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1 INTRODUCTION

In this paper, we study impulsive control problems. Such problems arise naturally from a
wide variety of applications, such as spacecraft maneuver [2], ecosystems management
and inspection processes in operations research. To control an object means to influence
its behavior so as to achieve a desired result. There is a large body of literature on
continuous control. For basic results of what constitutes the common core of control
theory see [5]. Impulsive control is to solve problems that are basically defined by
continuous dynamical systems, but on which only discrete-time actions are exercised. An
essential benefit of the impulsive control approach may be derived from the fact that such
controls are simpler to implement and involve cheaper control mechanisms. For example,
in rocket control, impulsive corrections of trajectories may involve mechanisms that are
less complex than mechanisms that monitor and correct on-line the flight of the rocket.
Thus, if a mechanism for rocket trajectory control based on corrective impulses could be
designed, such mechanisms would be less costly than continuous-time flight control
mechanisms. Such considerations are also relevant in many economic and management
situations where the structure of the control relates to implementation.

The objective of this paper is to develop a systematic mathematical theory of impulsive
controllability of linear dynamical systems. We shall describe the problem in Section 2,
and establish some preliminary results in Section 3. In Section 4 we shall state and prove
our main theorems which give necessary and sufficient conditions for impulsive
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278 A. R. WILLMS AND XINZHI LIU

controllability of the system. Finally, in Section 5, we study as an application, the problem
of impulsive maneuver of a spacecraft in near-circular orbit and obtain some criteria on
controllability of the spacecraft based on various operative thrusters.

2 PROBLEM FORMULATION

Let a physical system be described by the differential equation

x = A(Dx, 2.1

where x € R" and A € C[R, R"*"]. It is desired that the solution x(z) of (2.1) satisfy the
following boundary conditions

x(ty) = xo,  x(t) = xp 2.2)

It is well known, however, that a solution to problem (2.1) — (2.2) does not exist in general.
Traditionally, the above problem is solved by adding a control term to the right-hand side
of equation (2.1), which we refer to as continuous control. The idea of impulsive control
is to achieve prescribed states in a prescribed time from arbitrary initial conditions by
applying impulses to some components of the physical system.

Let x be partitioned into two parts so that x” = (z, y7), where z € R ™ and y € R™.
The vector y represents the impulsive portion of the system, i.e. impulses can only be
applied in the last m dimensions of the system. To avoid trivial solutions, we always
assume 1 = m < n. We say that system (2.1) is impulsively controllable if for any given
(to, Xo), (15 x) € RX R" with £, < 1, there exist t; € (1, t),i = 1,2,..., r, with t; <1, <...<
t,and Ay; € R™, i = 1, 2,..., r such that the following impulsive differential system

x = A()x, t#t,
X(t5) = X)) + Ax(t), i= 1,2, - ., (2.3)
x(ty) = X,

where Ax(ti)T = (0, AyiT), has a solution x(7) existing on [f,, ¢ such that x(z) = x. See [4]
for a detailed discussion of impulsive differential systems.

Let ®(7) be a fundamental matrix solution of the system (2.1). Then the system (2.3) has
a unique solution x(#) existing on [fy, t] given by

DODP (t)xy 1 E [t 1,1,
x(7) = POP (), t E (1,141, i= 1,2, - - r— 1, (2.4)
POP™(t)x(t;), 1 E (1,0 1)

It then follows from (2.3) that the system (2.1) is impulsively controllable if and only if
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> @, '(t)Ay, = b, 2.5)

i=1
where ®,(7) denotes the rightmost m columns of ®~'(z) and b = D (t)x, — D (to)xo.

Setting W = [®,' (t) 1D, (1) - 1D, '(t)]and YT = (Ayl, Ayl - -, Ay?), then (2.5)can
be rewritten into the compact form

WY = b. (2.6)

Since xo, x5, and therefore b, are arbitrary, it follows from elementary linear algebra that
the system (2.1) is impulsively controllable if and only if

Rank(W) = n. 27
Equation (2.7) establishes a necessary and sufficient condition for impulsive controllabil-
ity of system (2.1), but it requires the computation of a fundamental matrix and its inverse,
which is often forbidding. In the following sections, we shall consider the case when the

right-hand side of (2.1) is independent of ¢ and obtain some necessary and sufficient
conditions on the matrix A.

3 PRELIMINARY RESULTS
In this section, we consider the linear autonomous system
x = Ax (31)

where A is an n X n real matrix. The fundamental matrix solution ®(#) of (3.1) is given
by

d@r) = V. 3.2)

Let J be the upper triangular (complex) Jordan canonical form of A. Then J = P~ AP,
where P is a nonsingular matrix whose columns are an appropriate set of generalized
eigenvectors of A. Clearly

®,'(t)=Pe " P},
and
W=[Pe " P, P2 P\ - \Pe™ " P,'] = PsS,

where P,,' denotes the rightmost m columns of P~ and
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— 1=t p=1, —Jt, p—1 —It, p-1
S=[e ™ P, le?P, | - le’"P, 1] 3.3)

Since P is nonsingular, it follows from (2.7) that the system (3.1) is impulsively
controllable if and only if

Rank(S) = n. B34
Let the characteristic and minimal polynomials of A be given by
p®) = (¢ = MM = N)™ - -t = N
and
a0 = (@ = NP = AP - e = NP

respectively, where \;, \,,...,\, are the distinct eigenvalues of A. Then the Jordan
canonical form, J, of A is block diagonal whose diagonal entries are of the form

A, 1 0---0 0
0N\ 1---0 0

Jlj= e e e e (3.5)
0 00---\ 1

o
(=)
[e]
[}
>

with the following properties:

(i) corresponding to each \,, the number of J;; equals the geometric multiplicity of \;,
denoted by k;;

(i) denote by l,.j the order of 1}’” then l,.j = B, J = 1,2,...,k;, and equality holds for at

least one j. Furthermore, 21 I = .
7~

N
Letk = 21 k; and the matrix P be divided correspondingly into k submatrices
=

P =[PPy - Py PyPy - Py - PyPy - Pyl (3.6)

where P; isann X lij matrix. Let us label the columns of P; by P(i, j, D,1=1,2,..., l,-j.
Then PJ = AP implies

PyJ; = AP (€¥))

or equivalently
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(A—NDPG,j, 1) =0

. (3.8)

We shall next consider the form of the matrix S defined by (3.3). First we see that e 7" =
diagle7it], where

. 2 I;i—1 =]
t —t)"
1 —¢t — . .. =9
2 (1; — D!
e - (—pi?
Jit — Nt —t. . .
e e 01 —t =2 (3.9
00 O 1

Let P(i, j, I);, denote the kth component of P(i, j, I) and let C(i, j, I), denote its
corresponding cofactor of P. Then we have

C(l’ 15 1)n—m+1 e C(17 19 l)n
-1 1 C(l’ l’ 2)n—m+1 e C(l’ 1’ 2)'!
Py =0 (3.10)

CGs, ks’ lsk,)n—m-kl < G, ks’ lsk:)n

where |P] is the determinant of the matrix P.
With this notation it is evident that in the product e ' P,,", the block-diagonal nature of
e 7" separates ¢”” P! into k blocks of rows. That is

1 .
- — -7
e P =—| eic,

3.11
Pl Y @.1D

where
C(i’j’ 1)n—m+1 T C(l’]9 l)n

CG.J, bn-m1 - - - CUJ, Ly

The last row in each of these blocks will play a crucial role in the following discussion,
hence we define the k; X m matrix
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Cc@, 1, lil)n—m+1 R & (A ¥ lil)"
C(i, 2, li )n_m ot C(i7 2’ li )n
co=| T G.12)

C(l’ ki’ liki)n—m+1 . C(l’ ki’ lik,)n

for each i = 1,...,5. We note that |PI™} C(i) is a submatrix of P;l of order k; X m. Finally,
let L(7) denote the submatrix of P of order n X (n — k;) formed by eliminating the columns
PG, j, 1), j = 1,....k;. (These columns are the last columns in each of the submatrices of
Py, j = 1,....k; and correspond to the rows of C(i)). Also, let M(i) and N(i) denote the first
n — m and last m rows of L(i) respectively so that

»
L) = [ e ] (3.13)

where M(i) is of order (n — m) X (n — k;) and N(i) is of order m X (n — k;).
We are ready to prove the following lemmas.

LemMa 3.1 Rank{M(i)} = n — m if and only if Rank{C(i)} = k;, where C(i) and M(i) are
defined by (3.12) and (3.13) respectively.

Proof: Suppose Rank{M(i)} = n — m. Since P is nonsingular, Rank{L()} = n — k;. Thus
there must be at least m — k; rows, ry,...,7,,_, of N(i) such that the square matrix

M(@)

is nonsingular, i.e. IM| # 0. Since M is a (n — k;) X (n — k;) submatrix of P, it follows
from Jacobi’s theorem [A] that there is a k; X k; complimentary submatrix of (P~')”
formed by a certain k; columns of the matrix IPI~Y C(i) with a nonzero determinant.
Conversely, if Rank{C(i)} = k;, then we must have Rank{M(i)} = n — m, for otherwise,
we would have IM| = 0 for any rows r,...,r,,_; of N(i) which implies, by Jacobi’s
theorem [1], that every minor of order k; in C(i) is zero. This contradiction completes the
proof of Lemma 3.1.

Lemma 3.2 If Rank{M(i)} = n — m, then for any scalar row vector, a = (ay,...,a,),
ae”''P,' = 0Vt E (ty, t) implies a = 0; i.e. the rows of the matrix e "'P.! are linearly
independent as functions of t.

Proof: We partition the vector a corresponding to (3.6) into k parts, i.e. a = (ay,,
Q12 5@1ks o1 A2dse - kys- -5 Gy Qs 58 )- Then by (3.11) ae "'P,' = 0 implies

sk
> D aec;=0. (3.14)

=1j=1
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Since \,,...,\, are distinct eigenvalues of A, it follows from (3.9) and (3.14) that

ki
DaeC;=0, Vi=1, - s 3.15)

j=1

From (3.9) we see that the component functions of e_""tC,-j are linear combinations of
terms of the form e M#*; « is said to be the degree of the term, 0 < o < l; — 1. From
property (ii) of the Jordan canonical form (3.5), wehave 0 =« <, — 1. Arow in e ™" itC;
is said to be of degree d in ¢ if the highest degree non-zero term in the row is of degree
dint

Now, since Rank{M(i)} = n — m it follows from Lemma 3.1 that Rank{C(i)} = k;, i.e.
the rows of C(i) are independent and consequently non-zero. An analysis of (3.9), (3.11)
and (3.12) then shows that row [ of e"""‘tC,j, 1 =1 =I;is of degree /; — l'in t and the
coefficients of the terms of degree /; — [ in this row are given by the j-th row of C(i). Note
that for each set (i, j) all the rows of e~/ itC; are of different degrees so that for a given
value i, if two rows of e~ itCy, j = 1,....k;, have the same degree, the coefficients of their
highest degree terms are given by different rows in C(i). It then follows from the linear
independence of the rows of C(i) that all rows of e " itCy, 1 = j =< k; of the same degree
d in t are linearly independent as functions of ¢; this is true for each value d = 0, 1,...3;
— 1. Consequently, since rows of different degree are clearly independent of each other
it follows that all the rows of e’ itCy, 1 = j < k; are linearly independent as functions of
t, i.e. for fixed i

ki
2 age "'C;=0 implies a;=0Vj=1, - -k, (3.16)

Jj=1

Hence by (3.15) and (3.16), ae"""P,' = 0 implies a = 0.
Our final Lemma in this section is a result from linear algebra.

Lemma 3.3 Let A and B be subspaces of an inner product space V, then
(ANB"=A"+B". (3.17)

Proof: Letv E A" + B ,thenv = x + y, where x EA",y € B". Let w € A N B, then
<y, w> = <x,w> + <y, w>,butw € A and w € B implies <x, w> = 0 = <y, w>.
Therefore <v, w> = 0 Vv € A" + B and Vw € A N B. Hence

A"+B"CANB)". (3.18)

Now V may be expressed as the direct sum of a subspace and its orthogonal complement,
in particular we may write

V=(A"+BY®A" + B (3.19)
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Let v € (A N B)™; by (3.19) we write v uniquely as v = u + z where u € A~ + B and
ZE (A" + BY)™ . Since v € (A N B)" we have

0=<yw>=<uw>+<zw>VwEANB. (3.20)

By (3.18), since u € A™ + B~ we have <u, w> = ( which substituted into (3.20) equation
gives

<zw>=0 VwEANB. 3.21)

However, z € (A" + B")" hence < z,x + y> = 0 Vx € A, Vy € B™. In particular
choosing x = 0 and y = 0 respectively gives

<z,y>=0 VyEB and<z,x>=0 Vx€EA"

Hence z € Band z € A, i.e. z € A N B. But by (3.21) z is orthogonal to every member
of A N B hence z = 0. Therefore v = u € A~ + B™; thus

(AN B)* CA* + B*, (3.22)

and by (3.18) and (3.22) the Lemma is proved.

4 NECESSARY AND SUFFICIENT CONDITIONS

In this section we present two theorems that give necessary and sufficient conditions for
impulsive controllability of a system. The first theorem is a condition on the generalized
eigenvectors of the matrix A, the second is a condition on the generalized eigenvectors of
a certain submatrix of A. We also give several corollaries that apply to special cases.

TueoREM 4.1 Let P be a nonsingular matrix such that J = P~ 'AP is the upper triangular
(complex) Jordan canonical form of A. A necessary and sufficient condition for the system
(3.1) to be controllable by impulses in the last m dimensions, 1 =< m < n, is

Rank{M@)} =n—m, Vi=1, - s, “.1)
where M(i) is defined by (3.13) and s is the number of distinct eigenvalues of A.
Furthermore, the number of impulses, r, required to achieve any desired final state for a

n
controllable systemisintherange— = r = n — m + 1.
m

An immediate corollary of Theorem 4.1 provides a necessary condition on the matrix
A.

CoroLLARY 4.1 If the geometric multiplicity of an eigenvalue of A exceeds the number of
impulsive dimensions m then the system is not controllable.
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Proof: M(i) is of order (n — m) X (n — k;) where k; is the geometric multiplicity of \;,
hence if k; > m then Rank{M(i))} =n — k;<n — m.

Proof of Theorem 4.1 Consider the rows (i, j, I), j = 1,... k; of e P, i.e. the last row
in each of the (i, j) blocks of e’ 'P,;l for some i = 1,..., 5. From (3.9) we see that the last
row of e 7it is [0, 0,...0, e~ ™¢] hence by (3.11) and (3.12) the k; rows of e ”'P,,' we wish
to consider are

L.
e MCa), 4.2)

and the corresponding k; rows of S, defined by (3.3), are

1
ﬁca) [eMI1e ™. . .e™M, 4.3)

Therefore, if Rank{C(i)} < k;, then the k; rows of S given by (4.3) are linearly dependent
implying Rank{S} < n hence by (3.4) the system is uncontrollable. The necessity of the
theorem condition (4.1) then follows from Lemma 3.1.

To establish the sufficiency of (4.1) we shall show, with the aid of Lemma 3.2, that it

is possible to choose times f; € (o, 2, i = 1,..., r with #; < t, <...<t, and% =r =
n — m + 1,suchthat Rank{S} = n.

The number of columns in S is rm hence Rank{S} = n implies r = n/m; this provides
the lower bound for . For fixed time #,, we view e P! as a linear transformation T}: C"
— C™ defined by Tz = [e P, ']"z, Vz € C" Similarly we view S as a linear
transformation S,: C" — C™ defined by the Cartesian product S,z = T, z X...X T,z, Vz
€ C". From these definitions it is clear that KerS, = N_, KerT;. The requirement that S
have rank n is equivalent to dim{KerS,} = 0.

We claim that for any non-zero b € C", 31, € (¢, t;) such that b & KerT;. If no such
t, exists then b € KerT; Vt; € (¢, t) hence [e"P,'1"b = 0Vt € (¢, 1) and by Lemma
3.2 we must have b = 0, a contradiction.

We now construct S. Choose #;, € (f, #). Since e " and P~' are nonsingular,
e ""P_ ! has rank m hence dim{ImageT,} = m and dim{KerT,} = n — m = d,. Choose
nonzero b € KerT,. By our above claim, 3z, € (ty, t), t, # t,, such that b & KerT,. With

this choice of t,, KerS, = N~ KerT, is a proper subspace of KerT,, hence d, =
dim{KerS,} < dim{KerT,} = d,. If d, > 0 we chose a new nonzero b € KerS, and t; €
(t, t), t3 # 1}, t, such that b & KerT; giving KerS; = N>, KerT, =

KerS, N KerT; C KerS, and d; = dim{KerS;} < dim{KerS,} = d,. Carrying on in this
fashion we obtain d, < d,_; <...< d, <d; = n — m which shows that for some r = n —
m + 1, d, = 0. Thus for these times {¢,,..., #,} (which we may rearrange so that ¢, < z,,...

n
<t) where;n- =r=n— m + 1,d,= 0implying Rank{S} = n and by (3.4) the system
is controllable.
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Remark: Theorem 4.1 does not say that any set of times {t;},i = 1,...,.n —m + 1, will

n .
control a system satisfying (4.1), only that a set {’1,---tr},a =r=n-—-—m+ 1,exists

which renders the system controllable. In particular, when the component functions of

e "'P. ! are periodic, it may be necessary to avoid choosing times that correspond to the
period of one of the functions. For example if

011
A=\ —-112
001

)

m = 1, then the system x = Ax is controllable with

2e”f

1 iy
e Pl =—{e"(=3+1)
e'(—3 —i)
from which it is seen that for ¢, = n,
0
3+1i | €KerT,
-3+

hence for {0, w, 2,..., rw}, dim{KerS,} > 0 and Rank{S} < n Vr. However, for {0, /3,
w/2} dim{KerS,} = O as can be checked.

Theorem 4.1 provides a necessary and sufficient condition for controllability based on
the generalized eigenvectors of A; as such, it is a considerable improvement to the original
condition given by equation (2.7). Corollary 4.1 provides a necessary condition that
requires even less information. One need only compute the eignevalues, \;, of A and then
determine Rank{A — NJ}. If n — Rank{A — NI} > m then the system is uncontrollable.

We now present a necessary and sufficient condition that requires less information, or
at least information easier to obtain, than Theorem 4.1. Let us write the matrix A for the
n-dimensional system with impulses in the last m dimensions as

R el (4.4)
AA, ) ‘

where A, A, Ay, and Ajare (n — m) X (n —m),(n — m) X mym X (n — m) and m X
m matrices. As might be anticipated, the submatrices A; and A, play a crucial role in the
controllability of the system which is revealed by the following theorem.

THEOREM 4.2 Let impulses be applied in the last m dimensions, 1 =< m < n, of system (3.1),
and A be subdivided according to (4.4). Let {\,..., A,} be the set of distinct eigenvalues
of A and let {u;,..., u,} be the set of distinct eigenvalues of A,. Define ¥ as ¥ = {\,,...,
A} N (..., By} and for v € ¥ let E(v) denote the eigenspace of AT corresponding to
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eigenvalue v. Finally let col(A,)™” denote the orthogonal complement of the column space
of A,. The system is controllable if and only if

v =0, 4.5)
or E'(v) N col(A,)* = {0} VvEW. (4.6)

Eguivalently, if we let E,(v) denote the space spanned by the set of “highest order”
generalized eigenvectors of A, of v, then the system is controllable if and only if

V=0,

or col(Q/E,(v)) + col(Ay)) = C"™™ Vv e, “.7
where Q is a non-singular matrix whose columns are the generalized eigenvectors of A,
such that Q™' A,Q is the upper triangular Jordan canonical form of A, and Q/E,(v)
denotes all the columns of Q except those in E,(v).
Remark: Equation (4.7) simply provides an alternative method for testing a given system
for controllability. Whereas (4.6) is in terms of eigenspaces of AT and the orthogonal
complement of the column space of A,, (4.7) is in terms of the generalized eigenvectors
of A and the column space of A,. The method that will require the least amount of work
for a given matrix A, will depend partly on the size of the set ¥ and on the number of
columns in A,. The matrix Q has the same format as that described in Section 3 for P,

although in this context Q relates to the matrix A,, rather than the entire matrix A. If we
let &(i, j, I) denote the columns of Q using the notation of Section 3, then

E,(v) = span{£(io. j, ;) | 1 <j <k, \;, = v}. (4.8)

Proof of Theorem 4.2 Taking the orthogonal complement of (4.6) and applying Lemma
3.3 to the left side gives

E'w)" + col(4,)) =C" ™"VvE V. 4.9)
The equivalence of (4.6) and (4.7) will follow from (4.9) when we have showed that
E"(v)" = col(Q/E,(v)). 4.10)
Let f, be the number of independent eigenvectors of A of v, then
dim{E'(v)} =f, 4.11)

dim{E'(v)*} = (n — m) — f, 4.12)
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Now, from (4.8)

dim{E,(v)} = k, 4.13)

where k; is the geometric multiplicity of eigenvalue N, = v; however, since
Rank{A, — vI} = Rank{AT — vI} we musthave k;, = f,- Since Q is nonsingular, O/E,(v)
has n — m — f, independent columns. To confirm (4.10) we will show that all of these
columns are orthogonal to the space ET(w).

Let v be an eigenvector of A] of v, i.e. v € E(v), and let £(, j, ) be the generalized
eigenvectors of A, then

A=y =0, 4.14)

AT — NDEG, j, 1) = &G, j, | — 1) where &G, j, 0) = 0. (4.15)

Transposing (4.14) and multiplying by &(, j, 1) gives

vI(A, — vDEG, j, ) = 0. (4.16)

Substituting for A,&(, j, 1) from (4.15) gives

VIO — vEG, ), D + £, 1 — 1) = 0. (4.17)

If \; # v then induction on / applied to (4.17) gives

VIEG, j, ) = 0,V i,j, Isuch that \; # v. (4.18)

If \; = v (which must occur since the eigenvalues of A, and A] are identical) then (4.17)
collapses to

ViEGj,I-1)=0 N =v, VL 4.19)

Equations (4.18) and (4.19) hold for all v € E”(v), and show that E’(v) is orthogonal to
all the columns of Q except the “highest order” generalized eigenvectors of A, of v, i.e.
all columns of Q except {£(iy, J, 1,)) | 1 =j =k, , \; = v}. This confirms (4.10) and hence
establishes the equivalence of (4.6) and (4.7).

We are now ready to prove the theorem itself. Our approach will be to show that
uncontrollability implies that (4.5), (4.6) must fail and that failure of (4.5), (4.6) implies
uncontrollability.

Again we use the notation of the previous section and write the generalized eigenvalues

ofA,p(i,j,l),lSiss,lsjski,lslslij;as

u(i, j, D

Wi, j, l)) where u(i, j, ) € C" " and w(k, j, I) € C™.

pG.j, D = (
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The generalized eigenvectors satisfy

u@,j, D\ _ (uG,jl—1)
m‘x”<muw>‘<muJ—n> (4.20)

where we define (::((ll Jj’ (())))> = 0. The first n — m equations of (4.20) may be written as

Aw(i, j, I) = NI — ADu(, j, D) + u@, j, 1 — 1). (4.21)

Suppose the system is uncontrollable. Then by Theorem 4.1, Rank{M(iy)} < n — m for
some iy, 1 < iy = 5. M(iy) has n — m rows, since Rank{M(i;)} < n — m, 3 nonzero b €
C"™ such that b” M(iy) = 0, i.e. the rows of M(i,) are dependent. Define

_ (AT = \Db n
a—( ATD >ec, 4.22)

and consider the product a” P where P is the matrix of generalized eigenvectors as in
Theorem 4.1,

Tp_ T A _ T T u(i, j, D
a P=@"A, Mbﬁz@[u-w@ﬂnu-]
=[ - BT A, j, D) — N, b u,j, 1) + b7 Aw(i, j, DI- - -]. (4.23)
Substituting for A,w(i, j, I) from (4.21) gives
a' P=1[ - A\ — NDb (i, j, D) + b uG, j, 1 — DI - -], (4.24)

Now M(iy) contains all the vectors u(i, j, [) as columns except the set {u(iy, j, ; HI1=
J =k}, ie. all vectors u except the last vector in each block corresponding to eigenvalue
\,.. Therefore, since b” M(i;) = 0, we have, in particular, b u(i, j, | — 1) = 0 Vi, j, l and
bf u(i, j, ) = 0Vi,j ;i # iy, and, since \; — \;, = 0 for i = i, the right side of (4.24)
vanishes. Thus uncontrollability implies

a'P=0, (4.25)

a=0. (4.26)

Substituting (4.22) into (4.26) we require

b"A, =0 4.27)
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and (AT =\, Db =0 (4.28)

Equatlon (4.27) says that b € col(A,)™, while equation (4.28) says that A, is an eigenvalue
of A, say N, = v, and b € E” (v). Therefore uncontrollability implies T £ g and E” (v)
N col{A,}™" #= {0}, i.e. (4.5) and (4.6) fail.

Conversely, suppose ¥ # ¢ and E” (v) N col(4,)" # {0} for some v € ¥, jie. I
nonzero b € ET (v) N col(A,)". Define a as in (4.22) with A;, = v. Since v is an eigenvalue
of AT and b € ET (v), we have (AT - N I)b = 0, also since b € col(A,)” we have
Alb = 0, hence a = 0 which substituted into (4.24) gives

0=1[ - I\ — )\io)bT u(i, j, 1) + b  u(i, j, 1 — 1) - .. (4.29)
For the columns in (4.29) where i = i, we have \; — \; = 0 and therefore
b uGip, jyl - 1)=0VIi<jsk, 1=<I=<I, (4.30)

For columns where i # i, then \; — N, # O since the eigenvalues are distinct. Then, since
u(i, j, 0) = 0 by definition, we have, for [ = 1

b uG,j,)=0 Vi#i,l=<j=<k,. 4.31)

Using (4.31) as the base case, we have by induction on [ that
b  u(i,j, 1) =0, Vitiyl<sj=sk l=I=1I, (4.32)

Equations (4.30) and (4.32) together show that b is orthogonal to all vectors u(, j, [) except
the set {u(iy, j, l,-uj) 1=j= kio}, ie. bT M(i,) = 0. Therefore, since b # 0, the n — m
rows of M(i,) are dependent, hence Rank{M(i,)} < n — m and by Theorem 4.1 the system
is uncontrollable.

An important corollory that provides a sufficient condition for controllability follows
from Theorem 4.2.

CoRroLLARY 4.2 If Rank{A,} = n — m then the system is controllable.

Proof: Rank{A,} = n — m implies dim{col(A,)} = n — m and since C*™™ = col(A,)
@Dcol(A,) ", we must have dim{col(4,)"} = 0 and col(4,)" = {0} hence (4.6) will hold
whenever (4.5) fails and by Theorem 4.2 the system is therefore controllable.

Note that since A, is (n — m) X m, the condition Rank{A,} = n — m implies n — m

n
=m,ie.m = 550 that Corollory 4.2 only applies to systems where impulses are allowed

in at least half of the dimensions. An important application of Corollory 4.2 can be stated
as follows.

A second order linear system of the form

x" = Ax + B
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is always controllable when impulses are allowed in all of the velocity variables. To see
this, simply reduce the system to a first order system of the form

(1) = (52 (5) =+

Since I is nonsingular, Corollory 4.2 immediately shows that the system is controllable
when impulses are allowed in all of the velocity dimensions.

An expected result for the special case A, = 0 can also be stated as a corollary of
Theorem 4.2.

CoroLLORY 4.3 If A, = O then the system is uncontrollable.

Proof:

AI_M
A3

0
A, — N

det(A — N) = det (

) = det(A, — N)-det(A, — \])

thus all eigenvalues of A, are also eigenvalues of A, i.e. (4.5) fails. Furthermore A, = 0
= col(4,) = {0} = col(A,)* = C* ™ hence E” (v) N col (A,)" = E” (v) # {0}, i.e. (4.6)
fails. Therefore by Theorem 4.2 the system is uncontrollable.

We now turn our consideration to the special cases m = n — 1,and m = n — 2.

CoroLLorY 4.4 Let impulses be applied in the last n — 1 dimensions. Then system (3.1)
is controllable if and only if at least one of the entries a,,,...a;, of A is nonzero.

Proof: A, = [a,5,...,a;,] If A, = 0 then the system is uncontrollable by Corollory 4.3, if
one of a,5,..., a;, is non-zero then Rank{A,} = 1 = n — m and the system is controllable
by Corollory 4.2.

CoROLLORY 4.5 Let m = n — 2. The system (3.1) is controllable if and only if col(A;) €
span{v} where v is an eigenvector of A,.

Proof: A, is a 2 X (n — 2) matrix. If Rank{A,} = 2 then dim{col(A,)} = 2 hence
col(A,)E span{v} and by Corollory 4.2 the system is controllable. If Rank{A,} = O then
clearly col(A,) = {0} C span{v} and by Corollory 4.3 the system is uncontrollable. It
remains to consider Rank{A,} = 1. If Rank{A,} = 1 and the system is uncontrollable then
col(Q/E,(\))) + col(A,) # C? for-some A, € V. Since dim{col(A,)} = 1 and dim{C?}
= 2 this means that

col(Q/E,(\)) C col(A,) (4.33)

and

dim{col(Q/E,(\))} = dim{col(4,)} = 1. (4.34)
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Now Q and E,(\,) are of three possible forms

2 distinct eigenvalues | 1 eigenvalue-1 eigenvector | 1 eigenvalue-2 eigenvectors
Qo v, 1, 1) w2, 1, DI[vd, 1, D) v, 1, 2)] v(1, 1, 1) v(,2, D] 4.35)
E,(\)) |span{v(l, 1, 1)} span{v(l, 1, 2)} span{v(l, 1, 1) v(1, 2, 1)}

where we use the notation of Section 3. Hence col(Q/E,(\,)) = span{v(i, 1, )} i = 1 or
i =2, or col(Q/E,(\})) = {0}. If col(Q/E,,(\})) = span{v(i, 1, 1)} then (4.34) and (4.33)
imply col(4,) = span{v(i, 1, 1)}. If col(Q/E,(\,)) = {0} then all non-zero vectors in C?
are eigenvectors of A; and again (4.34) gives col(A,) = span{v} where v is some
eigenvector of A,.

Conversely, suppose col(A,) = span{v} where A;v = \v,ie.v =v(1, 1, 1). If A| has
only one eigenvalue but two independent eigenvectors, then Rank{A; — N/} = 0 and
since Rank{A,} = 1 we have

Rank{A, — \JA4,} =1
which implies
Rank{A — \ I} <n.

Thus A\, is an eigenvalue of A, i.e. ¥ # ¢, (4.5) fails. Furthermore, (4.35) shows that
col(Q/E,(\;)) = {0} and hence

col(Q/E,(N) + col(A,) = span{v} # C?

so that (4.7) fails and by Theorem 4.2 the system is uncontrollable. If A; has one
eigenvalue and only one eigenvector then 3 nonzero v(1, 1, 2) satisfying

A, - NV, L,2)=v(1,1,1)=v#0. (4.36)
If A, has two eigenvalues N\, # \; then v = v(1, 1, 1) satisfies
A, — NDv(L, L) = (N — Mp)v(1, 1, 1) #0. (4.37)
Equations (4.36) and (4.37) imply respectively that
1 = Rank{A, — N\J} = Rank{A; — NJIv(1, 1, 1)},i=1,2, (4.38)
hence

Rank{A — NI} <n,i= 1,2, (4.39)
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so that A |, (\,) is an eigenvalue of A as well as A, i.e. (4.5) fails. Furthermore, for the one
eigenvalue-one eigenvector case (4.35) shows that

col(Q/E,(\))) = span{v(1, 1, 1)},

while for the two eigenvalue case

col(Q/E,(\,)) = span{v(1, 1, 1)}.

Thus for these two cases

col(Q/E,(\))) + col(A,) = span{v(1, 1, 1)} # c?

i = 1, 2 respectively so that (4.7) fails and the system is uncontrollable.

We remark that the special cases n = 2 and n = 3 are completely described by the
preceding corollories. In particular, the only non-trivial case for n = 2 is m = 1 which is
covered by Corollory 4.4, whereas the two cases of interest in = 1, m = 2) forn = 3 are
covered by Corollory 4.5 and Corollory 4.4 respectively.

To complete this section, we give a result on impulsive controllability of nonhomoge-
neous systems

x' = A()x + B(9), (4.40)

where B: R— R" is continuous.

THEOREM 4.3 The system (4.40) is controllable if and only if the system (2.1) is
controllable.

Proof: The solution to (4.40) with initial value x(#;) = x, is given by

t
x(f) = ®@F) [cb“ (to)xo + f &! (s)B(s)ds], (4.41)
f
where ®(7) is a fundamental matrix of A(¢). Equation (2.4) is then replaced by

SO@ ™ (txy + [ 7 (BMs), 1€ Ty 1]
x(®) = 4 PO ex(r) + f :d)_l(s)B(s)ds], tE (tptiy)i=1, - r—1,,

dNOID! (L )x(t) + f : @ (5)B(s)ds], t € (1, 1]
' (4.42)
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Applying the impulses at times ¢,,..., ¢, as given by (2.3) yields

x(t)) = Ax, + x(t,) = (1) [2 O (1)Ax, + D7 (1)x(r)) + f "o (5)B(s)ds

i=1

(4.43)
Extending (4.43) to the terminals (¢, t;) by
xp = d(t) [qr‘ )Xt + f :/d)“ (s)B(s)ds]
x(ty) = (ty) [cb“ (t)xo + f ! (s)B(s)ds], (4.44)
gives
2O (1)Ax, = D7 (b, — D () — f " (5)B(s)ds, (4.45)
i=1 fo

which is identical to equation (2.5) with the addition of the integral on the right hand side.
As in Section 2 this collapses to

Wy =b — f ’ D(s)B(s)ds. (4.46)

The quantities on the right side of (4.46) are known hence, since b is arbitrary, the
condition for a solution y, Vb € C" is

Rank{W} = n, (4.47)

which is identical to (2.7), the condition for controllability of the homogeneous system
@.1).

5 APPLICATIONS

As an application to the preceding theory we shall consider impulsive maneouver of a
space-craft in near-circular orbit. The linearized equations of motion for such an orbit are
usually referred to as the Clohessy-Wiltshire equations [3] and are given by
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dr" = 30%dr + 2awd0’
ad0" = —2wdr (CH)Y)
37" = —w’dz

where 8r, ad0, and 8z are the first-order variations in the radical, circumferential and
out-of-plane components of position variation, a is the radius of the reference orbit, and
w is the mean motion. The validity of the linearization requires that the velocity variations
as well as the position components 87/a and 8z be small. Since the gravitational attraction
is independent of 6, 86 is unrestricted. Consequently, the domain of validity for equations
(5.1) is a torus about the circular reference orbit.

Written as a first order system, y' = Ay, (5.1) becomes

000 1 00
X X
000 O 10
~ 000 O 01 <
B 300 0 0 200 ’ 5-2)
000 2000
A\ 2 v
00-w> 0 00

where x = (8r ad0 82)T and v = x'. In this situation, an impulse, Av in the velocity
dimensions represents an instantaneous change in velocity with no change in position and
as such is an approximation to the effect of a short-duration thrust applied to the
spacecraft. This approximation is commonly used when dealing with spacecraft maneou-
ver problems for several reasons. First, fuel burns are usually short when compared to the
length of time of the maneouver so that the idealization does not embody a significant
deviation from reality. Second, the trajectory of the spacecraft between impulses is given
by the free-fall orbit of a body in the gravitational field which is in general much easier
to determine than the orbit of a body under the influence of a thrusting force. For example,
the free-fall orbit of a body in an inverse square field is one of the well-known Keplerian
conics whereas the orbit of a thrusting body in the same field is much more complicated.
Third, spacecraft maneouver problems are usually concerned with the optimization of
some quantity. Since the optimization process is generally insensitive to details, even in
situations where the idealized model is poor, the analysis of the model can provide a good
first estimate and the results can be used as initial data for iterative schemes that utilize
more accurate models.

If we allow impulses in all three velocity dimensions then Corollory 4.2 applied to our
system, (5.2), immediately shows that the system is controllable. What if the radial
thruster failed? Could the spacecraft still achieve any desired final state, (xT, vf)T, (within
the validity of the linearization) using only the ‘tangential thruster and out-of-plane
thruster? For impulses in the last two dimensions only, we have

0 001 00
. 0 000 o 10 53
L 0 000 | L ‘

302000 200
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Computation shows that the eignevalues of A and A, are respectively {0, iw, —iw} and

{0, \/5(», - \/gw} so that ® = {0} is non-empty. The eigenspace of A] of eigenvalue
0 is given by

ET(0) = span

OO - O
(= = ]

(From (5.3) it is also clear that col(A,)" is a two-dimensional space given by

1 0
col(A,)" = span (()) R —20
0 1

It is now easy to see that E7 (0) N col(A,)" = {0}, hence equation (4.6) is satisfied and
by Theorem 4.2 the system is controllable.

What if the tangential or out-of-plane thrusters failed? By re-arranging the variables i.e.
switching some rows and columns in the matrix A, we could obtain a new A, and A, and
proceed as in the previous case using the test of Theorem 4.2 However, to show the utility
of Theorem 4.1 we shall keep the same matrix and calculate its generalized eigenvectors.
Label the eigenvalues of A as A; = 0, A, = iw, A\; = —iw. Each of these eigenvalues has
algebraic multiplicity two, however A, has only one independent eigenvector. Some
computation gives the generalized eigenvectors of A as P = [P,; | Py; | Py, | P53, | P3,]

where
0 —2/3w
0 1
11 0 2i
0 O 1 0
Py = 0 0 Py, 0 Py = io
[10) 0
0 0
0 1
0 —2i
1 0
Py = 0 Py, = o 5.4)
0 -2
—iw 0

For impulses is only the tangential and out-of-plane directions we have
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0010 1
1020 -2
0101 O ’
00iv 0 —iw

M) = 5.5)

0-2B3w0 1

1 1 0-2

0 0 10 ’
0 0 0-io

MQ2) = (5.6)

1 -23w0 1

3 = 1 1 02 57
®=10 0o 10 | :

0 0 Oiw

Analysis of (5.5)—(5.7) shows that Rank {M(i)} = 4, Vi = 1, 2, 3 hence by Theorem
4.1 the system is controllable; this agrees with our conclusion obtained earlier from
Theorem 4.2. The advantage of using Theorem 4.1 is that the relations (5.4) contain all the
information we need to determine whether the system is controllable by impulses in any
of the dimensions. The theorems of §4 are stated in terms of the last m dimensions being
impulsive. If we wanted to have only the fourth and sixth dimensions impulsive in a 6-d
system then we would have to switch rows 4 and 5 and columns 4 and 5 of the matrix A
before applying the theorems. Fortunately, the operation of switching two rows of a matrix
and the same two columns does not affect the eigenvalues of the matrix and has only the
affect of switching the same two components in the generalized eigenvectors. Returning
then to our example, if the tangential thruster failed so that impulses could only be applied
in the fourth and sixth dimensions, then from (5.4) we would get

00 1 0 1 |
D) = 10 2i 0 —2i -
_00—2w0—2w_
[0 -2300 1 ]
) 1 1 0 —2i 5o
2) = 0 0 1 0 , 3.9
| 0 1 0-20 |
[0 -23w0 1 j
M3 = 1 1 0 2 s 10
@D=10 o 1 o | (5.10)
[0 1 020 |
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However, from (5.8) we see that Rank {M(1)} = 3 since

0 1 1
! 2i =2 |
—4i 0 + 0 — 0 =0,
0 —2w —2m

so that by Theorem 4.1 the system is uncontrollable. Similarly if the out-of-plane thruster

failed and only the radial and tangential thrusters were operative, we would have from
54

001 0 1
102 0 —2i
010 1 0 ’
Oiw 0 —io O

M) = .11

0-230 0 1

1 0 —2i
0 0 1 0 ’
0 0 —-im O

MQ2) = (5.12)

0—-23w 0 1

1 1 02

M@3) = o o 10 I (5.13)

0 0 o0

However, we see from (5.12) and (5.13) that Rank {M(2)} = Rank {M(3)} = 3 so that
by Theorem 4.1 the system is uncontrollable. If two thrusters failed so that impulses could
only be applied in one dimension then since the geometric multiplicity of eigenvalues iw
and —iw is 2, by Corollory 4.1 the system is uncontrollable. To summarize then, any
desired final state (x}, va)T (within the validity of the linearization) can be achieved by the
spacecraft provided the tangential and out-of-plane thrusters are operative.

With regard to whether it is easier to use the method of Theorem 4.1 or 4.2 when testing
a given system, from this example we saw that for a given set of impulsive dimensions the
method of Theorem 4.2 was easier to use; however, when we wanted to determine which
dimensions needed to be impulsive for the system to be controllable, the method of
Theorem 4.1 was more appropriate.
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