether or not they consider the
other vehicles as a part of the environment. During the
interaction in cooperative mode, all robots work together to
achieve a common goal, similar to the mixed behavior used
in team video games. In these video games, robots work
cooperatively when they belong to the same team but
competitively when they belong to the opposing team.
Regardless of the interaction, robots learn through the re-
ward obtained, always maximizing the reward obtained.Tis
can be maximized in a centralized or decentralized way. In
the frst case, all robots receive the same reward, whereas, in
the second one, each robot gets its local reward [50].

Tis paper focuses on cooperative behavior, which can
also be classifed as aware or unaware. Being aware means
that the robot knows the other robots in the environment. If
a robot is aware, it can have diferent ways of coordinating
with other robots (centralized or decentralized). Robots can
also be classifed according to their organization (centralized
or distributed). If they have a distributed organization, all
robots act independently. However, a centralized organi-
zation can be very strong as long as there is one leader telling
the others what to do. If there are many leaders in the team, it
is a weakly centralized system. In a distributed organization,
robots can have dependent or independent communication.

Multiagent reinforcement learning (MARL) algorithms
fall into the independent communication type, whose
learning is based on trial and error. Figure 3 shows a sum-
mary of some MARL-based algorithms that interact in
diferent ways to achieve satisfactory cooperation during the
performance of a task. Te advantage of MARL is that,
although it focuses on robots, its concepts can be applied to
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vehicles. MARL in vehicles allows faster learning as it col-
lects data from heterogeneous vehicles and fuses their
capabilities.

Te term heterogeneous vehicles refer to vehicles that
have diferent sensors. Tis exchange of information is used
to achieve better collaboration between them, but as the
number of vehicles increases, so does the number of con-
nections, which turns the information exchange into
a process with a high computational cost. Furthermore,
considering the data collected for training are extensive in
volume, it involves using deep neural networks and 5G
networks for processing and communication, respectively.

MARL has been used in many real-world scenarios.
Among the use cases are multiplayer video games, intelligent
transportation system control, and robot swarm co-
ordination [51]. However, one of the biggest challenges that
arises is the instability of the training. Tis is mainly because
their environment will change from one that does not
change over time (stationary) to one that is constantly
changing (nonstationary). Tis instability makes it difcult
to fnd a stable behavior policy. However, an additional
problem is the very high data transmission speed and
minimum latency required by the network to deploy these
services successfully.

Terefore, to better understand MARL and how a ma-
chine can learn, it is necessary to go deeper into the topic of
reinforcement learning (RL).

3.1. Reinforcement Learning. Te idea behind RL is that the
vehicle learns through interactions with its environment.
Tis means the vehicle will represent the agent on the road,
while the other vehicles and other actors, such as pedes-
trians, will represent the environment. In this kind of
learning, each vehicle action will generate feedback in the
form of rewards. Tese rewards can be positive (appropriate
action) or negative (wrong action).

Tis feedback is the key that indicates whether the
current behavior policy should be improved or not, where
the policy is the control strategy that will determine the
optimal action to be performed. Tis strategy uses diferent
data for learning, which can include the position of the
vehicle, data from its sensors, and the position of its target.
In other words, a policy is mapping states (observations of
the vehicle), actions, rewards, and following states (obser-
vations after a decision is performed). As a result, the future
of the vehicle is only afected by the current state and not by
past decisions.

One of the challenges faced by RL is the scalability
problem. It is limited to low-dimensional problems as it
uses tables to store possible combinations of actions and
states. In addition, most of the proposed algorithms involve
a single RL robot because cooperation between multiple RL
robots represents a challenge in terms of fast learning, data
security and privacy, and hardware and software
limitations [52].
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To address these problems, deep reinforcement learning
(DRL) is used, as it combines the RL framework with neural
networks, enabling learning with large amounts of data
using neural networks instead of using long tables of
combinations.

3.2. Deep Reinforcement Learning Algorithms. DRL algo-
rithms are widely used in algorithms for autonomous
driving, path planning, object detection, speech recognition,
and cooperative perception. Table 1 summarizes the main
advantages of using DRL in applications such as cooperative
driving [53–57]. In the case of cooperative perception, each
vehicle learns through the DRL which data should be sent to
the other vehicles, taking into account their needs [58]. For
instance, if vehicle1, with a high-resolution camera, wants to
send its data to vehicle2, equipped with a low-resolution
sensor, it will prefer to send high-resolution data as vehicle2
needs to have a better perception of its environment.
However, if vehicle1 wants to send its data to vehicle3
equipped with a laser, it will send the data in low resolution
just to reinforce the data already possessed by vehicle3.

Due to congestion or latency in the network, the vehicle
may experience loss of connectivity and, therefore, packets;
Li et al. proposed a way to mitigate this problem by a method
of merging data from nearby vehicles considering a loss of
communication and using multiple deep learning layers
[59]. In addition, these algorithms can speed up the process
of fnding an optimal policy by experience replay (ER), in
which the collected data are bufered and then randomly
sampled for the training process.

In this paper, the performance of two cooperative vehicle
scenarios is shown. It is analyzed in terms of successful
intervehicle cooperation when the computational processes
executed in the vehicles are reduced. In other words, the
computational capacity required in the vehicle is reduced by
transferring the functions that require a high level of pro-
cessing to the cloud. Transferring all the information to the
cloud is feasible due to the low latency of 5G, as it is nec-
essary to process the decision and send it back to the vehicle
in a time low enough to justify ofshoring the decision.

In the frst scenario (see Figure 4(a)), diferent vehicles
send information about their sensors to each other to train
their own policies and estimate the action to be performed.
Tis decentralized scenario uses 100% of the vehicle’s
computational resources and sends high trafc between
vehicles, making the vehicle’s response slow and susceptible
to collisions. In the second scenario (see Figure 4(b)), being
a semicentralized architecture, the vehicles send all the data
to the cloud and get a common policy. Each vehicle will use
this policy to choose the action; therefore, only 30% of the
computational capacity of the vehicle’s onboard equipment
is used.

For all of the abovementioned scenarios, the information
sent is the information of each vehicle, such as position,
velocity, acceleration, orientation, and the data read by its
sensors, such as camera, LiDAR, and radar.

Finally, having studied AI and its importance in co-
operative navigation, Table 2 contains a detailed summary of
the diferent subfelds of AI applied to cooperative navi-
gation. In it, the distinguishing features of ML, RL, and DRL
algorithms are highlighted. Each subfeld is thoroughly
examined in terms of its advantages, disadvantages, and
various applications in cooperative navigation. Tis sum-
mary provides a clear view of the capabilities and limitations
of each approach, allowing informed decisions to be made in
the development and implementation of intelligent navi-
gation systems [25, 60–70].

4. Previous Work

To test the performance of a navigation algorithm when the
computational capacity required by each vehicle is moved to
the cloud, we have used our previous work, adapting it to the
desired scenario. For the frst setting, we use an algorithm
[57] designed to plan the trajectory from one point to an-
other in an environment where only one vehicle is con-
sidered to move. In this algorithm, the architecture is
decentralized as all computational processes are performed
in the vehicle.

It is important to note that the algorithm focuses on
navigation without the use of a preloaded map, i.e., of an
unknown environment. Te authors combine DL and RL
with the HK algorithm. In addition, they use the benefts of
ER, genetic algorithm (GA), and dynamic programming
(DP) to fnd the policy optimally, allowing the vehicle to
achieve all the set objectives without a map. In addition, it
allows for optimizing the time needed to train the optimal
behavioral policy and achieving a policy capable of tracing
a short path, thus optimizing time and distance. Addi-
tionally, it uses a hybrid method using semiuniform dis-
tributed exploration (SUDE) to determine the probability
that the chosen action is using directed knowledge, hybrid
knowledge, or autonomous knowledge.

Te approach uses a double deep Q-learning (DDQL)
algorithm, where the architecture of a neural network
corresponds to an input layer with six neurons, two hidden
layers of 526 neurons, and an output layer of six neurons
(forward, backward, and sideway actions with a given angle
each). Te summary of the characteristics of the architecture
used in this approach, such as the number of layers and the
optimizer, is detailed in Table 3.

As the objective is to test the performance obtained when
more than one vehicle is used, two vehicles using the [57]
algorithm were placed and moved in the same environment.
Given that the original algorithm was designed for a single
vehicle, a feature has now been added that enables it to
receive and send its broadcast information to another
vehicle.

Te second scenario to be tested uses the algorithm
proposed in [71], which was designed for cooperative
navigation in a semidecentralized architecture. In contrast,
this algorithm is based on semidecentralized learning. It
employs the concepts of joint action learning (JAL) and

Mobile Information Systems 7



independent learning (IL) to fnd an optimal approach.
Additionally, it uses a self-advice module that estimates the
correct action to be performed and thereby replaces the joint
action defned in the JAL algorithms. With this, it is able to
reduce the algorithmic complexity and resemble the benefts
of IL as its complexity does not increase. At the same time,
there are more vehicles in the system. Finally, it adds
a collision controller module that is intended to mitigate the
risk of collisions between diferent vehicles even more.

Tis approach uses two hidden layers, each with 526
neurons. It uses the deep deterministic policy gradient (DDPG)
algorithm to train the policy, where the actor network has an
input layer that has 28 neurons corresponding to the state (laser
data, distance to the nearest object, heading between the agent
and the target, current distance to the target, and initial heading
to the target). However, the critical network has an input of 30
neurons, where 28 correspond to the state and the other two

correspond to the diferent actions, one chosen by the agent’s
behavior policy and the other chosen for the self-advice
module. Te network output has fve neurons representing
the fve possible movements that the agent can perform: one
forward, two to the right, and two to the left, with diferent
angles each. Additionally, it is an episode-based approach
where each episode ends when the agent performs 500 steps.

Table 3 summarizes the main parameters of the algo-
rithms used. However, we encourage readers to learn more
about how the algorithms work by reviewing the papers
referenced in this table.

5. Evaluations and Discussion

To evaluate the performance of cooperative navigation, two
algorithms were trained in the same environment for
19 hours, where the objectives to be achieved were the same

Table 1: Advantages of using deep neural networks in cooperative navigation.

Advantage Explanation
Autonomous learning capability Enables vehicles to learn to navigate in complex environments

Decision-making optimization Allows optimization of vehicle decisions based on perceived information,
improving efciency and accuracy

Integration of multiple sources of information Efective integration of information from a variety of sources to improve
understanding of the environment

Adaptability to changing environments Models can adapt to changes in the environment and adjust vehicle behavior in
real time

Improved robustness to uncertainty Enables the creation of behavioral policies that help vehicles make more robust
and adaptive decisions in uncertain or noisy environments

Efciency in state space exploration Compact and efcient state space representations can be learned, facilitating
exploration and learning

Reduction in the need for manual feature engineering Automatically learn useful features from raw data, thereby avoiding unnecessary
manual feature design

Road level

Cloud level

Vehicles send the sensor data among each other
Each vehicle trains its own policy and takes its own decision
Cloud is not involved in the process

2

50 60

1

2

3

1
2
3

(a)

Road level

Cloud level

3
50 60

1 2

Vehicle send the sensor data to the cloud
Cloud trains a policy and send it to the vehicle
Vehicle takes a decision using its sensor data and the received policy

1
2
3

(b)

Figure 4: Types of architectures: (a) decentralized: a scenario where vehicles share each other information from their sensors with each
other. Before the vehicle executes an action, it receives the data obtained by its sensor and nearby sensors. Based on this information, it acts
within the environment and receives a positive or negative reward for the action performed. (b) Semidecentralized: a scenario in which the
vehicle learns centrally but makes its decisions in a decentralized manner. Te vehicles send their information to the cloud, and the cloud
trains a neural network to obtain a common behavioral policy. It then sends the information to each vehicle, and based on the information
from its sensors, the vehicle executes a maneuver.
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but were randomly selected. From the results shown in
Figure 5, it can be interpreted that the lower the percentage
of processing performed in each vehicle and the higher the
percentage of processing completed in the cloud, the better
the collaborative process performs.

Te frst scenario (decentralized) shows a 4.2% successful
cooperation rate, where it is observed that although the
vehicle uses all its processing capacity, it does not guarantee
a collaborative agreement as each vehicle has its behavioral
policy and acts according to it.

In contrast, in the second scenario (semidecentralized),
it is observed that moving the policy training function to the
cloud increases cooperation by more than 62%. Terefore,
using a common behavior policy and 70% less central
processing unit (CPU), this approach can achieve six times
more efciency than the decentralized one.

Next, we will analyze the network requirements of the
navigation algorithm to show how these real-time services
need 5G technology for deployment.

Previously, we have examined semidecentralized and
decentralized architectures and their performance in
transferring their functions to the cloud. At this point, we
will focus only on the semidecentralized architecture, given
its interaction between the cloud and the vehicle. Regarding
uplink data transmission, it poses minimal challenges to the
network, as it just sends the required input data to the neural
network, which sums to a total of twenty-eight data points.
In contrast, downlink transmission presents signifcant
challenges, as the cloud continuously sends the behavioral
policy, which encompasses the weights of each neuron in the
neural network, to the vehicle. Consequently, the deeper the
network, the greater the volume of data to be transmitted.

Table 3: Summary of the key parameters of our algorithms proposed in previous works [57, 71].

Parameters
Architecture

First Second
Hidden layers 2
Hidden layer neurons 526
Dropout 0.2
Replay memories 100000
Mini batch size 96
Update target Soft mode
Optimizer RMSProp
Loss MSE
End of episode 500 steps
α 0.0025
Output layer neurons 6 5
Input layer neurons 28 28–30
Policy-based RL DDQL DDPG

SEMI-
DECENTRALIZED

DECENTRALIZED

83.3

4.2

16.7

95.8

# Goals
# Collisions

On-board processing 100%On-board processing 30%

Figure 5: Increasing performance in vehicle cooperation when data processing are transferred to the cloud. In a decentralized architecture
where all the processes of sensing, policy training, and action choice are performed in the onboard equipment, the percentage of successful
cooperation between several vehicles is 4.2%, while if all the processes are performed in the cloud, the performance is 79% higher.
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It is worth noting that, for the analyses, the limited data
rates are set at 250Mbps for 5G and 50Mbps for fourth
generation (4G), referring to the report “Benchmarking the
Global 5G Experience” published in June 2022 [72].

In Figure 6(a), a scenario is analyzed in which up to ffty
vehicles are connected to the network and execute up to ten
actions per second; i.e., the vehicles will send data to the
cloud up to ten times per second.Terefore, the results show
that only 5G technology provides the performance needed to
handle this number of vehicles and actions in the system. In
particular, 5G supports ffty vehicles executing ten actions,
while 4G can accommodate ffty vehicles with eight actions
or forty vehicles with ten actions.

In contrast, Figure 6(b) illustrates that for the same
number of vehicles and actions, 4G downlink technology
can only support 40 vehicles with one action or fve vehicles
with nine actions. In contrast, 5G technology meets the
downlink throughput requirements for up to ffty vehicles

with up to four actions per second or twenty vehicles with
ten actions.Tis underscores the superior capability of 5G to
deploy cooperative services.

Note that although 4G can handle up to forty vehicles
with ten actions, only 5G meets the network requirements
for uplink in a system involving up to ffty vehicles and up to
ten actions, considering the relatively small size of the
transmitted information. However, if we increase the
number of vehicles on the uplink, we obtain similar results to
those observed on the downlink (see Figure 6(c)), with the
diference that now the number of vehicles can reach fve
hundred, that is, ten times the number of vehicles.

Now, we will analyze the latency experienced; for this, it
is essential to take into account the bandwidth diferences
between 5G and 4G. With a bandwidth of 100MHz versus
20MHz for 4G, 5G technology ofers fve times more
bandwidth. Figure 7 illustrates the latency behavior as the
number of vehicles increases. It can be seen that as the
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Figure 6: (a) Troughput requirements on the uplink up to 50 vehicles and ten actions per second. (b) Troughput requirements on the
downlink up to 50 vehicles and ten actions per second. (c) Troughput requirements on the uplink up to fve hundred vehicles and ten
actions per second.
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number of vehicles increases, the latency remains nearly
unchanged in 5G and conforms to the requirements of this
type of application, typically set at 10ms. In contrast, in 4G,
the latency does not meet the 10ms requirement after thirty-
two vehicles. Beyond this threshold, the latency starts to
scale exponentially, reaching values of up to 125ms in
a system with about ffty vehicles. Note that the simulations
depicted in the fgure earlier were performed using a discrete
event network simulator called NS3, where the main pa-
rameters established are described in Table 4.

6. Conclusions

Te implementation of efective cooperative systems is
a fundamental pillar for improving safety and optimizing
trafc management on roads. It is imperative that vehicles
have a thorough understanding of road dynamics and can
accurately predict their future positions, taking into account
the presence of other vehicles. To foster this cooperation, the
integration of advanced AI algorithms is indispensable in the
development of global optimal behavioral policies. However,
the search for an optimal policy requires access to large
amounts of data.

Tis challenge is compounded by the signifcant com-
putational processing demands supported by each vehicle as
it trains its own network and formulates independent de-
cisions. To cope with this computational load and ensure

data privacy, the advent of 5G networks is critical. Tanks to
their ability to transmit large volumes of data with low
latency, 5G networks can transfer computationally intensive
functions to the cloud. Consequently, the requirement for
high levels of intelligence in individual vehicles is mitigated,
as evidenced by the increased performance of intervehicle
cooperation demonstrated in Figure 5. Additionally, the
semidecentralized architecture reduced the computational
burdens required by the vehicles while increasing the ef-
ciency of cooperative decisions by up to 79%.

Furthermore, Figures 6 and 7 show that only 5G net-
works meet the throughput and latency characteristics
needed to support cooperative navigation among multiple
vehicles. Terefore, the seamless integration of 5G networks
with AI is a key factor in the success of cooperative
navigation.

7. Future Challenges

Considering this is an incipient area of research, several
research challenges have to be addressed to improve the
performance of cooperative maneuvering algorithms be-
tween vehicles.

One is to test real scenarios using models trained on
simulated replicas of the scenarios but using data from actual
human drivers in simple and complex trafc scenarios. Also,
design algorithms can adapt to diferent scenarios and actors
on the road. Finally, parallel computing techniques should
be explored to reduce computational and memory costs and
speed up the training process.
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Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

120

100

80

60

La
te

nc
y 

(m
s)

40

20

0

0 5 10 15 20 25
Vehicles

4G
5G

30 35 40 45

Figure 7: Latency in 4G and 5G as the number of vehicles increases.

Table 4: Parameters for latency analysis.

Parameter Value
Bandwidth (5G) 100MHz
Bandwidth (4G) 20MHz
Center frequency (4G) 2.5GHz
Center frequency (5G) 28GHz
Reliability 99.9999%
Latency 10ms%
Message size uplink 120 bytes
Message size downlink 1.2e− 3 bytes
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