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A basic feedback control problem is that of obtaining some desired stability property from a system which
contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected
mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion.
Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4],
[10], [15], and continuous [3-9], [11] models described by difference and differential equations, respectively.
Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both
continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both
systems simultaneously [1], [2], [12], [13]). This theory permits one to get some insight into and better
understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize
the framework of the theory of dynamic systems on time scales to investigate the stability properties of
conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the
notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the
problem in question.
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1. PRELIMINARIES

Let T be a time scale (any subset of R with order and topological structure defined in a
canonical way) with f, =2 0 as a minimal element and no maximal element. Since a time
scale T may or may not be connected, we need the concept of jump operators.

DeriniTioN 1.1: The mappings o, p: T—T defined as

oc(®M=inf{s € T: s >t} and p(t) = sup{s € T: s < t}

are called jump operators.
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DeriniTion 1.2: A nonmaximal element ¢ € T is said to be right-scattered (rs) if 6 (f) >
t, and right-dense (rd) if ¢ (f) = t. A nonminimal element ¢t € T is called left-scattered (ls)
if p(¢) < t and left-dense (Id) if p(r) = t.

DeriNtTion 1.3: The mapping u™: T—R " defined by u"(f) = 6 (¢) — t is called graininess.
When T =Z, p"() =1 and when T=R, p*(r) = 0.

DeriNition  1.4: The mapping g: T—X, where X is a Banach space, is called
rd-continuous if

(i) it is continuous at each right-dense t € T,
(if) at each left-dense point the left-sided limit g(¢7) exists.

C,, [T, X ] will denote the set of rd-continuous mappings from T to X . It is clear that
a continuous mapping is rd-continuous. However, if T contains left-dense and right-
scattered (/drs) points, then rd-continuity does not imply continuity, but on a discrete time
scale the two notions coincide.

DerniTioN 1.5: A mapping u: T—X is said to be differentiable at € T , if there exists
an a € X such that for any € > 0, there exists a neighborhood N of ¢ satisfying

lu (o @) — u(s) — (o) — s)al<selo(t) — sl
for all s € N.

The derivative of u is denoted u®. Note that if T =R, a = du(t)/dt,andif T=Z ,a =
u(t + 1) — u(?). In addition, the derivative has the following basic properties

(i) If u is differentiable at ¢, then it is continuous at ¢;
(i) If u is continuous at ¢ and ¢ is rs, then u is differentiable and

u(t) = [u(o(t) — u@®IW’ ().

DeriniTion 1.6: For each ¢t € T, let N be a neighborhood of ¢. Then, we define the
generalized derivative (or Dini derivative), D* u®(f), to mean that, given € > 0, there exists
a right neighborhood N, c N of ¢ such that

u(o(t)) — u(s)

< D*u™(t) + € for s € N, s>t
u(,s)
where p(z,s) = o(t) — s.

In case ¢t is rs and u is continuous at ¢, we have, as in the case of the derivative,

u(o(?)) — u(t)

DuA@) = -
p(@)
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DeriNiTION 1.7: Let g be a mapping from T to X. If the mapping f: T—X is differentiable
on T and satisfies f(f) = g(¢) for t € T, then it is called the antiderivative of g on T .

The antiderivative has the following properties:

(i) If g: T->X is rd-continuous, then g has the antiderivative f:t — [‘g(s)ds, rit € T.

K
(ii) If the sequence {g,},cn Of rd-continuous functions g,: T—X converges uniformly
on [r,s] to the rd-continuous function g, then

s )
f emdt | S f g()dt in X.
r neN r

DerinTion 1.8:  The mapping f: Tx X—X is rd-continuous if,

(i) it is continuous at each (t,x) with right-dense ¢, and

(i) the limits f(t",x) = lim,,,,,_,~ of (5,y) and f,_, (t,x) exist at each (z,x) with left-dense
t.

A basic tool which is employed in the proofs is the following induction principle.

THeOREM 1.1 Suppose that for any t € T, there is a statement A(t) such that the following
conditions are verified:

(1) A(ty) is true;
(I1) If t is right-scattered and A(t) is true, then A(0(t)) is also true;
(Ill) For each right-dense t, there exists a neighborhood N such that whenever A(t) is
true, A(s) is also true for all s € N, s 2 t;
(IV) For left-dense t, A(s) is true for all s € [t,t) implies A(t) is true.

Then the statement A(?) is true forall te T .
Note that in the case of the generalized derivative, D*u®(¢), of Definition 1.6, we

approach ¢ only from the right. Therefore, for a statement A(#) involving D*u*(¢) condition
1V is not needed.

Following Definition 1.6, define, for Ve C,[T x R"R,], D*VA(t,x(?)) to mean that,
given € > 0, there exists a right neighborhood N, c N of ¢ such that

1
i) YO0 X(OW) = Vis, x(0(0) — prsfiex(O] < DVAG, x() + €

for each s € N, s > t. As before, if t is rs and V(t,x(t)) is continuous at t, this reduces to

-V
DAy = LIOHED) — Vex®)

@
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Tueorem 1.2:  Let Ve C,,[T X R"R,], V(t,x) be locally Lipschitzian in x for eacht € T
which is rd, and let

DVA(t, x) < g(t,V(tx))
where g € C,; [T X R,, R], g(t,u)u"(¢) is nondecreasing in u for each t € T and r(t) = r(s,

to, Ug) is the maximal solution of u® = g(t, u), u(ty) = ug 2 0, existing on T . Then, V(1,,
Xo) S ug implies that V(t, x(£)) < r(t, ty, ug), t € T, t 2 ¢,

Proof We apply the induction principle of Theorem 1.1 to the statement
A@): V@, x@) £ (@), te T, t2t,.
(I) A(ty) is true since V(ty,x(ty)) < ug.
(II) Let ¢t be rs and A(¢) be true. We need to show that A(G(?)) is true. By definition, if
we set m(f) = V(t,x(t)), we see that

m(©(®) — r(e(®) = [D'm*() - O @) +m(t) - (1),

which, because of g(z,u)u"(f) being nondecreasing in u and A(f) being true, reduces
to

m(o(t) — r(e@) < [gtm®) - gEr)W @) +m@ — r@x) < 0.

In view of the fact that

m(o(2)) — m(t) _ V(o(), x(o(2)) — V(t,x(1)
N0) N0) ’

we see that A(G(?)) is true.
(III) Let t be rd and N be a right neighborhood of . Assume A(?) is true. We need to
show that A(s) is true for s > ¢, s € N. This follows from the comparison theorem

for differential equations relative to Lyapunov functions, see [14].

Since in evaluating D*V*(t,x) we are interested only in the case where ¢ is approached
from the right, consideration of item IV of Theorem 1.2 for left-dense points is not needed.
Hence A(?) is true fort € T .

2. STABILITY OF CONDITIONALLY INVARIANT SETS

Consider the differential system

A=ftx)),  x(tg)=x, toe T .1
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where fe C,,[T x R x R, R"] and A € R is a parameter. Also consider the differential
equation

ur=gt, u, 1N, ulty) =uy 20, t,e TR2) (2:2)
where ge C,[TxR,,R1

Let us begin by defining the notions of self-invariant and conditionally invariant sets, as
well as relevant stability concepts. For that purpose, let 0 < r < p and

A={xe R"Ixl £ r}and B= {xe R™Ixl < p}. 2.3)
Also let x(f) = x(t, A, ty, x,) be any solution of (2.1).
DeFiNITION 2.1
(1) A c R"is said to be self-invariant for the differential system (2.1) if

Xp€e A=>x(t)e A t2ty,te T,

(2) Bis said to be conditionally-invariant with respect to A for the differential system
2.1) if

X, € A = x(t) € B, t2t,te T.

DEerINITION 2.2

The conditionally invariant set B relative to A is said to be uniformly asymptotically
stable (U.A.S.) if

(i) it is uniformly stable (U.S.), i.e., if given any e >0 and fy € T , thereisa 6= &
(e) > 0 such that x, € S(A, §) implies that x(t) € S(B, €), t 2 t, where S(4, d) = {x
€ Rl <r+ 18}, and S(B, €) = {x € R™ x| < p + €};

(i) it is uniformly quasi-asymptotically stable, i.e., given n > 0, ¢, € R,, there exist
a 8y > 0 and T = T(n) such that

[l xo || < S(A, 8y) implies that || x(?) || < S(B,m) t 21, + T.

We need corresponding definitions relative to the comparison equation (2.2). Let k = {a
€ C, T, R ]J:a(u) is strictly increasing in u, a(0) = 0 and a(u)—eo as u—reo}

DeriNimion 2.4 Let Q={u € R,:u < ry}, for some ry > 0.

(1) Q is said to be self-invariant if

uy < ry implies that u(r) < r,, 121, te T.
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(2) Qis said to be U.A.S. if

(i) itis U.S., i.e., given any € > 0 and t, € T, there exists a § = 8(e) > 0 such that

Uy < ro + O implies u(f) < ry + €, t 2 ty, and
(i) givenn > 0 and t, € R,, there exists a §, > 0 such T = T(n) > O such that u, >
r + &, implies that u(?) < ry + 1, t2t,+ T

We now prove the following theorem on U.A.S.

THEOREM 2.1  Assume that

(Ap) There exists Ve C,; [ T xR", R,], V(t,x) locally Lipschitzian in x for each right-dense
t € T, such that, for (t, x) € T x R",

b(Ixl) = V(¢, x) = a(Ix)
where a, b € K, and
DT VA, x) = g(t,V(1, %), )
where g € C [T x R, x R,, R];

(A,) For each A € R?, there exists r =r (A) > 0, p = p(A) > 0, such that a(r) = b(p), and
r(A), p(A)—0 as 1AI—0;

(Ay) The set Q = {u € R, : 0 <u <a(r)} is invariant and U.A.S.

Then, the set B = {x € R": IxI< p} is conditionally invariant with respect to A = {x €
R ™ 1xI< r} and it is U.A.S.

Proof Suppose that the set Q is invariant with respect to (2.2) and U.A.S. We shall first
show that the set B = {x € R": x| £ p} is conditionally invariant with respect to A = {x
€ R™ Ixl < r} relative to (2.1).

Since Q is invariant relative to (2.2), we have
ug < a(r) implies that u(t) < a(r), 21t 2.4)
where u(f) is any solution of (2.2). We need to prove that
Ixo| < rimpliesthat | x(?) | £ p,t 2 t,, t € T.

If not, there would exist a solution x(f) of (2.1) with | x, | < rand ¢, > 1, 1, € T, such that
I xg 1 < rbut Ix(#,)l > p and Ix(®)! < p.
By Theorem 1.2 we have,

Vi, x(t) =w(t), ty =S tg =
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where w(t) = w(t, IAl, t,, ug) is the maximal solution of (2.2). Take uy = (o, x,) so that
when Ixyl < r, we have

uy = V(ty, xo) < al(lxgl) < a(r).

As a result, it follows, in view of (2.4) and (A,), that

b(p) < b(Ix(1x)1) < V(ty, x(1,)) < w(ty) < a(r) = b(p),

which is a contradiction. Hence, B is conditionally invariant with respect to A.

Next, we need to prove U.S. of the conditionally invariant set B with respect to A. Let
€>0andt, e T be given. Choose §, = ,(€) > 0 such that a(r + 8,) < b(p + €). Since the
invariant set Q is U.S., we have, for some 8 < 3,

ug < a(r + =u@) <a(r + §,) fort>1,,te T.

Claim Ixyl £ r+ 8 =Ix(f)| < p + €, t 2 . If this is not true, then there exists a solution
of (2.1) and ¢, > ¢, such that

Ix(t)l2p +e.

Choose uy = V(ty, xg). Then, as before, by Theorem 2.4 we have, since uy = V(t,, x,) <
a(lxpl) < a(r + 9),

b(p + €) <b(Ix(t)l S V(2 x(2,)) Sw(t)) <a(r + 8,)<b(p+e).
This contradiction proves U.S. of Q.

Finally, to prove U.A.S., fix € = p, and designate 89 = 8(p,). Since Q is U.A.S., given
0 <m < pgand ty € T, there exists a 8, > 0 and T = T(n) > O such that

uo<a(r + &) implies that u(r) <a(r+m),  r21,+T.

Choose 8, = min(80,8%) so that we have, by U.S. of B, x| r + 8, implies that Ix(f)| < p
+ Po» t 2 t,. Consequently, with u, = V(t,, xo) < a(r + ), we arrive at, for ¢ > ¢, + T,

b(lx(®)) < V(t, x(1)) < r(t)<a(r+Mm)<b(p+n)

which implies that Ix(H)| < p + 1, t 2ty + T, provided Ix,l < r + 8. The proof is therefore
complete.

As an application of Theorem 2.1, we shall study the control of uncertain systems.
Consider the dynamical system
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A =£(t, x, W)+ B(t, O)F(t, x, u, w) 2.5)

x(to) = Xo, teT,

where u € R” is the control and w € O is an uncertain parameter. Let us list the following
conditions for convenience.

@) fe C T xR"xO,R", Be Cyu[T xR, R isamatrixand Fe C,, [T
X R"X R™ x O, R".
(i) Ve CYIT x R", R,], and for (tx) € T x R"
VfA(t,x)S = c(Ixl)
b(Ixl) £ V(t, x) < a(xl),
where a, b, ¢ € k.
(iii) For each w € O
ul F(t, x, u, ) ==B,(t, x, ®) lul + B,(t, x, @)lul*
where B, B, € Cq [T X R" x O, R,] satisfying
Byt x, @) < B,(t, x, @)p(t.x),
B,(tx,w) < k(t, x),
p, ke Cyl[TxXR", R,
V) p={pye CuTxR", R"]:A >0} is the stabilizing family of controllers satisfying
Lo, x) Ipp(t, x) = —Ip\(t, x) | o (t, x)

(i.e., py is of opposite direction to o), and
A
Inl>0=Ip,| 2p[l- m—|]

where oo = BT V7 and n(t, x) = k(t,x) - o, x).
We can now prove the following result as an application of Theorem 2.1. Let A and B be
the sets defined in (2.3).

THeOREM 2.2:  Suppose that the conditions (i)-(iv) hold. Then the set B is conditionally
invariant with respect to the set and it is U.A.S.
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Proof. From (ii), it follows that Vﬁ (t, x) < — y(V(t,x)) where Y(u) = c(a”'(w)). Using
conditions (iii) and (iv), we obtain

lol
Ot(t, X)F(t, X, p)\'m) = _mplF(L XD w)
A

= lod [By(t, x) = By(t, X) Ipy]
A
= lad [By(, x) — By(t, x)p(t, x)(1 — ﬁ)

B, o
n!
Hence, it follows that

Vi(t, x) < = y(V(t, %)) + A

and consequently, g(t, w, A) = —y () + A. Clearly, a(r) = a(r(A)) = Y "'(A), and because
of (ii), we see that (A,) and (A,) of Theorem 2.1 are satisfied. It is therefore enough to
show that (A,) is true relative to (2.2.)

To prove that 0 < uy < a(r) =u(f) < a(r) for t 2 ¢, t € T, suppose that it is not true.
Then, there exists ¢* > t, such that u(t") > a(r) and t, € (t,, t*) such that u(z,) < a(r) and
u(t,) = a(r) for t, < t< t". Hence,

I

a(r) <u(t*) = u(h)J 8(s, u(s), Myds < a(r)

h
since u(t;) < a(r) and g(z, u, | A 1) <0 if u > a(r). This contradiction proves that the set
Q={ue R,;:0<uc<a(r)} is self-invariant.
To prove U.S. of Q, lete > 0, 1, € T be given. Choose & = &(¢) such that a(r + 8) < a(+€).
Then, we claim
ug < a(r + d)=u(r) <a(r+e), teT.
If not, there exists, #, 2 t, such that uy< a(r + 8) and u(t,) = a(r + €). This, in turn, yields

a(r+e€) = u(t)) <a(r+9) <a(r+e).

This contradiction proves U.S. of Q.
To show that Q is U.A.S,, set € = py and &, = &(py), so that by U.S. of Q

Ug < a(r+8y)= u(r) < a(r + py), te T.
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Assume u, < a(r + 8y). Let 0 <m < pgand 8 =8(M), 0< 3 =3(n) <, of U.S. Let T >
a(r+ 8

WaG+5m) =k Then, we claim that, for some t* € [t,, t, + T], we have u(t") < a(r + J).

If this is false then we have u(f) 2 a(r + 8) for t € [ty, ty + T], which yields

t+T

0 =a(r+0dMm)) Su(ty) +T) = u(ty) + J ( =y (u(s)) + N)ds

fo

<a(r+8y) +[-v(a(r+dm)+AlT.

In view of the choice of T, this leads to a contradiction. Hence, it follows that, if u, < a(r
+ 8p), then u(r) < n for # > t, + T, which implies that Q is U.A.S. and the proof of the
theorem is complete.
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